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Abstract: A 17.8–34.8 GHz (64.6%) locking range current-reuse injection-locked frequency multiplier
(CR-ILFM) with dual injection technique is presented in this paper. A dual injection technique
is applied to generate differential signal and increase the power of the second-order harmonic
component. The CR core is proposed to reduce the power consumption and compatibility with
NMOS and PMOS injectors. The inductor-capacitor (LC) tank of the proposed CR-ILFM is designed
with a fourth-order resonator using a transformer with distributed inductor to extend the locking
range. The self-oscillated frequency of the proposed CR-ILFM is 23.82 GHz. The output frequency
locking range is 17.8–34.8 GHz (64.6%) at a 0-dBm injection power without any additional control
including supply voltage, varactor, and capacitor bank. The power consumption of the proposed
CR-ILFM is 7.48 mW from a 1-V supply voltage and the die size is 0.75 mm× 0.45 mm. The CR-ILFM
is implemented in a 65-nm CMOS technology.

Keywords: current-reuse; dual injection technique; fourth-order resonator; injection-locked fre-
quency multiplier

1. Introduction

Recently, injection-locked frequency multipliers (ILFM) have been actively studied
to realize millimeter (mm)-wave local oscillator (LO) signals [1,2]. The reason is that the
mm-wave frequency is used in fifth generation (5G) and sixth generation (6G) wireless
communications. In addition, the LO in the mm-wave band should have a low-phase noise
performance and wide tuning range in the multiband applications. To satisfy this perfor-
mance, ILFM has been used in several stages in recent years [3,4]. Meanwhile, frequency
modulated continuous wave (FMCW) radar applications also require wideband perfor-
mance in the mm-wave band including industrial–scientific–medical (ISM) bands, e.g.,
24 GHz and 77 GHz, to realize wideband chirp waveform [5,6]. The ILFM is a good solution
that can easily generate mm-wave signals using LC oscillation in various applications.

Figure 1 shows the block diagram of a conventional phase-locked loop (PLL) with
a frequency multiplier used to synthesize mm-wave signals. As can be seen from the
figure, conventional PLLs consist of a phase-frequency detector (PFD), charge pump (CP),
low-pass filter (LPF), voltage-controlled oscillator (VCO), and divider chain. Fref and Fout
mean the reference frequency and output frequency, respectively. The frequency multiplier
is added to synthesize the mm-wave signals without affecting the gain of the VCO (KVCO)
of the PLL [7–9]. Generally, doubler [10] and tripler [11,12] are determined according to
multiplying ratio. A frequency doubler that receives the second-order harmonic component
as an input signal consumes less power than a frequency tripler that receives the third-order
harmonic component as an input signal. Thus, in this paper, the frequency multiplier as
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a frequency doubler is proposed. There are three types of frequency multipliers: digital-
based frequency multipliers, harmonic signal multipliers, and LC-based injection-locked
frequency multipliers (ILFMs). The digital-based frequency multiplier is implemented
with digital logics and is used to multiply low frequencies, e.g., the reference frequency
of PLLs and digital clocks [13,14]. The output frequency range of digital-based frequency
multipliers has been measured to be 2.6–5.2 GHz [13] and 0.96–1.44 GHz [14]. Figure 2
shows block diagrams of the harmonic signal multiplier and LC-based ILFM. The harmonic
signal multiplier consists of harmonic generator, notch filter, and driving amplifier as
shown in Figure 2a [15,16]. The harmonic signals are generated by nonlinear devices and
are filtered with a notch filter. The filtered signal is amplified by a driving amplifier. When
a harmonic signal frequency multiplier is used as a frequency doubler, the output signal
is twice the input signal f 0, i.e., 2f 0. Although this method can easily generate very high
frequencies, it has critical drawbacks. Because there are harmonic components of many
orders, a large-size notch filter must be used. In addition, the harmonic components are
smaller than the fundamental signal; thus, the signal needs to be amplified, and the power
consumption of this driving amplifier is very large. The harmonic refection technique
has been proposed to obtain a high frequency roll-off for the mm-wave application [15],
and the frequency multiplier chain has been proposed to synthesize terahertz-frequency
signals [16]; their outputs are 93 GHz and 288 GHz, respectively, albeit with large power
consumption of 438 mW [15] and 284 mW [16], respectively. The LC-based ILFM consists
of an injector, LC band-pass filter (BPF), and core, as shown in Figure 2b. The injector is
designed as a non-linearity-based device and generates the harmonic components of the
input signal frequency. In the figure, Iinj is the current generated by injector, Iso is the current
generated when ILFM self-oscillates, and Itot is the sum of Iinj and Iso. BPF is designed as
a LC resonator and filters the input signal frequency. The −gm core supplies the energy
consumed by the LC resonator. ILFM self-oscillates when an input signal is not applied
to the injector. Because ILFM is based on an oscillator-based design, it consumes less
power than the harmonic signal multiplier and operates at a higher frequency compared
to the digital-based frequency multiplier. Furthermore, ILFM can generate output signals
at a large voltage swing level with a low-power injection signal. However, ILFM has
narrow locking range. To overcome this issue, varactors and capacitor bank are often
used, although the phase noise performance degrades when the operating frequency is
very different from the self-oscillation frequency [12,17]. To design a wide locking range
and low phase noise ILFM, a high-order transformer and the current boosting technique
have been investigated [18]. ILFM with high-order transformer has a locking range of
22.8–43.2 GHz; however, the unlocking part in the locking range occurs at −1.5 dBm input
power. In addition, the sixth-order transformer design is very complex.
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Figure 2. Two kind of frequency multipliers block diagram: (a) harmonic component multiplier;
(b) injection-locked frequency multiplier (ILFM).

In this paper, the current-reuse (CR)-ILFM with dual injection technique and fourth-
order resonator using a transformer with distributed inductors is proposed. The rest of this
paper organized as follows. In Section 2, the proposed CR-ILFM is described in detail. In
addition, the progression of locking range analysis in the time domain and phase domain
is reported. Furthermore, the locking range difference of ILFMs with second- and fourth-
order resonators with a distributed inductor are simulated. In Section 3, measurement
results including the locking range, output power, and phase noise are reported. Finally, in
Section 4, the conclusions are drawn.

2. Proposed CR-ILFM
2.1. Dual Injection and Current-Reuse Core

Figure 3 shows a schematic of ILFMs with single injection and dual injection technique.
ILFM is composed of the LC-BPF (L1, C1), cross-coupled pair core (M1, M2), injector (M3,
M4), and output buffer. The differential input signal (Vin,w+, Vin,w−) is biased at the
injector, as shown in Figure 3a. This injector generates only even harmonic components
by non-linearity characteristic. The output signal of the injector containing the desired
2w0 component, as well as the other even harmonic components, is applied to the NMOS
cross-coupled pair. Meanwhile, a PMOS injector is required to inject a differential even
harmonic signal to the core. However, it is difficult to realize because of bias issue. As a
result, injection signal is generated as unbalanced signal.

The proposed CR-ILFM can be applied dual injection by changing the core. The
couple of the injector is composed of NMOS pair (M3, M4) and PMOS pair (M5, M6) to
make harmonic components differential as shown in Figure 3b. The PMOS and NMOS
injector can generate balanced signal to the core and increase the effective power of injection
signal compared to the conventional ILFM with single injection. In addition, the couple of
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injectors still cancel out odd harmonic components including the fundamental signal. The
CR core that is replaced by PMOS (M2) has the best compatibility with the dual injection
technique. This is because half of the supply voltage to fix the center-tap bias is required to
operate the PMOS and NMOS injectors at the same time. In addition, the CR core reduces
the power consumption by turning the MOSFETs on and off simultaneously [19–24].
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Figure 3. Schematic of (a) the conventional ILFM with single injection on cross-coupled pair and (b) the proposed ILFM
with dual injection on current-reuse (CR) core.

Figure 4 shows the magnitude flow of the single and dual injection signal generated
by injector. If a sinusoid is applied to a nonlinear system, the output signal generally
exhibits frequency components that are integer multiples of the input frequency. If the
input voltage signal equal to Acos(w0t), then:

V = a + bA cos w0t + c(A cos w0t)2 + d(A cos w0t)3 + · · ·
=
(

a + cA2

2

)
+
(

bA + 3dA3

4

)
cos w0t + cA2

2 cos 2w0t + dA3

4 cos 3w0t + · · · ,
(1)

where “a”, “b”, “c”, and “d” are constants, and “A” is the magnitude of the input signal. If
the differential input voltage signal is applied to the injector, then:

Vinjector = a + bA cos w0t + c(A cos w0t)2 + d(A cos w0t)3 + · · ·
+ a− bA cos w0t + c(A cos w0t)2 − d(A cos w0t)3 + · · ·

=
(
2a + cA2)+ cA2 cos 2w0t + · · · .

(2)
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In (2), the first term on the right-hand side is a DC quantity and the second term is the
second-order harmonic. The fundamental and odd harmonic signals are canceled out. In
the frequency doubler application, second-order harmonic is the desired output signal, and
other harmonics including the fundamental tone are unwanted signals. The magnitude
of the second-order harmonic component of the proposed ILFM with dual injection is
approximately twice that of conventional ILFM with single injection. The injection signal is
convoluted with the magnitude of the load impedance, which is determined by LC-BPF.
The magnitude of the load impedance has a 3 dB bandwidth and is not an ideal “Dirac-delta
function”. Therefore, the fundamental tone signal and other unwanted signals are also
amplified even if the load impedance is set to 2w0. However, the start-up condition, which
is determined by the “Barkhausen formula” should be met to be locked:

|gm| · |ZL| ≥ 1, (3)

where gm is the transconductance of the core, and ZL is the load impedance. If the input sig-
nal is increased, the difference in magnitude between the desired signal and the unwanted
signal can eventually become similar. If the minimum operating frequency is 2f 0,min and
the maximum operating frequency is 2f 0,max, then 2f 0,max < 4f 0,min should be satisfied.
Otherwise, the ILFM may be locked at the wrong frequency. When 2f 0,max = 4f 0,min, the
maximum locking range is as follows:

Locking Range =
fmax − fmin

fmin + fmax− fmin
2

· 100(%), (4)

Locking Range
∣∣∣2 f0,max=4 f0,min = 66.7%. (5)

The ideally maximum locking range of injection-locked frequency doubler is 66.7%.
Figure 5 shows the phase difference of the ILFM applied conventional and proposed

injection technique in the phase domain and time domain. As shown in Figure 5a, the
phasor rotates clockwise and the current in ILFM is expressed in terms of Itot, Iso, and Iinj,2w.
The current equation is:

Itot = Iso + Iinj, (6)

where the total current is sum of the self-oscillation current and injection current. The
injection current changes the phase of the output signal. The force to change the phase
determines the frequency locking range of ILFM because the phase is the integral of the
frequency. “α” is the phase difference between the self-oscillation current and total current,
or phase of the injection current. The maximum phase difference is determined when:

sin αmax =
Iinj

Iso
, (7)

is satisfied [25]. When Iinj and IT are orthogonal to each other, the phase difference has a
maximum value. If Iinj is greater than Iso, the circuit acts as a buffer, not an injection-locked
frequency multiplier circuit. Thus, we can assume that the following condition is satisfied:

|Iso| >
∣∣Iinj

∣∣,−π

2
≤ αmax ≤

π

2
. (8)

If Iso in (7) is fixed, αmax increases as the magnitude of Iinj increases. Here, Iinj can be
expressed as:

Iinj = gm,inj ·Vinput, (9)

where gm,inj is the transconductance of the injector, and Vinput is the input voltage signal.
By (7) and (9),

sin αmax =
gm,inj ·Vinput

Iso
, (−π

2
≤ αmax ≤

π

2
). (10)
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To increase gm, the size of the core MOSFET must be increased. However, this method
is limited by the increase in the parasitic capacitance and harmonic signal amplitude. In the
frequency synthesizer circuit, Vinput is the output signal of the VCO, which is limited value.
Therefore, it is more efficient to take advantage of increased magnitude by using a dual
injection technique than a single injection technique. According to (2), (10), when using the
proposed dual injection technique, Vinput and sin(αmax) are twice larger than that of when
using a conventional single injection. Itot,dual is the sum of Iinj,dual and Iso, and Itot,single is the
sum of Iinj,single and Iso. ∆αdual is the difference between Iso and Itot,dual, and ∆αsingle is the
difference between Iso and Itot,single. As in (7), the maximum phase difference is determined
when Itot and Iinj are orthogonal. Iinj,dual is larger than Iinj,single, and ∆αdual is larger than
∆αsingle. Therefore, the locking range of ILFM with dual injection technique is wider than
that of with single injection technique. As shown in Figure 5b, there are three kinds of
voltage signals. The first kind is produced when ILFM self-oscillates, and the second and
third kinds are the output signal of ILFM with single and dual injections, respectively. The
output signal of ILFM can be pushed and pulled by the injection signal, which means
that it can be changed both directions: increased frequency and decreased frequency. The
conclusions that the locking range is increased when using a dual injection technique than
when using a single injection technique are drawn to be the same in the time domain and
phase domain.
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2.2. Fourth-Order Resonator

Figure 6 shows a block diagram of the variable resonators and magnitude plots
according to the angular frequency. Figure 6a shows a graph of the second-order resonator
consisting of L and C. This resonator has one pole; the resonance angular frequency can be
expressed as:

w0 =
1√
LC

, (11)

and its quality factor (Q) decides the 3-dB bandwidth:

Q = 2π
Estored/period

Edissipated/period
=

w0

BW3dB
, (12)

where Estored,period is the energy stored in the oscillating resonator, Edissipated,period is the
energy dissipated per period by parasitic resistance, and BW3dB is the 3-dB bandwidth.
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The bandwidth can be increased by reducing the parasitic resistance at the layout stage,
and there is a tradeoff between the bandwidth and magnitude. Therefore, the start-up
condition and bandwidth must be determined carefully. Figure 6b shows the increase in
the bandwidth using a fourth-order resonator. The fourth-order resonator consists of L1,
L2, C1, and C2. If the values of both inductance and capacitance are similar, then poles can
be calculated as follows:

wL =
1√

(1 + k)LC
, wR =

1√
(1− k)LC

, (13)

where “k” is the coupling factor. If the transformer is in a strong coupling, the distance
between the two poles increases. This implies a wider locking range, however, there would
be a new minimum value between the two poles. If the new minimum value is smaller
than that in the start-up condition, ILFM unlocks at the new minimum frequency. The
magnitude of the load impedance is increased by adding a distributed inductor (L3) to
the fourth-order resonator, as shown in the Figure 6c. The load impedance is determined
as follows:

ZL(s) =
(1− k2)L1L2C2s3 + L1s

(1− k2)L1L2C1C2s4 + (L1C1 + L2C2)s2 + 1
· (1 + 2L3C1s2). (14)
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Figure 6. Block diagrams of variable resonators and magnitude plots according to the angular frequency: (a) second-order
resonator; (b) fourth-order resonator; (c) fourth-order resonator with distributed inductor.

The last term in the right-hand side of (14) includes the L3 value. Therefore, the
magnitude of the load impedance can be increased by adding the distributed inductor. In
addition, L3 does not directly affect to the value of the poles. Therefore, the load impedance
can be increase by properly adjusting L1 and L3.

Figure 7 shows the simulated bode plot with the variable resonators described in
Figure 6. Figure 7a shows the magnitude of the load impedance. The pole of the second-
order resonator exists near 24 GHz and the two poles of the fourth-order resonator are
properly separated by the coupling factor. However, there is a part that does not satisfy
the start-up condition; this part will be unlocking part. The distributed inductor is used
to increase the magnitude of the load impedance sufficiently. The range beyond the
start-up condition in the fourth-order resonator obtained using the distributed inductor is
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approximately 16–35 GHz. This is not the locking range, but simply a range that satisfies (3).
Figure 7b shows the phase plot. The maximum value of the phase, ±αmax, is determined
using (10). From the figure, the phase range within the ±αmax obtained using the fourth-
order resonator is wider than that obtained using the second-order resonator owing to
the phase ripple. Furthermore, the resonator with the distributed inductor has subtle
ripples, which greatly reduce the average slope of its phase. The locking range satisfies the
magnitude and phase conditions ((3) and (10), respectively), the simulated locking range of
the proposed ILFM is 19–35 GHz (59%).
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2.3. Proposed CR-ILFM

Figure 8 shows a schematic of the proposed CR-ILFM, which consists of fourth-order
resonators (L1, C1, L2, and C2), a distributed inductor (L3), CR cores (M1, M3), center-tap
generators (M2, M4), injectors (M5–M8), and an output buffer. The input differential signal,
Vinj,w+ and Vinj,w−, is applied to the injector through the DC blocking capacitor, CDC. The
DC input signal is generated by the center-tap generator, which is one of the reference bias
circuits. VCT is fixed at half of the supply voltage because the current flow in M2 and M4
are approximately same. The additional external control is not required, and the circuit
is simplified because the center-tap generator is integrated. If the values of Vinj,DC and
VCT are separated to control the DC, the capacitive coupling from the external node, such
as RF pads and printed circuit boards (PCBs), will be stronger. Meanwhile, the size of
the center-tap generator is greater than that of the core because it should not affect the
operation of the core. The output signal is from the primary coil. Generally, the node of the
secondary coil is connected to the output node in the mm-wave applications. However,
the signal from the secondary coil is very small because the signal is induced by weak
inductive coupling. If the output node is connected directly to the primary coil node, the
resonant frequency can be lowered because the input capacitance is added. Therefore, C1
should be determined by considering the input capacitance of the output buffer to obtain
large power of the output signal and to obtain the desired resonance frequency. Table 1
lists the design parameters of the proposed CR-ILFM. As shown in Table 1, C1 is 79 fF. The
input capacitance of the output buffer is 26.3 fF, the effective primary resonator capacitance
is 105.3 fF, and the coupling factor is designed to be 0.3.
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Figure 8. Schematic of the proposed current-reuse injection-locked frequency multiplier (CR-ILFM).

Table 1. Design parameters of the proposed current-reuse injection-locked frequency multi-
plier (CR-ILFM).

Design Parameter Value

NMOS unit size (W/L) 2 mm/0.06 mm
PMOS unit size (W/L) 5 mm/0.06 mm

Finger of M1, M3 15
Finger of M2, M4 50
Finger of M5–M8 12

L1 72 pH
L2 151 pH
L3 160 pH
k 0.3

C1 79 fF
C2 190 fF

3. Measurement Results

Figure 9 shows the measurement setup for the proposed CR-ILFM. The measurements
were made using a power supply to bias the DC signal, signal generator for an input
signal, signal analyzer for the output signal, and the probe station. In the probe station,
the RF pads of the device under test (DUT) were connected using a ground-signal-ground
(GSG) tip, and the RF cable was used to connect the device. The GSG tip and RF cable
have a loss of approximately 2.5 dB and 3 dB, respectively. The above loss calibration is
performed based on 28 GHz. An Anritsu’s MG3694C (Atsugi, Kanagawa, Japan), which
can generate signals from 1 Hz to 40 GHz, is used as signal generator, and a KEYSIGHY’s
N9030B (Keysight, Santa Rosa, CA, USA) which can analyze signals from 2 GHz to 50 GHz,
is used as a signal analyzer. The power consumption of the proposed CR-ILFM core
is 7.48 mW, and the output buffer consumes 2.9 mW from the 1 V power supply. This
power consumption is analyzed when the CR-ILFM is operated at 28 GHz with a power of
0 dBm injection signal. As the input frequency decreases and the power of the input signal
decreases, the power consumption of the CR-ILFM decreases slightly.
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Figure 10. (a) Modeling of the measurement environment of the overall CR-ILFM; (b) die photograph. 
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Figure 9. Measurement setup for the proposed CR-ILFM.

Figure 10a shows a schematic of the measurement environment of the overall CR-
ILFM. The balun consists of LB1 and LB2 and is integrated with the CR-ILFM; Cpad is the
parasitic capacitance of the GSG RF pads, which is very small. The input source and
resistance of 50 Ω are the signal generator model; CGSG is the parasitic capacitance of the
GSG probe tip; Cmatching is used to move the self-resonance frequency, which induces a high
impedance and can cause loss of input signals, to the unused frequency band. Figure 10b
shows the die photograph of the proposed CR-ILFM, which includes the balun. The die
size including RF pads and balun is 0.75 mm × 0.45 mm and the size of the core chip
including the core, balun, and output buffer is 0.52 mm × 0.25 mm.
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Figure 10. (a) Modeling of the measurement environment of the overall CR-ILFM; (b) die photograph.

Figure 11a shows the simulated locking range of the ILFMs. The locking range of ILFM
with second- and fourth-order resonator is 22–28.4 GHz and 20–28.8 GHz, respectively.
However, there is an unlocking part between approximately 23 GHz and 25 GHz. The
proposed ILFM has a locking range between 19 GHz and 35 GHz at an input signal power
of 0 dBm. Figure 11b shows the simulated and measured (with 1-V supply voltage) locking
range of the proposed CR-ILFM. From the figure, the simulated locking range is 19–35 GHz
(59%). The measurement results show that the lower and higher operating frequencies
are decreased by 1.2 GHz and 0.2 GHz, respectively, compared to the simulated results.
The operating frequency decreased despite considering pressure-voltage-temperature
(PVT) variations and the parasitic capacitance in the simulations owing to the parasitic
components introduced by the probe station setup and wire bonding and various coupling
effects in the PCB.

Figure 12a shows the measured output power of the proposed CR-ILFM when the
0-dBm input power is applied from 1-V supply voltage. The CR-ILFM has the highest
output power at a free-running frequency of 24 GHz. The measured output power is
calibrated values for 2.5-dB loss of RF cable and 3-dB loss of GSG pin. The measured phase
noise is shown as Figure 12b. The phase noise of 12-GHz input signal is about 6 dB better
than that of 24-GHz output signal of the CR-ILFM. It is very similar to the theoretical phase
noise difference value. The phase noise of the output signal is −99.9 dBc/Hz at 100 kHz
and −123.5 dBc/Hz at 1 MHz.
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Figure 13 shows the full-span spectrum of the output signal of the proposed CR-
ILFM. The output power is −13.74 dBm and the free-running frequency is 23.82 GHz,
and there are no harmonic components when the CR-ILFM self-oscillates as shown in
Figure 13a. Figure 13b shows the full-span spectrum of the output signal when the CR-
ILFM is locked at 24-GHz. In this case, the output power is −11.73 dBm, and the harmonic
rejection ratio (HRR) between the desired signal and fundamental tone is approximately
25 dBc, and that of the third-order harmonic is 22 dBc. Figure 13c,d show the full-span
output signal spectrums when the CR-ILFM is locked at the minimum and maximum
frequency, respectively. The output powers are −31.17 dBm and −21.87 dBm. The HRRs
are approximately greater than 10 dBc. The proposed CR-ILFM can be locked at the higher
and lower frequency ranges, but the HRR will be reduced. Therefore, the locking range of
the CR-ILFM is defined as 17.8 GHz to 34.8 GHz, with an HRR of approximately 10 dBc.
All measured spectrum results are obtained with a 0 dBm input power applied from a 1 V
supply voltage.
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Table 2 presents the performance values of different mm-wave ILFMs. The CR-
ILFM developed in this study has the widest locking range (64.6%) and highest figure
of merit (FoM) values among the investigated ILFMs. Furthermore, the other ILFMs do
not show full-span spectrums at the edge frequency of the locking range. Thus, HRR
at the edge frequency of the locking range are unknown. Reference [18] is expected
to output unwanted harmonic components at edge frequency of the locking range. In
Reference [26], a reasonable locking range (53.1%) was obtained because a dual injector was
used. Generally, the output power of ILFMs with a multiplication ratio of 2 or 2.5 [26,27] is
larger than that of ILFMs with a multiplication ratio of 3 [11,25,28,29]. The ILFM developed
in this study has the largest output power among the LC-based ILFMs investigated. An
injection-locked ring-oscillator (ILRO) with several digital logic stages was previously
developed [30]. Although ILRO has a large output power, owing to the several gain stages,
it also has large power consumption.
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Table 2. Performance comparison of mm-wave ILFMs.

This Work [18]
19′MTT

[26]
14′JSSC

[8]
18′JSSC

[11]
19′TCAS1

[27]
13′MTT

[28]
18′JSSC

[29]
08′MTT

[30]
19′JSSCL

Technology 65-nm
CMOS

65-nm
CMOS

65-nm
CMOS

65-nm
CMOS

130-nm
CMOS

40-nm
CMOS

130-nm
CMOS

180-nm
CMOS

28-nm
CMOS

Core topology CR-ILFM ICB-ILFM
Sixth-order
resonator-

based ILFM

ILFM with
frequency-
tracking

loop

HPS-ILFM CR-ILFM

ILFM with
frequency-
tracking

loop

Subharmonic
ILFM ILRO

Self-oscillation frequency (GHz) 23.82 - 28.1 29.25 24.44 50 30.1 26.49 -

Input signal power (dBm) 0 0 - ** - 0 –5 - ** 4 –6

Output freq.
locking range

GHz 17.8–34.8 22.8–43.2 ˆ 20.6–35.5 26.5–29.7 22.5–26.5 22.8–24.4 26.5–29.7 33.9–48.6 49.25–50.33

% 64.6 61.8 53.1 11.4 14.8 12.7 11.4 35 6.1

Output signal power (dBm) −6.23 −20 −14.49 *** - −17 −14.36 *** −23.3 *** −6.85 1

Phase noise
(dBc/Hz)

At 100 kHz −99.9@24 G −94.7@28 G −84.0@25.5 G −92.6@29.3 G −130@26.5 G −110@24.45 G −86.8@26.5 G −122.5@39.6 G -

At 1 MHz −123.5@24 G −114.0@28 G −112.4@25.5 G −115.6@29.3 G −132@26.5 G −115@24.45 G −106.8@26.5 G −126.5@39.6 G −117.7@49.8 G

Output phase type Diff. Diff. Diff. Quad. Quad. Diff. Quad. Diff. Diff.

Supply voltage (V) 1 1.2 2.5 0.9–1.35 1.3 1.1 1.3 1.5 0.9

Total power consumption (mW) 10.38 (7.48 *) 14.8 (5.0 *) 21.8 24.3 10.4 (2.53 *) 49.7 2.95 34 (25 *)

FoM (%/mW) 6.22 4.18 2.44 0.47 1.22 2.41 0.23 5.02 1.4

Chip size (mm2) 0.75 × 0.45 0.67 × 0.70 1.85 × 1.13 ˆˆ 0.85 × 0.55 0.5 × 0.25 † 0.55 × 0.36 0.28 × 0.55 † 0.66 × 0.69 0.1 mm2

FoM: Locking range/power consumption [%/mW]. *: Only core power consumption. **: On-chip PLL signal source. ***: Without loss calibration. ˆ: Phase noise degradation. ˆˆ: Including multiple ILFM sizes.
†: Only core size.
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4. Conclusions

In this paper, the CR-ILFM with a 64.6% locking range is proposed. A dual injection
technique is applied to generate balanced even harmonic components while decreasing the
power of the fundamental tone and odd harmonic components. The CR core is adopted
to reduce the power consumption and fit the proper interface with the NMOS and PMOS
injectors. The proposed CR-ILFM core dissipates 7.48 mW from a 1-V supply voltage.
The fourth-order resonator with distributed inductor is proposed to widen the locking
range. The output frequency locking range is determined to be 17.8–34.8 GHz (64.6%)
when a 0-dBm input power is applied. The proposed CR-ILFM does not require addi-
tional control components, such as varactors and external bias circuits. The die size is
0.75 mm × 0.45 mm, and the CR-ILFM is implemented in a 65-nm CMOS technology.
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