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Abstract: Resistive switching devices (memristors) constitute a promising device technology that
has emerged for the development of future energy-efficient general-purpose computational mem-
ories. Research has been done both at device and circuit level for the realization of primitive logic
operations with memristors. Likewise, important efforts are placed on the development of logic
synthesis algorithms for resistive RAM (ReRAM)-based computing. However, system-level design of
computational memories has not been given significant consideration, and developing arithmetic
logic unit (ALU) functionality entirely using ReRAM-based word-wise arithmetic operations remains
a challenging task. In this context, we present our results in circuit- and system-level design, towards
implementing a ReRAM-based general-purpose computational memory with ALU functionality. We
built upon the 1T1R crossbar topology and adopted a logic design style in which all computations are
equivalent to modified memory read operations for higher reliability, performed either in a word-wise
or bit-wise manner, owing to an enhanced peripheral circuitry. Moreover, we present the concept of a
segmented ReRAM architecture with functional and topological features that benefit flexibility of
data movement and improve latency of multi-level (sequential) in-memory computations. Robust
system functionality is validated via LTspice circuit simulations for an n-bit word-wise binary adder,
showing promising performance features compared to other state-of-the-art implementations.

Keywords: memristor; resistive switching; resistive RAM; ReRAM; in-memory computing; scouting
logic; 1T1R crossbar; memristive ALU

1. Introduction

Even though, in CMOS-based computing systems, the von Neumann architecture
has been dominant for several decades, given the current pressure of exponentially ris-
ing amounts of data, the modern computing systems are calling for major architectural
changes [1]. In order to overcome the “von Neumann bottleneck” and the performance
mismatch between CPU and memory, the development of computational memories con-
stitutes an emerging alternative approach [2]. Along this direction, resistive switching
devices (memristors) organized in dense crossbar arrays to form resistive random-access
memories (ReRAM) are considered among the key enabling device technologies [3–5].

ReRAM-based in-memory computing can significantly improve the energy efficiency
of computing systems [6]. In this context, there have been several works published lately
that demonstrate the possibility of natively realizing logic computations on memristors [7,8].
Such approaches use the data already stored in the resistive state of the memristors involved
in computation as logic inputs. While important efforts are also being placed towards the
development of synthesis algorithms for in-memory computing architectures [9,10], the
next revolutionary step will be the development of an arithmetic logic unit (ALU) entirely
based on in-memory logic operations with memristors.

Recently, a functional demonstration towards a fully memristive ALU was shown in
Reference [11], implementing fundamental arithmetic functions. However, information
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processing was built upon sequential stateful logic operations based on conditional switching
of memristors [12], which implies important latency constraints and reliability issues, as
identified in References [13,14], for MAGIC- and IMPLY-based circuits. Likewise, given
that majority and inversion operations together form a functionally complete set, some
works have suggested using these primitives for in-memory computations. For instance,
the PLiM approach [15] constitutes a general purpose in-memory computing platform,
which however supports only sequential computations. In the same fashion, the ReVAMP
architecture [16] took a step further, using VLIW instructions to exploit parallel majority
computations, and thus managed to reduce the total number of required instructions.

In this work, we present design results not only in circuit-level but also in system-
level, towards the realization of viable ALU functionality in 1-transistor–1-resistor (1T1R)
ReRAM-based computational memories, within the reach of today’s technology. Unlike
in Reference [11], all computations are equivalent to modified memory read operations and
take place entirely in the augmented peripheral circuitry of the ReRAM array, which
enables either word-wise or bit-wise access. To this end, we exploit the scouting logic
concept [17] for fast and switch-less computation of primitive logic operations, and also
the majority gate [18] to accelerate certain arithmetic operations. We present alternative
circuit implementations for the enhanced sensing circuitry that enables both memory and
logic operations, whose performance was evaluated in the presence of device-to-device
variability in memristors. Moreover, we build upon the concept of a segmented ReRAM
architecture, introduced in Reference [19], to obtain further flexibility in data movement
during multi-level (sequential) computations and to achieve a reduction in the number of
required computing steps. We describe in detail the hardware modules of the proposed
computational memory system and discuss a preliminary set of supported instructions,
proper for a resistive ALU. Functionality and robustness of the proposed system is validated
through LTspice circuit simulations for n-bit word-wise binary addition, based on which
we highlight the flexibility and the performance benefits, compared to other published
works. The presented results pave the way towards the robust design and implementation
of next-generation ALUs in ReRAM-based computational memories.

2. Memory Array Topology and In-Memory Logic Schemes
2.1. Definitions and Assumptions for Memristors

In this work, without loss of generality, we assume threshold-type switching bipolar
memristors that store a logic “0” with a high resistive state (ROFF or HRS) and logic “1” with
a low resistive state (RON or LRS) [20], as shown in Figure 1a. According to Figure 1b,c,
a SET process (HRS→ LRS) occurs when the device is forward biased with a voltage of
amplitude higher than a VSET threshold, whereas a RESET process (LRS→ HRS) occurs
when it is reverse-biased with a voltage amplitude higher than a |VRESET| threshold.
Applied voltages of amplitude lower than such thresholds do not affect the device state and
are thus used for memory read operations. Device polarity is defined by the thick black line
in bottom electrode (BE) of the memristor symbol in the circuit schematics. All simulation
results were based on the model of Yakopcic et al. [21]. It is a threshold-type model of a
voltage-controlled memristor belonging to the hyperbolic sine models and can capture rich
switching dynamics, while it also supports nonlinear HRS and LRS states. The model was
tuned with parameter values selected so as to demonstrate switching time in the ns-regime
and memristance ratio HRS/LRS = 106, being in accordance with experimental results in
Reference [22] for amorphous silicon (a-Si)-type memristors.

2.2. One Transistor One Memristor (1T1R) Crossbar Array

Figure 2 shows the design of a m × n transistor–memristor (1T1R) crossbar, which we
assume in this work as memory sub-array. It consists of m wordlines and n bitlines with
group-accessed transistors as cross-point selector devices to mitigate sneak path currents,
which otherwise severely affect the performance of passive (selector-less) arrays [23,24].
Every wordline, WLi connects to the gate terminal of all the select transistors in the same
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crossbar row, so as to simultaneously select/enable all the n memristive cross-points in a
memory word. Each bitline BLj drives all the m cross-points found in the same column of
the array, whose memristors have their bottom electrode (BE) commonly connected to a
crossbar output line (OL). Through the sensing circuitry, every OL is selectively connected
either to logic components or to ground. Depending on whether a memory (read/write)
or a logic operation is performed, the wordline decoder will activate simultaneously
between one and three wordlines, while the target bitlines are driven accordingly with the
corresponding read/write voltage pulses (or otherwise are left floating).
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Figure 1. (a) Memristance range and HRS/LRS correspondence with logic “0”/“1”. Intermediate
forbidden state is defined by the highest LRS and the lowest HRS, respectively. (b) Memristor switch-
ing behavior when forward or reverse-biased. TE/BE stand for Top/Bottom Electrode. (c) Cartoon
plot showing the required voltage pulses, which are higher than the switching thresholds, to be
applied for SET/RESET memory write operations (light gray shade), and pulses of lower ampli-
tude used for memory read operations (light green shade). Dashed horizontal lines denote the
SET/RESET thresholds.

2.3. Sensing Circuit Implementations That Enable Memristor-Based Logic Operations

Many logic design schemes in the literature are compatible with the 1T1R crossbar-
array memory architecture, shown in Figure 2, using the data stored in the resistance of
memristors as inputs to the primitive logic gates. Operation of most such logic circuits
is usually based on the voltage divider concept and on proper thresholding to produce
correctly the logic output, such as in References [13,25], while operating the memory array
in read mode. Generally, a suitable logic style should be tolerant to memristor variability
and also independent of particular memristor device technology features.

To this end, here we exploit the scouting logic approach [17]. In such scheme, compu-
tations take place directly in the enhanced readout circuitry in the form of modified read
operations, avoiding any conditional switching of the involved memristors. More specifi-
cally, a voltage divider is formed between the equivalent parallel resistance of the input
memristors (which connect to a common BLi) and a network of pull-down resistors in
the sense amplifier (SAi). This scheme requires that the SAi, which is connected to the
crossbar OLi, supports reconfigurable reference voltages. In this direction, Figure 3 shows a
voltage-based SA circuit that complies with this requirement. It was originally proposed in
Reference [17] to enable memory read operations, as well as 2-input AND/OR/XOR logic
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operations. In fact, a read voltage pulse (of amplitude lower than the SET threshold of the
memristors) is applied to the target bitlines while activating two wordlines for two-input
logic gates. Note that there is no output memristor in this scheme: the logic output is not
directly stored in a memristor during the logic operations. Instead, the logic output is the
voltage at the output node OL of the aforementioned voltage divider. This constitutes
a major departure from stateful logic styles, such as IMPLY or MAGIC, which indeed
subject a properly initialized output memristor to a “conditional write” operation [8,13,14].
Moreover, since memory/logic output data are represented in voltage, if required, the
output can be stored back to any memory element(s) right afterwards via a reliable memory
write operation. Thus, conducting chained operations assumes an intermediate write
step to store the output of one stage to a memory location, so that is can later be used as
input to subsequent stages. At first glance, such a read + write operation sequence impacts
negatively logic latency. Nevertheless, as shown in the following sections, a properly
designed memory module can allow for the simultaneous writing of the memory/logic
readout result to the crossbar array (i.e., “a write while reading concept”).
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Figure 2. Circuit schematic of a 1T1R crossbar array. WLi denotes wordlines, whereas BLi denotes
bitlines. The bottom electrodes (BE) of memristors (denoted by the black thick line) in every column
output line (OL) connect to a sense amplifier, SAi, or to ground. (Different color is used for crossing
WL and OL lines that are not connected.)

According to Figure 3, in the case of an OR gate, only the transistor Sr1 is conducting,
pulling VIN2 to ground, whereas VIN1 results from the voltage divider between the two
input memristors and resistor R1. The value of R1 was selected such that, when at least
one of the memristors is in LRS, VIN1 will be high enough to be interpreted as logic “1”
by the CMOS XOR gate and thus produce a logic “1” output. Note that, for a memory
read operation, the SA function is practically equivalent to a logic OR gate but with only
one input. Similarly, for an AND gate, there are two pull-down resistors connected in
parallel, so that only when both input memristors are in LRS will the VIN1 voltage be
high enough to cause a logic “1” output. An XOR logic operation is realized by the SA
if only the transistor Sr3 is conductive. In such a case, the series combination of resistors
R1 and R3 is activated, with VIN2 being now equal to the voltage on resistor R3. When
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both memristors are in HRS (LRS), both VIN1 and VIN2 are low (high) and equivalent to
logic “0” (logic “1”). Thus, only when one of the memristors is in LRS does the CMOS
XOR gate give a logic “1” output. For AND, OR, and XOR logic operations with more than
2 inputs, the required values for the pull-down resistors might have to be re-calculated.
However, by using the exact same SA configuration as for the AND gate while activating
a third input memristor (thus a third WL in the crossbar), we figured out that the same
circuit can implement a three-input majority (MAJ) logic operation. Certainly, MAJ can
be implemented in different ways, e.g., by comparing the current through the crossbar
OL with a current threshold, as in Reference [18]. MAJ is worth being considered in such
computational memory as it can accelerate certain tasks in arithmetic operations. Therefore,
it is important that the considered SA circuit is able to implement MAJ computation as well.
For readability reasons, Table A1 in Appendix A presents all possible SA configurations
with their equivalent circuits, along with the mathematical expression describing the
resulting voltage inputs applied to the CMOS XOR gate.
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Figure 3. Circuit schematic of voltage-based sense amplifier for scouting logic (adapted from Refer-
ence [17]). Inset shows the different possible configurations to activate different voltage reference
values at IN1,2 terminals. Resistor values were selected based on simulation results, assuming 2-input
AND/OR/XOR logic operations, and memristors with HRS/LRS = 125 GΩ/125 KΩ.

All in all, such SA implementation is adequate not only for memory read operations
but also because it enables a plurality of primitive logic gates that form the basis for more
complex arithmetic operations. However, owing to the underlying voltage divider effect,
we figured out that a change in the logic state of any of the input memristors, although
it affects the equivalent input memristance ROLk (see Table A1), only leads to slightly
modified voltage at the input nodes of the CMOS XOR gate. So, if the inherent variability
of HRS and LRS of memristors affects the resulting VIN1,2 input voltages to a similar degree,
this could potentially lead to erroneous logic computations at the CMOS XOR gate.

In this context, an enhanced scouting logic scheme was proposed in Reference [26], but
it used a more complex 1T1R array to achieve higher reliability of logic operations. In the
same direction, inspired by the crossbar interface circuit proposed by Papandroulidakis
et al. in Reference [27], here we designed and evaluated the performance of an alternative
and more flexibly parameterizable circuit implementation for the voltage-based SA, which
can lead to a more robust behavior against HRS and LRS variability. More specifically, the
proposed circuit shown in Figure 4 has a summing amplifier, followed by an inverting
amplifier and a set of high-speed voltage comparators in the final stage with configurable
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thresholds. We clarify that this represents an alternative system-level SA concept, but yet
not a compact and competitive circuit design solution, given the much larger circuit area
it occupies.
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consists of a summing amplifier, an inverting amplifier, and a configurable comparator stage (far
right side of the schematic). Resistor values were selected based on simulation results, assuming
2-input AND/OR/XOR logic operations and memristors with HRS/LRS = 125 GΩ/125 KΩ.

The operation of such a circuit is as follows: through the summing amplifier, we
compute a weighted sum of the read voltage, Vread, which is commonly applied to all
memristors connected to the same crossbar OL. Depending on the SA configuration,
different comparisons are enabled based on different threshold voltages, owing to the
configurable resistive network (R1–4). For example, in case of MAJ, the combination “HRS,
HRS” = “00” will produce a very small voltage sum, whereas “HRS, LRS” = “01” (or “10”)
will give a higher voltage sum, and “LRS, LRS” = “11” will result in the highest voltage
sum, which we compare with a voltage threshold in the final stage. For higher reliability,
in this case, the resulting voltage threshold should be ideally located in the middle point
between the value corresponding to having two memristors in LRS versus having only
one memristor in LRS. For both SA circuits, the resistor values were selected based on
simulation results to maximize the reliability of the supported logic operations.

For readability reasons, Table A2 in Appendix A presents all possible SA configura-
tions and their equivalent circuits, along with the mathematical expressions describing
the resulting voltage inputs applied to the voltage comparator stage. As in Table A1, we
again observe here the similarities in the circuit implementation used for Read-OR and for
AND-MAJ operations, respectively. For further clarity of circuit performance, we present
in Table 1 the VIN1,2 input voltages of the CMOS XOR gate of the circuit shown in Figure 3,
calculated by using the equations presented in Table A1 for all possible combinations of
the input data, expressed in HRS and LRS values. Likewise, Table 1 also presents the
resulting input voltage applied to the comparator(s) stage (Vcomp) and the configurable
thresholds (Vth,1,2) for the circuit shown in Figure 4, calculated by using the equations
presented in Table A2. By observing the data, it can be figured out that, indeed, in the
alternative SA implementation, a change in the logic state of any input memristor has a
much higher impact on the voltage representing the weighted sum in the alternative SA
(Vcomp), compared to the change induced to the output of the voltage divider (VIN1) which
is applied to the input nodes of the CMOS XOR gate in the original SA implementation.



Electronics 2021, 10, 1074 7 of 25

Table 1. Calculated voltages at nodes of interest of the SA modules for all possible configurations.

Operation
Input Resistance Original SA Alternative SA

Logic OutputR1
(KΩ)

R2
(KΩ)

R3
(KΩ)

VIN1
(V)

VIN2
(V)

Vcomp
(V)

Vth1
(V)

Vth2
(V)

Read 125 X X 0.6 0 0.9 0.571 X 1
Read 125 × 106 X X 1.8 × 10−6 0 9 × 10−7 0.571 X 0
OR 125 125 X 0.72 0 1.8 0.571 X 1
OR 125 125 × 106 X 0.6 0 0.9 0.571 X 1
OR 125 × 106 125 × 106 X 3.6 × 10−6 0 1.8 × 10−6 0.571 X 0

AND 125 125 X 0.514 0 1.8 1.333 X 1
AND 125 125 × 106 X 0.36 0 0.9 1.333 X 0
AND 125 × 106 125 × 106 X 1.2 × 10−6 0 1.8 × 10−6 1.333 X 0
XOR 125 125 X 0.8 0.433 1.8 0.571 1.429 0
XOR 125 125 × 106 X 0.73 0.37 0.9 0.571 1.429 1
XOR 125 × 106 125 × 106 X 7.8 × 10−6 4.17 × 10−6 1.8 × 10−6 0.571 1.429 0
MAJ 125 125 125 0.6 0 2.7 1.333 X 1
MAJ 125 125 125 × 106 0.514 0 1.8 1.333 X 1
MAJ 125 125 × 106 125 × 106 0.36 0 0.9 1.333 X 0
MAJ 125 × 106 125 × 106 125 × 106 1.8 × 10−6 0 2.7 × 10−6 1.333 X 0

Note: X means a value is not required. Vth1 is equivalent to Vth in Table A2 when there is one threshold.

2.4. Performance Comparison in Presence of HRS and LRS Variability

We subjected the two alternative SA implementations, as shown in Figures 3 and 4, to a
series of tests in order to evaluate the robustness of logic and memory read operations, while
incorporating a certain percentage of variability to the expected HRS and LRS values of the
input memristors. More specifically, instead of using fixed HRS/LRS = 125 GΩ/125 KΩ
memristance values, the latter represented the mean values of Gaussian distributions. We
tested all operations shown in Table 1 for all possible logic input combinations, each time
taking 100.000 random samples from the HRS and LRS distributions. Using the equations
presented in Tables A1 and A2, while applying Vread = 0.85 V and Vdd = 2 V, and assuming
0.4 V as threshold voltage for the CMOS XOR gate [17], we calculated the resulting voltages
at the nodes of interest of both SA modules. Figure 5 shows the evaluation results, wherein
an error corresponds to an erroneous logic output at the SA circuits for a given input
combination. We repeated the tests for an increasing SD of HRS and LRS distributions. The
results in Figure 5a,b concern 10% and 20%, respectively.

By observing the results in Figure 5, our conclusions for the two alternative SA circuits
are as follows:

• Both circuits are robust for memory read and OR logic operations.
• The original scouting SA presents an increasing error percentage up to 20% in MAJ

operations when we apply input combinations with only one logic “1” (i.e., “001”,
“010”, and “100”). This is attributed to the fact that the VIN1 value for nominal HRS
and LRS values (0.36 V in Table 1) is very close to the threshold of the CMOS XOR
gate. On the contrary, observed errors in the proposed circuit reach up to 3% for the
same input combination when 20% SD is considered.

• The original scouting SA presents an increasing error percentage for the AND opera-
tion up to 21% when we apply input combinations with only one logic “1” (i.e., “01”
and “10”), whereas the observed error in the proposed alternative circuit generally
does not exceed 3% when 20% SD is considered.

• The most error-prone logic operation is XOR, for which the original scouting SA
presents errors up to 33% when we apply input combinations with only one logic “1”
(i.e., “01” and “10”). On the contrary, the observed errors in the proposed alternative
SA topology generally do not exceed 2% when 20% SD is considered.

All in all, it can be figured out that the proposed alternative SA circuit concept is
very robust for memristance variability with up to 10% of SD with practically 0% error
in all cases, whereas error reached up to 3% when 20% of SD was assumed. Generally,
such a small error rate can be addressed by properly engineering the threshold voltages
in the comparator stage. However, similar corrections are more difficult to achieve in
the original Scouting SA, thus leaving a much smaller space for improvements, given
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that its operation is based on the voltage divider concept. It is worth noting that further
tests with smaller memristance ratio values, reaching down to HRS/LRS = 10 (not shown
in Figure 5), resulted in even worse performance for the original scouting SA for the
AND, XOR, and MAJ operations, thus underlying the importance of the wide resistance
window of memristors for the design and operation of the Scouting SA circuit. For instance,
if the VIN1 voltage at the CMOS XOR gate terminal for nominal HRS and LRS is very
close to the switching threshold of the CMOS XOR gate, then the slightest perturbance of
the input memristance can result in mostly erroneous behavior. Therefore, in the rest of
this work, we exploit the proposed alternative SA circuit within a novel computational
ReRAM architecture.
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3. The “Twin” Computational ReRAM Architecture
3.1. Overall Design Description

Figure 6 presents an overview of the proposed computational ReRAM, whose notion
was first introduced in Reference [19]. Its symmetric structure consists of two “twin” 1T1R
crossbar sub-arrays, each one with dedicated independent row decoders, column drivers,
and sense amplifiers. Such a combination of two crossbar sub-arrays was inspired by
Reference [27], wherein heterogeneous crossbar banks were used for logic and memory
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operations. Assuming that these two sub-arrays have the same dimensions, then each one
holds half of the total computational ReRAM storage capacity.
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Figure 6. Block level description of the proposed computational memory, consisting of a symmetric
segmented structure with two “twin” 1T1R crossbar sub-arrays with dedicated peripheral circuitry
and control signals. Adapted from Reference [19].

By observing the peripheral circuitry in Figure 6, at the top of each sub-array, we
distinguish the Operation Decoder and the read/write Drivers, along with a Bitline Selector
module. At the bottom of the sub-arrays, there is the readout/sensing circuitry (SA Array),
along with a Shift Controller, which is used in arithmetic operations and offers flexibility in
data storage. The internal/external MUX/DEMUX modules in the write/read interface
define whether each sub-array will operate independently (i.e., to write externally applied
input data to a sub-array, or to read directly from a sub/array towards the external output)
or if the read output of one sub-array is to be simultaneously written to the other. This is
defined by the state of the mode sel bit in the write drivers. While operating independently,
reading/writing from/to each sub-array can be executed simultaneously. On the contrary,
when aiming to write the read output data from one sub-array to the other one, a data
bus connects the readout stage of each sub-array to the write drivers of the adjacent one.
In such a case, the read logic values act as selection signals in the external/internal write
driver MUXes of the adjacent sub-array, to select the corresponding SET/RESET voltage to
be applied to the top electrode (TE) of the target memristors through the bitlines.

The Bitline Selector in each sub-array allows us to operate either word-wise (read or
write from/to a complete word) or bit-wise (read or write from/to a single bit). When only
one bitline is to be accessed, the one indicated by the selection bits is driven and the rest
are left floating. Depending on whether we perform a memory or logic operation, the
wordline decoders activate up to three wordlines. Note that, for logic operations, the input
addresses need to refer to the same sub-array, whereas the output address can point to
either sub-array. In the following sections, we show that such segmented design of the
ReRAM array benefits the execution of successive in-memory Scouting logic computations
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by making possible the simultaneous storage of intermediate logic output results to target
addresses in the adjacent sub-array, in the same cycle/step. Note that a similar concept was
used in Reference [28] to facilitate logic accumulation, required in the memristor overwrite
logic (MOL) style.

3.2. Hardware Modules for Bit/Word-Wise Memory and Logic Operations

In this section, we shed light on each one of the modules composing the system shown
in Figure 6. At the readout stage, there is an array of n identical sensing modules (SA
Array). Figure 7 shows a block level description of one such module, which connects to
a crossbar output line (OLk). Its functionality is configured via four control bits. Two of
them are used as configuration bits of the SA circuit, as shown in Figure 4, for memory
(Read) or logic operations. Another bit (Output Op Sel) is used in the top DEMUX to define
whether the crossbar OLk will connect to the SA circuit, or to ground, which is necessary for
memory write (SET/RESET) operations. One last bit is used as selection line in the output
MUX shown at the bottom, to make readily available the inversion of the memory/logic
result. The basic logic functions supported by the system (AND, OR, NOT, XOR, and MAJ)
and their complements form a basis for more complex arithmetic operations.
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Figure 7. Compact block-level description of the configurable voltage-based sensing module, which
connects to a crossbar output line OLk (BE of memristors), enabling either memory or logic operations.
The block entitled “AND/MAJ/OR/XOR” corresponds to the SA circuit in Figure 4.

The output of the SA Array is selectively connected to the external interface, or to
the write drivers of the adjacent sub-array, via the Shift Controller. The latter consists of a
MUX-based implementation, as shown in Figure 8, that applies a left/right logical shift to
the SA output according to the 1+logn control bits. For example, when the desired number
of displacements is two and a left shift is indicated, all the internal MUXes at the top half
of Figure 8 connect their third input line to output, such that the input data “InN, InN-1, . . .
In2, In1” are reorganized as “InN-2, InN-3, . . . 0, 0”. When the number of displacements to
apply is 0, the output is equivalent to the input. These logic values are used at the write
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driver MUXes as selection signals to allow the corresponding SET/RESET write voltages
to be applied to the memristors that will store the memory/logic results.
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Figure 8. Compact block-level description of the Shift Controller module, which applies a number of
logical left/right displacements to the N input lines In1 . . . InN equal to the number given by the
Shift Ctrl bits. The yellow blocks hide routing of interconnection lines between the modules (not
shown for clarity).

It is worth noting that the favorable performance characteristics of the twin-array
are achieved owing to the enhanced peripheral circuitry. Figures 6–8 present system-
level designs rather than compact transistor-level circuit designs; thus, the area overhead
compared to the driving circuit required only for memory operations is difficult to estimate.
Enhanced peripheral circuitry could lead to associated heat dissipation problems. In this
context, in order to minimize the area overhead in the SA Array, one solution would be
to combine two crossbar OL per SA module, as suggested in Reference [18]. Thus, the
number of SA modules in each sub-array would be half the number of OL. However, such
solution will impact latency, as any read/write operation on a memory word would require
two steps to be completed, since only half of the OL will be connected each time to ground.
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3.3. Supported Set of Instructions/Operations

Table 2 summarizes all the basic operations supported by the proposed computational
ReRAM system, which altogether form a basis for more complex operations. The states of
the mode selection bit and the four control bits of the SA module (see Figure 7) are shown,
where we use X to denote either logic “1” or “0” value. The b3 bit is the selection line of SA
DEMUX; b2b1 are the configuration bits for the internal SA module, whereas b0 defines the
inversion of the memory/logic output in the output MUX. Memory read/write operations
require the mode selection bit to be “0” to take place in a target sub-array independently.
On the contrary, the copy operation requires the mode selection bit to be “1” since the
target sub-array is different from the source sub-array. However, in all logic operations
the mode selection bit can take any value, since the results can be either driven directly
to the external output or written to the adjacent sub-array. Finally, the bit-shift/selection
operations do not take place in the SA but instead in their respective modules, thus there
is no SA configuration code shown in their case. According to the list of operations in
Table 2, we defined a generic form for the corresponding ReRAM instructions, shown in
Figure 9. More specifically, Figure 9a shows the code describing the address of a target
word in the two sub-arrays; the most significant 1+logm bits define the target sub-array and
the selected wordline in the Wordline Decoder, whereas the last 1+logn bits are the control
bits of the Bitline Selector, allowing to activate the entire word or only a specific bitline.
The address code field is present in all forms of the instructions, as shown in Figure 9b–d.
They consist of an opcode represented by the four SA control bits shown in Table 2, followed
by the mode selection bit (Mode Code), the output/input address fields and the inputs of the
Shift Controller.

Figure 9b corresponds to a memory read or to a logic operation, whose output is sent
towards the external output. Therefore, the destination/output address field is not used.
Depending on the type of operation, more than one input address can be used. In fact,
the input address field holds up to three different addresses, since the supported logic
operations accept up to three inputs. The last 1+logn bits indicate the shift direction and the
number of displacements to be applied to the read data. Likewise, Figure 9c corresponds
to a memory write operation of externally applied input data. Part of the input address
field is here used to hold the data to be stored, whereas the Shift Controller bits are not
used. The output address field holds the destination address. Figure 9d corresponds to
internal memory read/logic operations, where the output data are stored to the adjacent
sub-array, as indicated by the mode selection bit. Note that, as mentioned before, for logic
operations, the input addresses need to refer to the same sub-array, whereas the output
address can point to either sub-array. Storing the result to the adjacent sub-array can be
done in the same cycle, which is very beneficial when intermediate results for chained
logic operations need to be stored and used afterwards, as shown in the following sections.
However, if the logic result has to be stored to the same sub-array, with the current system
design by default, the data will first be written to the adjacent sub-array and then be copied
to the destination word in the next cycle. With a modified version of the driving circuitry
(not shown here), the read results could be locally stored in the periphery instead, as in
Reference [25], to avoid unnecessarily double writing to memristors.

Table 2. Summary of operations supported by the proposed computational memory system. X means a don’t care value.

Operation Description SA Ctrl Bits b3b2b1b0 Mode Sel Bit
Copy Copy data to adjacent crossbar 0000 1
Inv Inversion of the value in the SA output XXX1 X
OR 2-input logic OR for two words in the same sub-array 0000 X

AND 2-input logic AND for two words in the same sub-array 0010 X
XOR 2-input logic XOR for two words in the same sub-array 0100 X
MAJ 3-input MAJORITY for three words in the same sub-array 0010 X
Write Write external input data to a memory word 1XXX 0
Read Read data stored in a memory word, to the external output 0000 0

Bit shift Apply left/right logical shift to the SA output through the Shift Controller N/A X
Bit selection Activate one target bitline through the Bitline Selector N/A X
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4. Examples of Memory and Logic Operations
4.1. System-Level Configuration Example

For readability reasons, Figure 10 shows graphically the required system configuration
in order to perform an XOR operation on all bitlines of two active words of the left sub-
array and store the result to an active word in the right sub-array, in the same cycle. The
embedded text description in all blocks that represent the different modules of the system
in Figure 10 describes their actual operation. For clarity, all the inactive modules are
shown in a light gray color. Specifically, a read voltage is applied through the external
interface to all bitlines of the left sub-array. The two words holding the input data are
activated by the Wordline Decoder. In the SA Array, the four configuration bits activate the
XOR operation in the internal module of every SA Array element (see the inset), without
inversion of the logic output. Moreover, no shift is applied to the read data, which are
connected through the output DEMUX to the internal data bus, and are thus connected
to the selection lines of the MUXes in the write drivers of the right sub-array. There, an
internal write operation is performed on all bitlines. The output/destination address is
applied to the Wordline Decoder. The internal modules in the entire SA Array connect all
OL lines to the ground, as required for the write operations to take place, so that the logic
output can be simultaneously written to the target word.
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Figure 10. Configuration of the system’s modules to perform word-wise XOR operation with
simultaneous storage of results to the adjacent sub-array. Text in blocks reveals the actual action
performed in all modules. Inactive modules are shown in a light gray shade. The active wordlines in
the two sub-arrays and the valid SA configuration (shown in the inset) are highlighted in red color.

Such behavior is validated in the following sections through LTspice circuit simulation
results. For the select cross-point transistors in each sub-array, we used 1 µm CMOS
technology models. In most of the peripheral blocks, we preferred a behavioral description
of circuit components to minimize simulation overhead and emphasize the functional
characteristics of the proposed computational ReRAM, rather than the impact of MOS
parasitics, which we mostly assumed negligible in the peripheral circuitry. Notwithstand-
ing the above, in the internal SA circuit shown in Figure 4, found in the SA Array, we
used macro-models of LM319 high-speed voltage comparators, with Vdd = 2 V. For all
memristors, we used the hyperbolic sine-type model of a bipolar threshold-based switching
memristor proposed by Yakopcic et al. [21]. Such a model has been correlated against
several published device characterization data with very good precision, closely approx-
imating performance of physics-based models [29]. Parameters were set in accordance
with experimental data for amorphous silicon (a-Si)-type memristors [22] that are suitable
for digital applications, as follows: a1 = 1.6 × 10−4, a2 = 1.6 × 10−4, b = 0.05, Vp = 1.088,
Vn = 1.088, Ap = 81,600,000, An = 81,600,000, xp = 0.985, xn = 0.985, alphap = 0.1, alphan = 0.1,
and xo = 0.01. The read/write pulses applied to the bitlines were 150 ns wide, and the
amplitude was 1.7 V for SET, −1.5 V for RESET, and 0.9 V for READ operations. The corre-
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sponding memristance boundary values (for a given Vread voltage) were RON = 125 KΩ
and ROFF = 125 GΩ, whereas the SET/RESET switching time was 10 ns.

4.2. Simulation Results for Individual Memory and Logic Operations

Here we present circuit simulation results concerning the execution of all the indi-
vidual operations supported by the designed computational memory system. Figure 11
shows the simulation results for a sequence of memory and logic operations taking place
in three memristors that are connected to the first bitline of crossbar N◦ 1. We validate
functionality, showing the voltage applied to the bitline, the evolution of the logic state of
three vertically aligned memristors, and the output of the corresponding SA connected to
OL1. The latter will either reflect the result of a memory read/logic operation or will be
0 V when a write operation takes place and the OL is connected to ground. Note also that,
during every cycle, the MUX/DEMUXes of the crossbar sub-array are enabled 30 ns after
the read/write voltages have been correctly set up in the bitline drivers, to make sure the
SA output is correctly updated and all MUX/DEMUXes have valid selection signals.
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Figure 11. Circuit simulation results for operations performed in a single bitline of the computational
ReRAM. From top to bottom, we observe the voltage applied to bitline BL1, the evolution of the
logic state (expressing conductivity in the model) of the memristors in words 1–3 connected to BL1

(notation “memristor XY” in the legend means wordline X and bitline Y), and the output voltage of
the SA connected to OL1. Logic “1” corresponds to 2 V in the SA output voltage. Vertical dashed
lines designate different 150 ns–wide cycles of operation.

The three memristors are purposely initialized in an intermediate state. In the first
cycle, a positive write voltage is applied to store logic “1” to memristor 11. Likewise, in the
second cycle, we store logic “1” to memristor 12, whereas, in the third cycle, we apply a
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negative write voltage to store logic “0” to memristor 31. The SA output voltage is kept in
0 V during the first three cycles. A read voltage is applied in the fourth cycle to memristor
31; thus, a logic “0” is observed in the SA output. From the fifth cycle onward, the logic
operations take place. First, a logic OR between memristors 11 and 12, resulting in a logic
“1” SA output. In the sixth cycle, a logic AND over the same input data keeps the SA
output unaffected. In the seventh cycle, a logic XOR is performed, resulting in a logic “0”
output. Finally, an MAJ is performed over the three input memristors, resulting in a logic
“1” output, as expected.

4.3. Simulation Results for n-Bit Binary Addition

We designed and simulated in LTspice the complete computational memory system
of Figure 6. Thus, here we present circuit simulation results concerning the execution of
a binary addition of two memory words. In each bitline, the addition of Ai and Bi bits
(along with carry-in Ci bit) takes place according to equation Si = Ai ⊕ Bi ⊕ Ci for Sum and
Ci = Ai−1Bi−1 + Bi−1Ci−1 + Ai−1Ci−1 for Carry, respectively. This way, through such a case
study of arithmetic computing, we highlight all the major benefits offered by the proposed
“twin” computational ReRAM.

More specifically, the circuit simulated has two 1T1R crossbar sub-arrays, each of size
4×3, and all the write drivers and circuit modules described in previous sections. We
assume that all cross-point memristors in the system initially have an arbitrarily selected
resistance close to their ROFF (HRS) value. The simulation starts with an initialization
phase which lasts three cycles, in which we update the memory content to be used as
input to the logic operation, and we also RESET the devices in two auxiliary words which
will hold intermediate data during computations. During the next four cycles, the logic
operations in both sub-arrays are carried out. The result of the binary addition is stored
in a memory word in the last cycle (cycle N◦ 8). Figure 12 shows the simulation results
where every different 150 ns cycle is designated by vertical dashed lines. More specifically,
Figure 12a shows the voltages applied to the bitlines of each sub-array, whereas Figure 12b
shows the evolution of the logic state of the memristors in the words involved in the
computation. Finally, Figure 12c shows the output voltage of the SA Array of the two
crossbars. For readability reasons, in Table 3, we describe graphically all the simulated
computational steps required to perform the binary addition of numbers “011” and “010”.
In Table 3, we use the notation “word[N◦ crossbar][N◦ row]” to refer to a complete word,
whereas for operations on a single bit of a specific word, we use “bit[N◦ crossbar][N◦ row]
[N◦ column]”. Left/right sub-array is mentioned as crossbar N◦ 1/N◦ 2. We included a
series of schematics as a guide to the eye for all the operations, highlighting the active
word-/bit-lines in red color, while showing the logic inputs applied to the bitlines during
the write operations, and the SA Array configuration at the bottom of every sub-array.

During initialization, in the first two cycles, we write “011” to word 1 of crossbar 1
and “010” to word 2 of crossbar 1, which are the words to be used as inputs (Ai and Bi) for
the binary addition. Next, in cycle N◦ 3, we write simultaneously “000” both to word 3
of crossbar 1 and to word 2 of crossbar 2, which will hold intermediate results of Carry
bits. The first logic operation takes place in the fourth cycle, being a logic XOR(A, B) with
the contents of words 1 and 2 of crossbar 1. The result is written to word 1 of crossbar 2
in the same cycle. This can be verified by observing Figure 12c; the final output of the SA
modules of crossbar 1 shows “100”, which is the same with the final state of the memristors
observed in word 1 of crossbar 2 in Figure 12b. At the same time, we observe that the
SA array of crossbar 2 connects all bitlines to ground for the write operation to take place
correctly. Next, we sequentially compute the resulting Carry bit from each bitline using the
majority operation according to equation Cout = MAJ(A, B, Cin) = AB + BCin + ACin. During
Carry bit computations, given that the produced Ci in every stage i acts as input for stage
i+1, we exploit the Shift Controller to apply a left shift to the SA output of crossbar 1, and
the Bitline Selector of crossbar 2 to activate only one target bitline, where the computed Ci
should be stored.
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By observing Figure 12b,c, it can be figured out that, in the fifth cycle, the result of the
MAJ operation at bitline 1 of crossbar 1, which is logic “0”, is written to the memristor in
word 2 and bitline 2 of crossbar 2. Given that Cin is zero for the LSB stage, crossbar 2 has
already a logic “0” in bitline 1, owing to the RESET write operation performed in cycle
N◦ 3. Next, the recently produced Ci is copied to the memristor in word 3 and bitline 2 of
crossbar 1, so that, in cycle N◦ 7, we can compute again the MAJ operation. However, this
time, MAJ is performed at bitline 2 of crossbar 1 to produce the last Carry bit, which we
simultaneously store in the memristor in word 2 and bitline 3 of crossbar 2. In Figure 12b,
we can confirm that a logic “1” is stored in crossbar 2 as a final Carry bit to the memristor in
word 2 and bitline 3, as expected. Finally, in the eighth cycle, we compute the result of Sum
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with another XOR operation performed in crossbar 2 with the contents of word 1, which
holds the result of the previous XOR operation, and word 2, which holds the computed
Carry bits. The result is stored simultaneously to word 3 of crossbar 1, which eventually
holds “101” (equal to “011” + “010”), as we can confirm by checking Figure 12b.

Table 3. Summary of simulated computational steps required to perform the binary addition.

Cycle Operation Output/Destination Input Schematic Guide

1 Write word 11 011
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For each one of the eight total simulated cycles described in Table 3, we present in
Table 4 the corresponding form of the system instructions that are executed. We separated
in different columns all the different fields explained in Figure 9. The different colors in the
values given for input/output addresses designate the different fields of the address code
in Figure 9a: red for the crossbar N◦ bit, orange for the Wordline Selection bits, blue for the
Bitline Selection bits, and purple for the bit which defines bit-/word-wise operation. For
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instance, in the eighth cycle, we perform an XOR (opcode = “0100”) in crossbar 2 (crossbar
N◦ bit = 1) with the contents of word 1 and word 2 (wordline selection bits = “01”/”10”)
on all bitlines (bitline selection bits = “00”), as reflected in the input addresses. The result
is stored simultaneously (mode bit = 1) without any logical shift applied, to crossbar 1
(crossbar N◦ bit = 0) in word 3 (wordline selection bits = “11”) in all bitlines, as reflected in
the output address information. In the same way, we read all the presented instructions.
Note that, in the first four cycles, the input address field holds the logic input to be stored
in memory.

Table 4. Form of instructions executed to perform the binary addition. Colors in the values given for
input/output addresses designate the different fields of the address code in Figure 9a. X means a
don’t care value.

Cycle Opcode Mode Output Input(s) Shift

1 1XXX 0 001000 011 XXX

2 1XXX 0 010000 010 XXX

3
1XXX 0 011000 000 XXX

1XXX 0 110000 000 XXX

4 0100 1 101000 001000
010000 000

5 0010 1 110101
001011
010011
011011

001

6 0000 1 011101 110101 000

7 0010 1 110111
001101
010101
011101

001

8 0100 1 011000 101000
110000 000

4.4. Performance Comparison Results

In Table 5, we summarize the comparison results w.r.t. circuit area and latency re-
quired for the implementation of two-input OR/NOR/XOR/AND/NAND and three-
input MAJ logic operations that are supported by the proposed computational ReRAM,
using state-of-the-art crossbar-compatible in-memory computing approaches of the liter-
ature. Specifically, circuit area is expressed in N◦ of cross-points involved in computation,
and latency is expressed in total N◦ of required cycles/steps. Data for IMPLY logic were
based on Reference [30] for MAJ and on Reference [31] for OR/NOR/XOR/AND/NAND
operations. IMPLY, MAGIC, and NAND are “stateful” logic styles; thus, the required
memristors always include a device to store the logic output. MAGIC style [32] assumes
NOR and NOT crossbar-compatible operations, and memristor reutilization was taken
into consideration to minimize the required area for multi-level computations. The NAND
style [33] assumes single-step AND/NAND operations. Finally, the MAJ+NOT [18] is a
“nonstateful” logic style; thus, intermediate write steps are considered to store in memory
the intermediate results of multi-level logic operations. By observing Table 5, we conclude
that the proposed computational memory system allows for the execution of all such
in-memory computations in a single step and in a “nonstateful” manner, requiring only as
many memristors as the gate inputs.

Likewise, in Table 6, we summarize the comparison results w.r.t. the resources required
for the addition of two n-bit binary numbers. The proposed approach, owing to the
enhanced sensing scheme, as well as the word-wise operation and the “write while reading”
capability allowed by the “twin” ReRAM concept, required only 2n+2 steps/cycles and
involved 3n total cross-points in the operation. The 2n + 2 steps correspond to two word-
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wise XOR operations and n computations of the carry bit for every bitline, each of which
needs two operations (a MAJ and a COPY). The 3n total cross-points are those involved
in computation and do not include the devices in the words that hold the input data,
which are assumed already available in memory in the same sub-array; the same concept
is used in the rest of area computations for all logic schemes mentioned in Table 6. We
compare the proposed approach to others that are based on “stateful” logic schemes which
use two-input primitive logic operations, such as MAGIC [32], IMPLY [12,32,34], and
NAND [33]. One recent modification of IMPLY logic is ORNOR [35], which enables three-
input logic operations, thus improving the overall computing latency compared to original
IMPLY-based operations. We included in this comparison the work by Reuben et al. in
Reference [36], which presented an accelerated MAJ-based execution of binary addition,
compared to previous work, such as Reference [18]. By observing Table 6, we conclude
that, the smaller the area, the larger the number of total steps needed, especially for the
IMPLY-based schemes, which require many sequential operations while occupying just two
cross-points. All in all, the proposed computing approach requires almost 50% less cross-
points, compared to schemes that perform parallel computations, while taking the least
possible cycles. The only exception is the MAJ+NOT style [36], which clearly outperforms
the rest in computing steps. However, this comes at the cost of larger area, since it requires
more than 12× the number of memristors used by the proposed approach. Along with such
performance improvements over the rest of the evaluated schemes, it is worth highlighting
the higher tolerance to device variability of the Scouting Logic, compared to the “stateful”
schemes that assume “conditional” switching of memristors. This notwithstanding, the
proposed computational ReRAM assumes by default a higher area complexity in the
sensing modules, which could be improved by a compact circuit design and by applying
architectural solutions, such as by multiplexing the sensing modules.

Table 5. Resources required for individual logic gates using different in-memory logic approaches.

IMPLY [30,31] MAGIC [32] NAND [33] MAJ+NOT [18] Proposed

Steps Area Steps Area Steps Area Steps Area Steps Area

OR 2 3 2 4 2 6 3 3 1 2
AND 3 3 2 5 1 3 1 3 1 2
NOR 3 3 1 3 3 6 3 3 1 2

NAND 2 3 3 5 1 3 1 3 1 2
XOR 4 5 3 6 3 6 5 6 1 2
MAJ 26 5 6 6 7 7 1 3 1 3

Note: all logic gates concern 2 inputs, except for MAJ, which has 3 inputs.

Table 6. Resources required for n-bit binary addition using different in-memory logic approaches.

Description Latency
(Steps)

Circuit Area
(N◦ of Memristors) Reference

MAGIC
(NOR, area optimized) 15n 5 Talati et al. [32]

MAGIC
(lNOR, latency optimized) 12n + 1 11n − 1 Talati et al. [32]

IMPLY (parallel) 5n + 18 6n − 1 Kvatinsky et al. [31]

IMPLY (serial) 22n 2 Rohani et al. [34]

IMPLY (semi-serial) 17n 2 Rohani et al. [12]

NAND 10n 9 Huang et al. [33]

ORNOR 2n + 15 6n + 6 Siemon et al. [35]

MAJ + NOT 4log2n + 6 6(6n + 16) Reuben et al. [36]

Enhanced Scouting
(XOR and MAJ) 2n + 2 3n This work

Note: n stands for the number of bits in each one of the added binary numbers.
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5. Conclusions

Towards the efficient design and implementation of next-generation ALUs in ReRAM-
based computational memories, this work highlighted some promising system design
concepts to consider, introducing a segmented 1T1R array which uses an augmented
peripheral circuitry to improve logic latency of non-stateful logic schemes, where com-
putations are performed via modified memory read operations. Alternative designs for
the sensing circuitry were proposed that were proved to be robust in the presence of
device-to-device variability in memristors. We identified the set of all supported primitive
operations/instructions of the proposed computational memory system and addressed
system-level design issues towards the design of a ReRAM-based general-purpose compu-
tational memory with ALU functionality. Circuit simulation results validated functionality
of the designed system, which demonstrated important performance improvements over
other state-of-the-art in-memory computing approaches both for elementary logic opera-
tions and for n-bit binary addition.

Author Contributions: Conceptualization, F.P. and I.V.; methodology, F.P. and I.V.; software, F.P.;
validation, F.P.; formal analysis, F.P.; investigation, F.P. and I.V.; resources, F.P. and I.V.; data curation,
F.P.; writing—original draft preparation, I.V.; writing—review and editing, F.P. and I.V.; visualization,
F.P. and I.V.; supervision, I.V.; project administration, I.V.; funding acquisition, I.V. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by ANID FONDECYT INICIACION, grant number 11180706,
and by ANID-Basal Project, grant number FB0008.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Table A1 presents all possible configurations of the SA shown in Figure 3 with their
equivalent circuits.

Table A2 presents all possible configurations of the SA shown in Figure 4 and their
equivalent circuits, along with the mathematical expressions describing the resulting
voltage inputs applied to the voltage comparator stage.
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