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Abstract: Nowadays, pedestrian detection is widely used in fields such as driving assistance and
video surveillance with the progression of technology. However, although the research of single-
modal visible pedestrian detection has been very mature, it is still not enough to meet the demand of
pedestrian detection at all times. Thus, a multi-spectral pedestrian detection method via image fusion
and convolutional neural networks is proposed in this paper. The infrared intensity distribution
and visible appearance features are retained with a total variation model based on local structure
transfer, and pedestrian detection is realized with the multi-spectral fusion results and the target
detection network YOLOv3. The detection performance of the proposed method is evaluated and
compared with the detection methods based on the other four pixel-level fusion algorithms and two
fusion network architectures. The results attest that our method has superior detection performance,
which can detect pedestrian targets robustly even in the case of harsh illumination conditions and
cluttered backgrounds.

Keywords: pedestrian detection; multi-spectral; image fusion; convolutional neural network

1. Introduction

As an important task in target detection, pedestrian detection is widely used in traffic
safety, video surveillance, human–computer interaction, and other fields [1–3]. So far, there
have been many pedestrian detection methods, most of which are based on a visible image.
With the continuous progress of deep learning, target detection algorithms such as Faster
Region-Based Convolutional Neural Networks (Fast-RCNNs) [4], Single-Shot Detection
(SSD) [5], and You Only Look Once (YOLO) [6–8] have been proposed one after another,
and the technology of pedestrian detection has achieved unprecedented development.
However, these single-modal visual methods do not perform well in complex scenes, such
as in poor lighting conditions and chaotic backgrounds. How to enhance the robustness of
pedestrian detection in complex scenes is still a huge challenge.

Infrared images are obtained by capturing the thermal radiation emitted by objects,
which are less influenced by external conditions such as illumination, making robust
pedestrian detection in complex scenes possible. However, infrared images lack details
and reflect limited texture information. Detection based on visible images usually achieves
better performance under good illumination conditions due to abundant appearance details.
Therefore, how to effectively combine visible information and infrared information is a key
issue for multi-spectral pedestrian detection.

Over the years, a variety of methods for multi-spectral image fusion has been pro-
posed [9,10]. These methods mainly include multi-scale transformation (MDT) [11–13],
sparse representation [14,15], subspace [16,17], saliency [18,19], and deep networks [20–22].
In recent years, deep network-based fusion methods have become a popular topic of re-
search, but these methods are usually based on complex computational models and require
a large amount of multi-spectral fusion data. These limitations make the network-based fu-
sion methods encounter many difficulties when combined with other tasks or applications.
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In contrast, MST-based methods have been more extensively studied and widely used in
different fields.

Multifarious MST-based fusion methods have been proposed, such as a wavelet trans-
form (WT) [23], curvelet transform (CVT) [24,25], local edge-preserving filter (LEP) [26],
and weighted least squares filter (WLS) [27,28]. Additionally, numerous research has at-
tested that MST fusion methods are consistent with human visual perception. However,
these methods often ignore the differences between multispectral images and extract similar
salient features without discrimination, which sometimes makes the targets not prominent
enough in fused images. To address this issue, a fusion method based on the total variation
(TV) was proposed by Ma et al. [29], which adopted different feature representations from
the source image pairs. The fusion images were obtained by combining the intensity fea-
tures of the infrared image and the gradient features of the visible image. Zhang et al. [30]
achieved image fusion by extracting infrared features and preserving visual information,
which not only showed the infrared thermal objects but also retained a good deal of the
visual details. Kong et al. [31] used the idea of guided filtering to transmit the structure
information of visible images to infrared images and obtained fusion images with obvious
targets and realistic textures.

With the development of target detection networks, multi-spectral pedestrian detection
methods via convolutional neural networks have gradually attracted attention [32–36].
Wagner et al. [37] first proposed a multi-spectral pedestrian detection model based on
early fusion and late fusion architectures on the basis of an RCNN. Liu et al. [38] studied
and analyzed the impacts of the fusion at different stages of the networks on detection
performance based on a Fast-RCNN, including early fusion, halfway fusion, late fusion, and
confidence fusion architectures. Cao et al. [39] proposed an unsupervised learning method
for a DNN-based pedestrian detector, realizing the unsupervised learning of multi-spectral
features by an automatic labeling method. Chen et al. [40] proposed a multilayer fused
deconvolutional single-shot detector based on a two-stream convolutional module and
a multilayer fused deconvolutional module, improving the computational efficiency and
detection accuracy of small-sized targets.

However, the above research only discusses fusion based on deep networks and lacks
in-depth exploration of target detection based on pixel-level fusion. Hou et al. [41] tested
the application of pixel-level image fusion methods in an SSD target detector and verified
the significance of pixel-level image fusion in multi-spectral pedestrian detection. However,
the pixel-level image fusion methods tested in their research cannot effectively utilize the
characteristic information from infrared images and visible images. Therefore, a multi-
spectral pedestrian detection method via pixel-level image fusion is proposed in this paper,
using the intensity features in infrared images and the local structure features in visible
images combined with the target detection network YOLOv3 to enhance the accuracy and
robustness of pedestrian detection.

The contribution of this paper lies in the following four aspects:

(1) In light of the insufficient research on multi-spectral image fusion in the existing multi-
spectral pedestrian detection methods, we further study the multi-spectral pedestrian
detection methods by using pixel-level image fusion. In addition, a multi-spectral
pedestrian detection method based on pixel-level image fusion and a convolutional
neural network is proposed. This method makes full use of the different feature
information of infrared images and visible images and combines YOLOv3 to achieve
robust pedestrian detection.

(2) Aiming at the information loss caused by mutual cancellation of opposite information
when infrared and visible light images are fused, a multi-spectral image fusion method
via TV minimization and local structure transfer is proposed. This method effectively
preserves the intensity distribution of infrared images and the local structural features
of visible images. In addition, an infrared detail enhancement method is introduced
to increase the detail information of the thermal target area. The fusion image can
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highlight pedestrian targets and retain abundant appearance information, which is
conducive to pedestrian detection.

(3) Two fusion architectures based on YOLOv3 are designed and implemented for com-
parison, namely early fusion and late fusion. Multi-spectral pedestrian detection is
realized by the fusion of features with different scales at different network depths in
YOLOv3.

(4) We qualitatively and quantitatively compare and evaluate the detection results of
our proposed method with four pixel-level fusion methods and two fusion network
architectures. The experimental results illustrate that our proposed method effectively
improves the robustness and accuracy of pedestrian detection, especially under harsh
visual conditions.

2. Proposed Method

YOLOv3 [8] is a single-stage target detection method whose backbone network uses
Darknet-53 without a pooling layer or full connection layer. YOLOv3 uses structures
similar to the residual network and the feature pyramid network, which can achieve good
performance in terms of accuracy and rate of detection. Therefore, this paper adopted
YOLOv3 as the benchmark system in our evaluation.

The flow diagram of the proposed method is presented in Figure 1. First, HSI color
space transformation is performed on the RGB images [42]. Secondly, the TV minimization
method based on structure transfer is adopted to fuse the I component of the converted
image and the infrared image. Then, the fusion result replaces the original I component,
and the HSI image is converted into an RGB image to receive the color fusion result. Finally,
the color fusion result is input into the YOLOv3 network to implement multi-spectral
pedestrian detection. Aside from that, this paper also designs and implements the early
fusion architecture and the late fusion architecture based on YOLOv3 for comparison.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 16 
 

 

method is introduced to increase the detail information of the thermal target area. 
The fusion image can highlight pedestrian targets and retain abundant appearance 
information, which is conducive to pedestrian detection. 

(3) Two fusion architectures based on YOLOv3 are designed and implemented for com-
parison, namely early fusion and late fusion. Multi-spectral pedestrian detection is 
realized by the fusion of features with different scales at different network depths in 
YOLOv3. 

(4) We qualitatively and quantitatively compare and evaluate the detection results of 
our proposed method with four pixel-level fusion methods and two fusion network 
architectures. The experimental results illustrate that our proposed method effec-
tively improves the robustness and accuracy of pedestrian detection, especially un-
der harsh visual conditions. 

2. Proposed Method 
YOLOv3 [8] is a single-stage target detection method whose backbone network uses 

Darknet-53 without a pooling layer or full connection layer. YOLOv3 uses structures sim-
ilar to the residual network and the feature pyramid network, which can achieve good 
performance in terms of accuracy and rate of detection. Therefore, this paper adopted 
YOLOv3 as the benchmark system in our evaluation. 

The flow diagram of the proposed method is presented in Figure 1. First, HSI color 
space transformation is performed on the RGB images [42]. Secondly, the TV minimiza-
tion method based on structure transfer is adopted to fuse the I component of the con-
verted image and the infrared image. Then, the fusion result replaces the original I com-
ponent, and the HSI image is converted into an RGB image to receive the color fusion 
result. Finally, the color fusion result is input into the YOLOv3 network to implement 
multi-spectral pedestrian detection. Aside from that, this paper also designs and imple-
ments the early fusion architecture and the late fusion architecture based on YOLOv3 for 
comparison. 

 
Figure 1. The flow diagram of the proposed method. 

2.1. Pedestrian Detection Based on Pixel-Level Color Image Fusion 
2.1.1. Color Space Transformation 

The majority of the existing color image fusion methods are based on color space 
transformation. The most common color spaces in the field of image processing include 
RGB, LAB [43], Ycbcr [44,45], and HSI [46,47]. These methods usually transform the RGB 
visible image into another color space to obtain different image components and then fuse 
one of the image components with the infrared image. Among them, LAB-based methods 
convert the visible image from RGB to LAB and fuse the L component with the infrared 
image to get a new L component. Ycbcr-based methods convert the visible image from 

Figure 1. The flow diagram of the proposed method.

2.1. Pedestrian Detection Based on Pixel-Level Color Image Fusion
2.1.1. Color Space Transformation

The majority of the existing color image fusion methods are based on color space
transformation. The most common color spaces in the field of image processing include
RGB, LAB [43], Ycbcr [44,45], and HSI [46,47]. These methods usually transform the RGB
visible image into another color space to obtain different image components and then fuse
one of the image components with the infrared image. Among them, LAB-based methods
convert the visible image from RGB to LAB and fuse the L component with the infrared
image to get a new L component. Ycbcr-based methods convert the visible image from RGB
to Ycbcr and fuse the Y component with the infrared image to get a new Y component. HSI-
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based methods convert the visible image from RGB to HSI and fuse the I component with
the infrared image to get a new I component. In this paper, we chose the most appropriate
color space transformation method after a comprehensive comparation of the fusion results
based on LAB, Ycbcr, and HSI in terms of target saliency, color authenticity, and detail
clarity. The fusion results via different color spaces are exhibited in Figure 2.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 16 
 

 

RGB to Ycbcr and fuse the Y component with the infrared image to get a new Y compo-
nent. HSI-based methods convert the visible image from RGB to HSI and fuse the I com-
ponent with the infrared image to get a new I component. In this paper, we chose the most 
appropriate color space transformation method after a comprehensive comparation of the 
fusion results based on LAB, Ycbcr, and HSI in terms of target saliency, color authenticity, 
and detail clarity. The fusion results via different color spaces are exhibited in Figure 2. 

As can be seen from the color fusion images, the color fusion based on LAB was 
slightly better than that of YCbcr in color transmission, but the overall difference was not 
significant. The HSI-based method had the best color transfer performance, and the fusion 
results had more prominent features and more details in the target region. Therefore, this 
paper adopted the HSI color space transformation method for color image fusion. 

 
Figure 2. The fusion results via different color spaces. (a) shows the visible images; (b) shows the 
infrared images; (c–e) respectively show the fusion results based on Lab, Ycbcr and HIS. 

The HSI color space uses three mutually independent features to describe colors, 
namely hue (H), saturation (S), and intensity (I), which are more consistent with human 
visual characteristics than the RGB color space. In this paper, a standard model method 
[48] was adopted to convert RGB images into the HIS color space, and the specific formu-
las are as follows: 

max
max min

max
max min

max
max min

,
3

' ,
3

,
3

G B if T R
T T
B RH if T G

T T
R G if T B

T T







 
 




  

   

 (1)

 ', ' 0
' 2 , ' 0
H if HH H if H

    (2)

max minS T T   (3)

 max min / 2I T T   (4)

where  max max , ,T R G B  and  min min , ,T R G B . 

2.1.2. Image Fusion Based on TV Minimization and Structure Transfer 
The features extracted from the same area of infrared images and visible images 

sometimes convey reverse information. The traditional fusion methods retain these fea-
tures without distinction, which will bring about the loss of some crucial information. The 
fusion method using gradient transfer [29] transmits the gradient details from the visible 
images to the corresponding positions of infrared images, which preserves the intensity 
distribution in infrared images and the detail gradients in visible images concurrently 
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infrared images; (c–e) respectively show the fusion results based on Lab, Ycbcr and HIS.

As can be seen from the color fusion images, the color fusion based on LAB was
slightly better than that of YCbcr in color transmission, but the overall difference was not
significant. The HSI-based method had the best color transfer performance, and the fusion
results had more prominent features and more details in the target region. Therefore, this
paper adopted the HSI color space transformation method for color image fusion.

The HSI color space uses three mutually independent features to describe colors,
namely hue (H), saturation (S), and intensity (I), which are more consistent with human
visual characteristics than the RGB color space. In this paper, a standard model method [48]
was adopted to convert RGB images into the HIS color space, and the specific formulas are
as follows:

H′ =


π
3 ×

G−B
Tmax−Tmin

, i f Tmax = R
π
3 ×

B−R
Tmax−Tmin

, i f Tmax = G
π
3 ×

R−G
Tmax−Tmin

, i f Tmax = B
(1)

H =

{
H′, i f H′ ≥ 0

H′ + 2π, i f H′ < 0
(2)

S = Tmax − Tmin (3)

I = (Tmax + Tmin)/2 (4)

where Tmax = max(R, G, B) and Tmin = min(R, G, B).

2.1.2. Image Fusion Based on TV Minimization and Structure Transfer

The features extracted from the same area of infrared images and visible images
sometimes convey reverse information. The traditional fusion methods retain these features
without distinction, which will bring about the loss of some crucial information. The fusion
method using gradient transfer [29] transmits the gradient details from the visible images to
the corresponding positions of infrared images, which preserves the intensity distribution
in infrared images and the detail gradients in visible images concurrently while almost
completely neglecting the intensity information of the visible images, resulting in the loss
of the appearance details of the targets. The local structure usually plays a stronger role
in detail expression, which is more consistent with the visual perception of humans [31].
Hence, we replaced the gradient features with the local structures, making the fused results
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have local structures similar to those of the visible images. The fusion task can be expressed
as the minimization of the following objective functions:

E(Fωk ) = ‖Fωk − Iωk‖
1
1 + λ‖

∇Fωk

Fωk

−
∇Vωk

Vωk

‖
1

1
(5)

where ωk denotes the window centered on pixel k, Fωk and Iωk denote the fused result and
the infrared image in ωk, respectively, Fωk and Vωk denote the mean values of Fωk and the

visible image in ωk, respectively, and
∇BFωk
BFωk

and
∇BVωk
BVωk

represent the local structures of

the fussed result and the visible image, respectively. On the right side of the formula, the
first item constrains the fusion result to having a similar intensity distribution with that
of the infrared image, and the second item constrains the fusion result to have a similar
gradient with the visible image. λ denotes the regularization parameter which regulates
the trade-off between two items, and we set λ = 2 here.

Since the intensity distribution of the fusion result resembled that of the infrared

image, we assumed that Fωk ≈ Iωk . Let yωk = BFωk −
BIωk
BVωk

· BVωk . Then, the optimization

problem can be expressed as

y∗ωk
= argmin

yωk

{
∑

i∈ωk

‖yi
ωk
− (Ii

ωk
−

Iωk

Vωk

·Vi
ωk
)‖

1

1
+

λ

Iωk

J
(
yωk

)}
(6)

where J(yωk ) = ∑
i∈ωk

‖∇iyωk‖
1
1. The global optimal solution of the fused image in ωk can be

expressed as

F∗ωk
= y∗ωk

+
Iωk

Vωk

·Vωk (7)

The final fused image can be obtained by combining the fused image of each window,
namely F.

2.1.3. Infrared Detail Enhancement

Figure 3c exhibits the fusion results procured by the above method, which retained an
intensity distribution similar to the infrared images and the local structure features of the
visible images. Nevertheless, due to the trade-off of these two kinds of information, the
details of the fusion results were not clear enough, which may have affected the subsequent
target detection, especially the detection of small-scale targets. For small-scale targets, there
are few appearance features in visible images which are greatly affected by illumination,
while the intensity information in infrared images makes small-scale targets still significant.
Therefore, the infrared detail enhancement of the initial fusion results was beneficial for
improving the target detection performance.

Inspired by the authors of [47,49], the mean filter and Gaussian filter were used to
extract the infrared details of different scales, which were combined with the initial fused
result to get the final fused result. The formula can be expressed as follows:

FE = F + α1 · DFa(ra) + α2 · DFg(rga ,σ) (8)

where FE represents the final fusion image and α1 and α2 are constant coefficients. DFa(ra)

and DFg(rga ,σ) represent the detail information extracted by the mean filter and Gaussian
filter, respectively, the formulas of which can be presented as follows:

DFa(ra) = F− ave f ilter(F, ra) (9)

DFg(rga ,σ) = F− gaussian(F, rga, σ) (10)
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where ra and rga denote the sizes of the mean filter and Gaussian filter, respectively, and σ
denotes the standard deviation. In this paper, we set α1 = α2 = 0.5, ra = 15, rga = 7, and σ = 3.

Figure 3d shows the examples of the final fusion results, where we can see that
the enhancement of the infrared details made the target areas of the fusion results more
significant and the details clearer.
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2.1.4. Pedestrian Detection Based on Multi-Spectral Fusion Results and YOLOv3

The fusion images of the multi-spectral pedestrian dataset were used as the input
images of YOLOv3 to train and test the model of multi-spectral pedestrian detection. For
the training of the YOLOv3 detector, the weights of Darknet-53 were pretrained with the
ImageNet dataset, while the weights of other convolutional layers were initialized by
Kaiming initialization [50]. Then, the multi-spectral pedestrian dataset KAIST [33] was
used to fine-tune the detection. The stochastic gradient descent algorithm (SGD) was used
to fine-tune the model, the batch size was set to be 4, the momentum was set to be 0.9, the
decay was set to be 0.0005, and the learning rate was set to be 0.001. Aside from that, the
convolutional layers of Darknet-53 were frozen during the fine-tuning training for the first
20 epochs. Then, the freezing was canceled, and all layers participated in the training until
the fine-tuning was completed.

2.2. Pedestrian Detection Based on Fusion Architectures

For better verification of the performance of our proposed method, we not only
adopted some pixel-level fusion methods for comparison but also implemented two fusion
architectures based on YOLOv3, namely early fusion and late fusion. The early fusion
architecture is shown in Figure 4, where visible images and infrared images were cascaded
as an input with four channels for YOLOv3.The network structure was the same as the
original YOLOv3, with the exception of the first convolutional layer.

For the training of this model, the weights of the above-mentioned pre-trained model
were first loaded to all layers of the backbone network except the first convolutional layer.
Then, the Kaiming initialization method was adopted to initialize the weights of other
convolutional layers, and the KAIST dataset was used to fine-tune the model. The other
settings were the same as those in the above method.

Figure 5 exhibits the late fusion architecture based on YOLOv3. In this architecture,
visible images and infrared images were the input to Darknet-53 to extract the respective
features, and the feature maps of different scales were fused in different depths of the
networks. Then, the fusion images of different scales were classified respectively to realize
pedestrian detection. For feature map fusion, the authors of [51] explored three fusion
strategies, namely cat, max, and sum. The study indicated that the most commonly used cat
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fusion strategy performed the worst, and the sum strategy performed the best. Therefore,
this paper used the sum strategy to fuse the feature maps.
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Inspired by the authors of [41], the pre-trained weights model was assigned to the
subnetwork that extracted the features of visible images. The weights of the subnetwork
that extracted the features of infrared images and other layers were initialized by using
the Kaiming initialization method. Then, the KAIST dataset was used for fine-tuning.
Compared with the original YOLOv3, the network structure of the late fusion architecture
has changed a lot and become more complex, so it is necessary to spend more time on
training. The other settings were the same as those in the above method.

3. Experiments and Analysis
3.1. Datasets and Settings

The publicly available multispectral pedestrian detection dataset KAIST [33] consists
of 95,328 pairs of aligned visible images and infrared images with 103,128 pedestrian labels.
This dataset captures a variety of routine traffic scenes including campus, street, and down-
town scenarios during the day and night. This paper adopts the cleaned dataset to train and
evaluate the detector, which includes 7601 train set pictures and 2252 test set pictures [38].
In order to simplify the implementation, processing such as data augmentation is not used
for the dataset.

Since the focus of this work was to evaluate the influence of different fusion methods
on the detection results, the settings of the network remained the same as those of the
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original YOLOv3. The experiments were executed on a desktop with a GTX 1080ti GPU, 11
GB memory, and the batch size set to be 4.

3.2. Comparison of the Fused Results via Different Fusion Methods

In order to prove the performance of the proposed fusion method, the fusion results
of this method were qualitatively and quantitively compared with those of CVT [25],
IFEVIP [30], VSMWLS [28], and STF [31]. The qualitative fusion results with different
methods are shown in Figure 6, in which the first three rows show the daytime images, and
the last three rows show the nighttime images.
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It can be seen from the figure that, compared with the other methods, the targets of
the CVT fusion results were not significant enough, and the details were blurred, which
is not conducive to target detection. IFEVIP retained the features of the infrared thermal
target and abundant background visual information but could not highlight the pedestrian
targets when the visible background was cluttered, such as the fusion result in the sixth
row. VSMWLS balanced the infrared information and the visible information well, which
is consistent with human vision. However, the targets were still not prominent enough
under poor illumination conditions, and the detection was susceptible to interference from
background information. STF retained a large amount of visible information, but the targets
were not prominent and indistinct. The proposed method retained the intensity distribution
similar to that in infrared images and the local structural features in visible images, which
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made the thermal targets maintain a high contrast with the background, and the target
areas had abundant appearance information.

That aside, it is of concern that the visible images with low intensity at night were
often contaminated by noise, and the corresponding fusion images may have been affected
or even have their noise enhanced, such as in the fourth row in Figure 6. CVT and IFEVIP
were less affected by noise, but their edges were blurred, and the details were not clear
enough. STF was most disturbed by noise, especially in a dark background. In addition,
the targets were not significant enough, which would affect the subsequent detection
performance. VSMWLS and the proposed method were affected by noise to some extent,
but the highlighted target areas and rich detail information made the targets still prominent.
Therefore, compared with the other methods, the proposed method effectively highlighted
the thermal target and retained the visible details of the target area, which is beneficial to
pedestrian detection, especially in scenes with complex illumination.

To quantitatively compare the fusion performance of different methods, four evalua-
tion metrics, including the multi-scale correlation coefficient (MCC) [31], spatial frequency
(SF) [10], entropy (EN) [52], and average gradient (AG) [11], were used to qualitatively
compare our method with other methods. The MCC evaluates the fusion method with the
measurements of the correlation of the fused result and the input images at different scales.
The SF assesses the details and textures of the fused result based on gradient distribution.
EN evaluates the quantity of the information of the fused result. The AG reflects the
definition of the image by gradient calculation. Larger values for these four metrics imply
better fusion performance.

A quantitative comparison of the different fusion methods is shown in Table 1. It can be
observed that the proposed method achieved the maximum MCC, SF, and AG in most cases,
which means that the fusion results of this method had the highest degree of correlation
between the fusion results and source images, the best clarity, and the most detailed
information. Aside from that, our method achieved the maximum EN value in many cases,
indicating that the fusion results contained a lot of information. It should be noted that
the proposed method is usually unable to obtain high EN values with intricate visible
backgrounds, such as the fusion results in the fifth and sixth row in Figure 6. Compared
with the proposed method, other methods retained more background information in the
visible image, but this would make the targets less significant and affect the subsequent
detection task.

That aside, it is worth noting that although the KAIST dataset was relatively well
aligned, about 10% of the image pairs were still misaligned [53], which affected the image
fusion, as shown in Figure 7. As can be seen from the figure, for the fusion of misaligned
visible infrared image pairs, all the methods were affected by the retention of unaligned
image features to varying degrees. The target areas of the fusion results of CVT, IFEVIP,
VSMWLS, and STF were “overlapped” because the unaligned intensity information was
retained, which may have interfered with the subsequent detection of pedestrian targets.
The proposed method mainly preserved the intensity features of the infrared images, so
it was minimally affected by the misregistration of the source images. In summation,
our proposed method possessed the best fusion performance, and its fusion results were
conducive to subsequent pedestrian detection.
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Table 1. Quantitative comparison of different fusion methods.

Images Metrics CVT IFEVIP VSMWLS STF Proposed

IM1

MCC 1.1918 1.0927 1.1701 1.3349 1.3553
SF 7.8644 10.671 10.0784 9.9651 12.2615
EN 6.8309 7.1229 7.1906 7.2936 7.36
AG 2.4887 3.4168 3.4674 3.7597 4.1013

IM2

MCC 1.5983 1.5083 1.5617 1.6187 1.637
SF 9.0672 12.5468 11.9432 11.1744 14.2152
EN 7.5442 7.5929 7.6619 7.4994 7.6885
AG 3.4018 4.5238 4.6586 4.5967 5.353

IM3

MCC 1.4016 0.6532 1.4086 1.5853 1.6559
SF 7.4361 12.4645 9.6137 16.4532 14.9262
EN 6.5595 7.1805 7.0967 6.6205 6.8944
AG 2.1096 3.424 3.0389 4.4684 4.105

IM4

MCC 1.1097 1.0094 1.1994 1.0071 1.1443
SF 5.8053 8.1269 7.747 10.3357 8.2588
EN 6.7783 7.0253 6.9894 6.9619 7.123
AG 2.4294 3.4705 3.5266 4.3216 3.7777

IM5

MCC 0.9759 1.0465 1.0513 1.0216 1.0668
SF 6.6447 10.0782 9.4477 7.8325 10.6976
EN 7.0949 7.3614 7.314 6.7392 6.8128
AG 2.3316 3.4456 3.5094 3.3504 3.9016

IM6

MCC 1.4509 1.4192 1.4462 1.4294 1.4681
SF 7.5171 10.9581 10.658 8.6367 12.7359
EN 7.3604 7.2918 7.5574 7.0863 7.1386
AG 2.7683 3.8174 4.1147 3.314 4.6592
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3.3. Comparison of the Detection Results via Different Fusion Methods

In order to prove the detection performance of the method in this paper, the detection
results based on the proposed method, CVT, IFEVIP, VSMWLS, STF, early fusion, and late fu-
sion were evaluated, with the YOLOv3 detector via visible images as a benchmark. Follow-
ing the evaluation protocol in [33], this paper used two indexes for the evaluation, namely
the miss rate−false positive per image (MR−FPPI) curve and log−average miss rat. A
lower MR−FPPI curve or lower log-average miss rate means better detection performance.

The detectors based on different fusion methods were tested on the KAIST test set,
and the quantitative results are shown in Figure 8. It can be observed that for the daytime
detection, the original detector based on visible images could obtain fairly good detection
performance. CVT, IFEVIP, STF, and early fusion did not improve the detection performance
and even worsened it. VSMWLS and late fusion improved the detection performance, but
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the improvements were not obvious. Compared with the other five detectors, the detector
based on the proposed method possessed the best performance of the daytime detection.
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For the nighttime detection, the performance of the original detector based on visible
images was poor, and the log−average miss rate was as high as 72.52%. All the fusion
methods could improve the performance of night detection to different degrees. The
nighttime detection performance of CVT, IFEVIP, and VSMWLS was obviously inferior
to the performance of STF, early fusion, and late fusion, but the proposed method still
obtained the best performance of the nighttime detection.

In general, all the fusion methods could improve the robustness for all-time detection.
The detection performance of the two fusion architectures was obviously better than that of
CVT, IFEVIP, and VSMWLS, especially for the late fusion. The detection performance of
STF was similar to that of early fusion. The daytime detection performance of early fusion
was slightly better, while STF had better nighttime detection performance. However, the
detection performance of our proposed method achieved the best detection performance,
whether for daytime or nighttime detection.

Figure 9 demonstrates the detection results of some images in the test set. Here, the
first row shows the ground truth, the second row shows the detection results based on
the visible RGB images, and the other rows show the detection results of CVT, IFEVIP,
VSMWLS, STF, early fusion, late fusion, and the proposed method in turn. Aside from that,
the first three columns are the daytime detection results, and the last three columns are the
nighttime detection results.

As can be observed, compared with the other methods, the proposed method was
more effective at reducing false detections and missed detections, especially in scenes
with poor illumination conditions and chaotic backgrounds. In backlight scenes, part of
the visual field will be occupied by the background light, and some pedestrians will be
“invisible” in the image, as shown in the RGB image in the fifth column of Figure 9. The
other six fusion methods could not effectively distinguish the background from the targets,
so the pedestrian under the backlight condition could not be detected. However, the
proposed method could ignore the obvious background features and retain the significant
features of the targets, meaning it could detect the pedestrians accurately even under the
backlight condition.
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That aside, it is worth noting that, as shown in the fourth column in Figure 9, the
noise of the visible image at night would be enhanced to varying degrees in the fusion
results. STF was the most affected by noise because it retained a large amount of visible
information, and the small-scale target detection was seriously disturbed by background
noise. The fusion image of the proposed method was also affected by noise, but the
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prominent target area and clear details helped this method still achieve better detection
performance compared with that of other methods. In summation, compared with the other
methods, the proposed method had superior detection performance and could effectively
utilize the features of the infrared and visible images, thus improving the accuracy and
robustness of pedestrian detection.

4. Conclusions

In order to explore a better multi-spectral pedestrian detection method, several detec-
tors based on different fusion methods were studied and tested in this paper. A method
for robust pedestrian detection based on multi-spectral image fusion and YOLOv3 was
proposed. In this method, TV minimization based on structure transfer is adopted to
combine infrared images and visible images, preserving the infrared intensity distribution
and local appearance information. Then, the infrared detail enhancement is used to achieve
fusion images with prominent targets and abundant details. Multi-spectral pedestrian
detection is realized by combining the fusion images with YOLOv3. Aside from that, two
fusion architectures based on YOLOv3 were designed and implemented which fused the
features of different scales in different depths of the network. At last, the KAIST dataset
was adopted to evaluate the detection performance of our proposed method, the other four
fusion methods, and two fusion architectures. The results demonstrate that our proposed
method effectively improved the robustness and accuracy of pedestrian detection and still
had a good detection effect in challenging, complex scenes.

It should be noted that this paper assumed that there was a significant difference
between the thermal radiation of the pedestrian targets and the background; that is, the
targets in the infrared images were significant. Under this premise, the proposed method
could make full use of the infrared intensity information and visible detail information to
achieve accurate and robust all-time pedestrian detection. However, when the pedestrian
targets are not prominent in infrared images, the detection performance of the proposed
method will be affected. This problem is mainly limited by the characteristics of infrared
imaging, and it may be solved by combining the information of other modalities. That
aside, the computational efficiency of the method in this paper cannot meet the demand of
real-time detection, and further research is needed for this problem.
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