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Abstract: Computer vision-based automation has become popular in detecting and monitoring
plants’ nutrient deficiencies in recent times. The predictive model developed by various researchers
were so designed that it can be used in an embedded system, keeping in mind the availability of
computational resources. Nevertheless, the enormous popularity of smart phone technology has
opened the door of opportunity to common farmers to have access to high computing resources.
To facilitate smart phone users, this study proposes a framework of hosting high end systems in
the cloud where processing can be done, and farmers can interact with the cloud-based system.
With the availability of high computational power, many studies have been focused on applying
convolutional Neural Networks-based Deep Learning (CNN-based DL) architectures, including
Transfer learning (TL) models on agricultural research. Ensembling of various TL architectures has
the potential to improve the performance of predictive models by a great extent. In this work, six
TL architectures viz. InceptionV3, ResNet152V2, Xception, DenseNet201, InceptionResNetV2, and
VGG19 are considered, and their various ensemble models are used to carry out the task of deficiency
diagnosis in rice plants. Two publicly available datasets from Mendeley and Kaggle are used in this
study. The ensemble-based architecture enhanced the highest classification accuracy to 100% from
99.17% in the Mendeley dataset, while for the Kaggle dataset; it was enhanced to 92% from 90%.

Keywords: ML/DL methods; nutrient deficiency; ensemble learning; transfer learning; rice defi-
ciency identification

1. Introduction

Agriculture is a major component of the global economy and food supply, which is
under strain as a result of the enormous rise in population. Digital agriculture is a new
scientific field that strengthens the agricultural production [1]. One of the many factors that
influences agricultural yield is the absence of soil nutrients. Micronutrient acquisition by
crops must be understood in order to develop appropriate strategies to prevent a deficiency
in crops. It is found that 30–40%, 30%, 59%, and 30% of global agricultural soil is deficient
in nutrients such as Phosphorous (P), Iron (Fe), Nitrogen (N), and Zinc (Zn), respectively,
which impacts the agricultural yield severely [2]. Rice is one of the most commonly
consumed grains worldwide. According to 2021 data of Statista [3], China stands first
in rice consumption, followed by India and Bangladesh. The country-wise consumption
of rice is shown in Figure 1. Rice production in the world totals 510.6 million tonnes [4].
Nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), sulphur
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(S), zinc (Zn), iron (Fe), manganese (Mn), copper (Cu), boron (B), molybdenum (Mo),
and chlorine (Cl) are the major nutrients required to be present in the soil for the proper
growth of rice plants. Nitrogen is responsible for the onset of panicles, grain development,
and booting stages. By promoting early flowering and maturity, phosphorus aids in the
maintenance of the root growth process as well as disease resistance and drought tolerance.
Potassium is essential for plant metabolism as well as stress tolerance [5,6]. Magnesium and
molybdenum are required for enzyme phosphate transfer and nitrate-to-nitrite reduction.
Cu and Fe are important photosynthesis components. Boron aids in flower formation,
pollen germination, and the development of new plant cells. Rice diseases are controlled
by Mn and Cl, and the latter intensifies disease resistance. S is in charge of amino acid
and lipid synthesis, whereas Ca is in charge of cell division in plants [7,8]. The task of
determining the amount of nutrients lacking in soil is known as plant nutrient deficiency
identification. The detection of nutrient deficiencies in crops is essential so that future
courses of action can be taken to boost the yield as well as to maintain the growth in crops.
This has a series of economic and environmental impacts, such as preventing damage and
yield loss, less financial loss, reduced food, etc. Agricultural experts struggle to diagnose
the nutrient deficiencies because agricultural production sites are dispersed and many
nutrient deficiencies are spread across a large region [9,10].
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Figure 1. Country-wise (top ten) consumption of rice.

These deficiencies are often visible to the human eye only when the plant has already
been damaged. Hence, technological advancement is vital to assist farmers and experts in
identifying these deficiencies at an early stage. Significant innovative progress has been
made to solve this problem. The traditional way of identifying a nutrient deficiency in
plants involves the use of chemicals and mashing the plants. However, this task requires
a lot of effort from agricultural experts and use of machineries. To overcome these lim-
itations, non-invasive techniques, such as sensors, image processing, spectral imaging,
and computer vision, have been developed to manage and understand the deficiencies in
plants [11,12]. Several techniques have been used to acquire images of nutrient deficiencies
in plants from digital cameras, satellites, and unmanned aerial vehicles (UAV). Satellites
do not provide supportive information for individual plant analysis and are costly. The
UAVs’ dependency on weather, requirement of specific flight directions, and crashes lead
to degraded UAV images. Internet of Things (IoT)-based systems work well in monitor-
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ing soil temperature, moisture level, and nutrient contents of plants. Image processing
techniques involving image acquisition, preprocessing, segmentation, feature extraction,
and classification have also been applied effectively for the same cause. Optical sensors
and spectral imaging require an expensive experimental setup, which is non-feasible to
farmers [13–15]. In the past few years, techniques such as computer vision, image process-
ing, and machine learning have been found to be popular in detecting and monitoring
plants’ nutrient deficiencies. The classification algorithms such as K-Nearest Neighbor
(KNN), Multilayer Perceptron Neural Network, regression, Naïve Bayes, Radial Basis Func-
tion, Random Forests, Self-Organizing Maps, fuzzy c-means, and Support Vector Machine
(SVM) have gained exceptional attention in smart agriculture. Some of the studies have
used feature selection and reduction techniques in combination with classical machine
learning techniques to reduce the computational complexity, which is highly required if
the predictive model is used in an embedded system. Nevertheless, the performance of
the deficiency diagnosis system is more important than the speed with which the results
are obtained. At the same time, the enormous popularity of smart phone technology has
opened the door of opportunity to common farmers to have access to high computing
resources. To address the issue of resource constraint, the study proposes a framework
of hosting high-end systems in the cloud where processing can be done and the farmer
can interact with the system hosted in the cloud. Figure 2 gives a cloud-based nutrient
deficiency diagnosis framework that can be deployed for the benefit of farmers.
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With the availability of high computational power, it is feasible to enhance the per-
formance of a predictive model by use of advanced Deep Learning (DL) techniques. A
few of the studies have reported using CNN, CNN-based DL techniques, and transfer
learning (TL) techniques for a deficiency diagnosis in various crops. However, ensemble of
TL architectures in this domain is yet to be explored. The ensemble TL model can play a
significant role in improving the performance of nutritional deficiency identification. This
motivated us to apply an ensemble averaging technique on various TL models viz. Incep-
tionResNetV2, Xception, DenseNet201, and VGG19. All possible combinations of binary,
ternary, and quaternary ensemble classifiers are designed from these base TL models, and
the experiment is carried out on two publicly available rice deficiency image datasets.

The rest of the paper is organized as follows. Section 2 provides an overview of the
related work. The dataset and proposed methodology are described in Section 3. Sections 4
and 5 contain the findings and discussions. Section 6 concludes with a discussion of
future perspectives.
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2. Related Work

In the domain of agricultural research, Artificial Intelligence (AI) is widely used for
plant identification and pathology, with the prime focus on designing DL/ML (Machine
Learning) architectures to handle various challenges in this field. Supervised ML tech-
niques are widely used in crop identification, yield prediction, disease detection, deficiency
identification, etc. Abbaspour-Gilandeh et al. performed research on 13 Iranian rice types
and categorized them as white rice, brown rice, and paddy using Discriminant Analysis
(DA) and Artificial Neural Networks (ANN) [16]. An Expert Learning Model (ELM) for
wheat yield forecasting incorporated Support-vector Machine (SVM), Least Square-SVM,
and Proximal SVM classifiers, where ELM beats Support Vector Regression (SVR) and other
approaches [17]. K-means and SVM, when applied in the classification of five types of rice
deficiencies, achieved accuracy in the range of 85.06% to 93% [18]. However, deep learning
shows promising results in identifying macronutrient deficiencies in maize when com-
pared to other machine learning techniques, such as ANN, SVM, and K-Nearest Neighbor
(KNN) [19].

For identification of disease and deficiency from image data, CNN based DL models
are most popularly used. Pre-trained convolutional encoders performed better than recur-
rent attention neural network (RAN)-CNN in detection of iron deficiency of Soybean [20].
TL model ResNet-50 showed an accuracy of 65.44% in detecting seven nutrient deficien-
cies in a dataset of 4088 images of black gram [21]. In another experiment, ensemble of
Inception-ResNet and auto-encoder was designed to classify three nutrient deficiencies
in 571 tomato images which achieved 91% accuracy [22]. Fine tuning the layers of the
pre-trained CNN models increases the accuracy in plant’s nutrient deficiency identification
systems [23]. TL models perform better than the conventional CNN. Pre-trained CNN mod-
els like InceptionV3, ResNet50, NasNet-large and DenseNet121 were used to detect 11 types
of nutrient deficiencies in rice plant leaves, with highest accuracy shown by DenseNet121
(97.44%) followed by NasNet-large (96.25%) [24]. With the increase in number of training
steps, the accuracy of pre-trained InceptionV3 was observed to increase while detecting
NPK deficiency in maize plant [25]. During prediction of four levels of N deficiency in
rice and NPK deficiency in oilseed rape, pre-trained CNN models were combined with
SVM or time series model producing best results in the range of 99.84% and 95% [26,27].
Although CNNs have shown their satisfactory performance in the field of nutrient de-
ficiency identification in plants, region based CNN lacked detailed classification when
applied in Chilli plants [28]. The pre-trained CNN model (MobileNetV2) can be adjusted
to show a statistically significant increase in cassava leaf disease identification accuracy
on lower-quality testing images [29]. Deep Residual Convolutional Neural Networks
(DRCNN) can be employed in conjunction with unique block processing to identify and
classify Kaggle cassava mosaic illness dataset, with DRCNN obtaining a maximum success
rate of 96.75% [30]. When RGB, HSV color, and textural Local Binary Pattern descriptors
were utilized, the Bagged tree ensemble classifier and the Complex tree classifier outper-
formed other classifiers in a system for recognizing and categorizing diseases in guava
plants [31]. The pre-trained and fine-tuned custom-made convolution classifier used in a
combined framework of Internet of Things (IoT) and DL was proved to be low-cost in the
prediction of Pearl Millet disease [32]. InceptionV3 model was found to be more suitable
to classify the different degrees of ginkgo leaf disease in different field conditions [33].
Many research studies related to crop management found that different variants of deep
learning models (InceptionV3, InceptionResNetV2, EfficientNet, MobileNet, DenseNet and
others) performed better in terms of accuracy and training time [34]. Furthermore, studies
showed that when the proper parameters were employed, the MobileNetV2 architecture
was found to be compatible with mobile devices [35]. Table 1 summarizes the state of art
research in the domain of nutrient deficiency identification in plants using various CNN
based architectures.
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Table 1. CNN studies on rice deficiency classification.

References Models Used Deficiency
Dataset Transfer Learning Type of Deficiency Results

[9] CNN Tomato (field-work) No N,P,K (80.45–86.59)%

[18] (Kmeans,FCM based
feature exraction) + SVM

Rice (IRRI, Philippines
data base) No N,P,K,Zn,Mg (85.06–93)%

[20]
RAN-CNN,

convolutional
autoencoder

Soybean (field-work) No Fe
convolutional
autoencoder

performed best

[21]

MobileNet/V2, AlexNet,
VGG16, Xception,

InceptionV3,
ResNet50

Black gram (field-work) Yes N,P,K,Ca,Fe,Mg 65.44%

[22]
InceptionResNetV2,

autoencoder and
ensembling of these two.

Tomato (field-work) Yes Ca, N, P (79.09–91)%

[23] InceptionResNetV2 Okra (field-work) Yes Not given (59–86)%

[24]
InceptionV3,

ResNet50, NasNet-large
and DenseNet121

Rice (field-work) Yes N,P,K,S,Ca,Mg,Fe,Mn,Zn,Si (91.67–97.44)%

[25] InceptionV3 Maize (details not
provided) Yes NPK (40–80)%

[26]
(AlexNet + ResNet18/50

+ GoogleNet +
VGG16/19) + SVM

Rice (field-work) Yes N (95.61–99.84)%

[27] InceptionV3 + time
series model

Oilseed rape
(field-work) No N, P, K mainly (92–95)%

[34]
AlexNet, VGG16,

ResNet101, Densenet161,
SqueezeNet

Sugar beet (field-work) Yes N,P,K,Ca (62.4–98.4)%

Various classification models employed in the literature can be categorized into four
different groups. Firstly, supervised ML models were used in the earlier literature. Secondly,
with the availability of image data, CNN gained popularity. Thirdly, researchers tried
to work with hybrid models that take advantage of both CNN and conventional ML
techniques. Fourthly, pre-trained CNN models have recently become popular. Figure 3
shows the different techniques of nutrient deficiency identification in crops articulated in
the literature.
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3. Materials and Method

This paper proposes an ensemble of six TL models for diagnosing deficiencies in
rice plants. Two publicly available datasets were used to carry out the experiment. The
following section explains the experimental setup in detail.

3.1. Dataset Details

This study worked on two rice deficiency datasets available in Kaggle and Mendeley.
The Kaggle rice NPK deficiency dataset has three types of deficiencies: N, P, and K, each
with 440, 333, and 383 images, respectively [36]. The images in each of the three classes
are of varying sizes. The Mendeley rice N deficiency dataset, having a resolution of
100×100 pixels, takes into account four swaps ranging from minor to severe deficiency [37].
This dataset already has 400 test images (100 for each swap) and 5390 training images (1407,
1203, 1400, and 1380 images for each swap). Figure 4 depicts the class distribution of rice
deficiency in both datasets.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. Types of techniques used for nutrient deficiency classification in crops (in previous stud-
ies). 

3. Materials and Method 
This paper proposes an ensemble of six TL models for diagnosing deficiencies in rice 

plants. Two publicly available datasets were used to carry out the experiment. The fol-
lowing section explains the experimental setup in detail. 

3.1. Dataset Details 
This study worked on two rice deficiency datasets available in Kaggle and Mendeley. 

The Kaggle rice NPK deficiency dataset has three types of deficiencies: N, P, and K, each 
with 440, 333, and 383 images, respectively [36]. The images in each of the three classes 
are of varying sizes. The Mendeley rice N deficiency dataset, having a resolution of 
100×100 pixels, takes into account four swaps ranging from minor to severe deficiency 
[37]. This dataset already has 400 test images (100 for each swap) and 5390 training images 
(1407, 1203, 1400, and 1380 images for each swap). Figure 4 depicts the class distribution 
of rice deficiency in both datasets. 

 
Figure 4. Class distribution of rice deficiency in the Kaggle dataset and Mendeley dataset. 

3.2. Data Augmentation 
The rice deficiency datasets were worked with augmentation techniques using Py-

thon’s ImageDataGenerator module [38]. The resolution of all images in the Kaggle rice 
NPK deficiency dataset was scaled to 300 × 300 pixels. Augmentation techniques, such as 
horizontal flip, rotation without automatic cropping, skew, and a zooming effect, were 
applied to images from each class in the datasets. Table 2 shows the augmentation param-
eters. The expanded Mendeley dataset and the Kaggle dataset each have 5790 and 3356 
number of images, respectively. These expanded datasets were divided into three sets for 

Figure 4. Class distribution of rice deficiency in the Kaggle dataset and Mendeley dataset.

3.2. Data Augmentation

The rice deficiency datasets were worked with augmentation techniques using Python’s
ImageDataGenerator module [38]. The resolution of all images in the Kaggle rice NPK
deficiency dataset was scaled to 300 × 300 pixels. Augmentation techniques, such as hori-
zontal flip, rotation without automatic cropping, skew, and a zooming effect, were applied
to images from each class in the datasets. Table 2 shows the augmentation parameters. The
expanded Mendeley dataset and the Kaggle dataset each have 5790 and 3356 number of
images, respectively. These expanded datasets were divided into three sets for assessing
the performance of the rice deficiency diagnosis system: training, testing, and validation.
Table 3 contains a summary of the datasets’ details.

Table 2. Parameters of the augmentation techniques applied in the current study.

Sl. No. Augmentation Technique Parameter with Value

1 Flip Probability = 0.2

2 Rotation without cropping Probability = 0.2,
Maximum left/right factor = 25

3 Random skew Probability = 0.4, Maximum skew = 0.5

4 Zooming Probability = 0.2, Minimum factor = 1.1,
Maximum factor = 1.5
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Table 3. Details of the rice deficiency datasets used in the current study.

Information Kaggle Deficiency Rice
Dataset Mendeley N Deficiency Rice Dataset

Deficiency class N P K Swap1 Swap2 Swap3 Swap4

Distribution of images 440 333 383 1407 1203 1400 1380

Number of training images 2456 5390

Number of testing images 300 120

Number of validation images 600 280

Total number of images after
augmentation 3356 5790

3.3. Proposed Rice Deficiency Identification System

This study presents an ensemble of TL models for diagnosing a deficiency in rice
plants as shown in Figure 5. The rice deficiency datasets from Mendeley and Kaggle
were gathered and augmented using techniques discussed in the previous section. The
extended Mendeley and Kaggle datasets were divided into three sets: training, testing, and
validation. Then, six TL models were trained individually on these datasets. The Adam
optimizer and categorical cross-entropy loss function were utilized to precisely train the
networks. Out of them, the best performing four TL models were ensembled to generate
11 ensemble classifiers. All the classifiers were assessed using performance measures such
as a confusion matrix, precision, recall, F1-score, and accuracy to choose the optimal model
for a rice deficiency diagnosis [39–41].
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3.3.1. Transfer Learning Models

Transfer learning architectures are being used in the agricultural domain to assist
farmers with innovative solutions. In this work, various TL models viz. InceptionResNetV2,
InceptionV3, ResNet152V2, VGG19, DenseNet201 and Xception were fine-tuned with rice
nutrition deficiency datasets [42–47]. The classification layer of each CNN pre-trained
model was replaced with a pooling layer, a dense layer, and a softmax layer with the
number of classes, which are 3 for the Kaggle dataset and 4 for the Mendeley dataset in
this study. Training the models involved 50 epochs, and an early stopping technique was
used to obtain the best weights. A dropout value of 0.5 was used to handle over-fitting. All
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models were tested and validated using an Adam optimizer, categorical cross-entropy, and
batch size of 32. The total parameters used for each of the TL architectures are shown in
Table 4.

Table 4. TL architectures applied in the study.

Model Total Parameters

InceptionResNetV2 55,913,699

Xception 22,962,731

DenseNet201 20,815,427

VGG19 20,552,771

InceptionV3 23,116,067

ResNet152V2 59,382,275

3.3.2. Ensemble TL Models

The approach of ensemble averaging combines the estimated probability of several
base models [48]. Ensemble learning seeks to integrate several algorithms and merge the
outcomes with various voting processes in order to outperform any one algorithm [49,50].
The base models used in this study are InceptionResNetV2, Xception, DenseNet201, and
VGG19. These four baseline learners are used to form binary, ternary, or quaternary
ensemble classifiers. Each of the 11 ensemble classifiers averages the prediction probabil-
ity produced from the two datasets. The ensemble averaging approach utilized in this
investigation is visualized through Figure 6 and Algorithm 1.

Algorithm 1: Ensemble averaging

Input:Test_set S: Models Mk (k = 1 to n) where k is the number of models
Output: Ix
Ensemble_model E = [M1,M2, . . . Mk]
For i = 1 to k do

Predict, P = generate(S)
A = add (P, along y axis)
Ix = index_max (A, along x axis)

Confusion_matrix (Ix, S)
Classification_matrices (Ix, S)
End

Electronics 2022, 11, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. Ensemble averaging technique used in this study. 

4. Results 
The training and the validation of various learning models were carried out using 

GPU available in the Google Colab platform. Table 5 depicts the performance metrics of 
transfer learning models and the proposed ensemble models considered in this study. 

Table 5. Performance metrics for transfer learning models and the proposed ensemble models used 
in this work. 

Classifiers 
Kaggle Dataset Mendeley Dataset 
Mean  Mean  

Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy 
InceptionResNetV2 (TL0) 90 90 89.67 90 96.5 95.75 96 95.83 

Xception (TL1) 80.33 78.67 78.67 78.67 99.25 99.25 99 99.17 
DenseNet201 (TL2) 87 76 83 83.33 95.25 94.25 94.5 94.17 

VGG19 (TL3) 81 79.67 79.67 79.67 98.5 98.5 98.25 94.17 
InceptionV3 (TL4) 55.67 50.33 42.33 50.33 89.25 86.75 86.5 86.67 

ResNet152V2 (TL5) 83.67 83.33 83.33 83.33 94.25 94 93.75 98.33 
Xception + VGG19 (EM2.0) 86 85 85 85 100 100 100 100 

Xception+ DenseNet201(EM2.1) 86 82.67 82.33 82.67 97.75 97.5 97.5 97.5 
Xception +InceptionResNetV2 (EM2.2) 91.67 91.33 91.67 91.33 99.25 99.25 99 99.17 
InceptionResNetV2 + VGG19 (EM2.3) 90.33 90 90 90 100 100 100 100 

InceptionResNetV2 + DenseNet (EM2.4) 92.67 92 92.33 92 100 100 100 100 
VGG19 + DenseNet201 (EM2.5) 87.33 84.33 84 84.33 100 100 100 100 

InceptionResNetV2 + VGG19 + DenseNet201 
(EM3.0) 

92 92 92.33 92 99.25 99.25 99 99.17 

InceptionResNetV2 + VGG19 + Xception (EM3.1) 91 90.67 90.67 90.67 100 100 100 100 
InceptionResNetV2 + DenseNet201 + Xception 

(EM3.2) 
91 90.33 90.33 90.33 100 100 100 100 

VGG19 + Xception + DenseNet201 (EM3.3) 87.67 87 86.67 87 100 100 100 100 
InceptionResNetV2 + VGG19 + DenseNet201 + Xcep-

tion (EM4) 
90.67 90.33 90.33 90.33 100 100 100 100 

4.1. Results of Transfer Learning Models 
The nutrient deficient images from both the datasets were worked out with six TL 

models, i.e., InceptionResNetV2, InceptionV3, ResNet152V2, VGG 19, DenseNet201, and 
Xception. The accuracy scores of all these models for the datasets were in the range of 

Figure 6. Ensemble averaging technique used in this study.



Electronics 2022, 11, 148 9 of 16

4. Results

The training and the validation of various learning models were carried out using
GPU available in the Google Colab platform. Table 5 depicts the performance metrics of
transfer learning models and the proposed ensemble models considered in this study.

Table 5. Performance metrics for transfer learning models and the proposed ensemble models used
in this work.

Classifiers

Kaggle Dataset Mendeley Dataset

Mean Mean

Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

InceptionResNetV2 (TL0) 90 90 89.67 90 96.5 95.75 96 95.83

Xception (TL1) 80.33 78.67 78.67 78.67 99.25 99.25 99 99.17

DenseNet201 (TL2) 87 76 83 83.33 95.25 94.25 94.5 94.17

VGG19 (TL3) 81 79.67 79.67 79.67 98.5 98.5 98.25 94.17

InceptionV3 (TL4) 55.67 50.33 42.33 50.33 89.25 86.75 86.5 86.67

ResNet152V2 (TL5) 83.67 83.33 83.33 83.33 94.25 94 93.75 98.33

Xception + VGG19
(EM2.0) 86 85 85 85 100 100 100 100

Xception+
DenseNet201(EM2.1) 86 82.67 82.33 82.67 97.75 97.5 97.5 97.5

Xception
+InceptionResNetV2

(EM2.2)
91.67 91.33 91.67 91.33 99.25 99.25 99 99.17

InceptionResNetV2 +
VGG19 (EM2.3) 90.33 90 90 90 100 100 100 100

InceptionResNetV2 +
DenseNet (EM2.4) 92.67 92 92.33 92 100 100 100 100

VGG19 + DenseNet201
(EM2.5) 87.33 84.33 84 84.33 100 100 100 100

InceptionResNetV2 +
VGG19 + DenseNet201

(EM3.0)
92 92 92.33 92 99.25 99.25 99 99.17

InceptionResNetV2 +
VGG19 + Xception

(EM3.1)
91 90.67 90.67 90.67 100 100 100 100

InceptionResNetV2 +
DenseNet201 + Xception

(EM3.2)
91 90.33 90.33 90.33 100 100 100 100

VGG19 + Xception +
DenseNet201 (EM3.3) 87.67 87 86.67 87 100 100 100 100

InceptionResNetV2 +
VGG19 + DenseNet201 +

Xception (EM4)
90.67 90.33 90.33 90.33 100 100 100 100

4.1. Results of Transfer Learning Models

The nutrient deficient images from both the datasets were worked out with six TL
models, i.e., InceptionResNetV2, InceptionV3, ResNet152V2, VGG 19, DenseNet201, and
Xception. The accuracy scores of all these models for the datasets were in the range of
(51.17–87.17%) and (86.67–99.16%) for Kaggle and Mendeley, respectively. The performance
of InceptionResNetV2 and Xceptionwere the highest as compared to other TL models in the
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Kaggle rice NPK deficiency dataset and Mendeley rice N deficiency dataset, respectively.
The variation of validation accuracy across the epochs is shown in Figure 7.
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Figure 8 presents the confusion matrices of the TL models for both the datasets,
which shows both the classification and misclassification information. Using the confusion
matrices, it has been noticed that in the Kaggle rice NPK deficiency dataset, K deficiency
and N deficiency showed the least and highest diagnostic accuracies, respectively. P and K
deficiencies were misclassified in most of the cases by DenseNet201 and Xception. Out of
the four swap categories of the Mendeley rice N deficiency dataset, swap1 tended to be
misdiagnosed as the other three swaps (swap1, swap2, and swap3); hence, it showed the
lowest diagnostic accuracy. Swap2 was correctly classified by all the TL models. Although
swap4 was accurately classified by InceptionResNetV2, Xception, and DenseNet201, in
some cases, it was misclassified by VGG19, InceptionV3, and ResNet152V2.
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4.2. Results of Ensemble TL Models

As shown in Table 5, the classification accuracies of binary and ternary ensemble TL
classifiers for the Kaggle rice NPK deficiency dataset varied in the range of 82.67–92% and
87–92%, respectively, where EM3.0 and EM2.4 outperformed the rest with an accuracy
of 92%. EM3.2 underperformed all other ternary ensemble TL models with an accuracy
of 87%. The quaternary ensemble model showed an accuracy of 90.33%. It is noticed
that in the Kaggle rice NPK deficiency dataset, the N deficiency and K deficiency showed
the highest and lowest diagnostic accuracies, respectively, whereas, in the Mendeley N
deficiency dataset, swap3 was classified with a precision of 100%. The confusion matrices of
the first eight best ensemble classifiers for the Kaggle rice NPK deficiency dataset is shown
in Figure 9. Confusion matrices of the ensemble classifiers having an accuracy between
97.5% and 99.17% for the Mendeley rice N deficiency dataset is shown in Figure 10. The
classification accuracies for the Mendeley rice N deficiency dataset of binary ensemble TL
classifiers EM2.1 and EM2.2 were 97.5% and 99.17%, respectively. The ternary ensemble TL
classifier EM3.0 had a classification accuracy of 99.17%. With an accuracy of 100%, all the
remaining ensemble TL classifiers outperformed EM2.1, EM2.2, and EM3.0 in the case of
the Mendeley dataset.
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5. Discussion

This study resolved the issue of resource constraint of an embedded system by propos-
ing a cloud-based framework, where high-end systems responsible for processing will be
hosted in the cloud, and a user with internet connectivity can interact with the system.
To explore the performance of various TL models, six of them viz. InceptionResNetV2,
InceptionV3, ResNet152V2, VGG 19, DenseNet201, and Xception were used for this ex-
periment. Further, model averaging-based ensembling of these TL models were done to
generate a range of ensemble classifiers. However, InceptionV3 and ResNet152V2 were
removed from the TL model ensembling process because the hybrid of these two models
(InceptionResNetV2) performed better than both, as shown in Table 5.
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With the increase in the degree of ensemble classifiers, the accuracy was becoming
improved as observed from the experiment. In the case of the Kaggle dataset, individual
TL, binary, ternary, and quaternary ensemble classifiers hadaverage accuracies of 77.56%,
87.56%, 90%, and 90.33%, respectively, as shown in Figure 11. In the case of the Mendeley
dataset, individual TL, binary, ternary, and quaternary ensemble classifiers had average
accuracies of 94.39%, 99.45%, 99.79%, and 100%, respectively. The quaternary ensemble
model EM4 performed 100% accurately in the Mendeley dataset and also performed well
in the Kaggle dataset. Figure 12 shows the plot for the accuracy of various individual TL
and ensemble TL classifiers. The mean F1-scores of the ensemble averaging models for
the Mendeley and Kaggle rice disease datasets are visualized in Figure 13. In the Kaggle
dataset, all ensemble models showed an F1-score approximately equal to 1. Except for
EM2.1, EM2.2, and EM3.0, all ensemble models achieved an exact F1-score of 1 for the
Mendeley dataset. Figure 12 shows that the average classification accuracy of the ensemble
TL models for the entire experiment was in the range of 77.56–100%, whereas individual
TL models showed an accuracy of68.50–92.91%, which confirms the superiority of the
proposed approach.
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This research has certain limitations that must be noted. Firstly, no conventional ML
classifier is employed in this study, as most of the literature cited the superiority of DL
techniques over traditional ML techniques. However, the performance of hybrid machine
learning techniques over the present datasets is a matter to explore. Secondly, as the study
is focused on DL techniques, pre-processing of the image dataset was ignored, which is an
important step while working with ML techniques. Thirdly, only three mineral deficiencies
were considered in this experiment. However, for the system to be suitable for real-world
applications, all types of deficiencies must be taken into consideration. In addition, this
study considered only six major TL models and performed their ensembling. Despite the
fact that these TL models effectively satisfied our objective of the experiment, the rest of
the TL models can also be incorporated in future studies.

6. Conclusions

The current study is based on an ensemble learning framework that employs transfer
learning architectures to diagnose rice plant deficiencies. Six TL architectures viz. Xception,
DenseNet201, InceptionResNetV2, InceptionV3, ResNet50V2, and VGG19 were employed
to perform this task. The highest performance was achieved with InceptionResNetV2 (90%)
and Xception (95.83%) in the Kaggle and Mendeley datasets, respectively. In addition,
11 ensemble averaging models were generated using Xception, DenseNet201, Inception-
ResNetV2, and VGG19. The ensembled models showed a significant improvement in
performance as compared to individual TL models. After applying the ensemble approach
to the Kaggle and Mendeley datasets, the average accuracy of the TL models increased
from 77.55% to 88.69% and 94.72% to 99.62%, respectively. An accurate determination of
nutritional deficiencies in an appropriate time may help farmers to take a future course of
action. As a result, severe damage of crops and loss in yield can be avoided. Future works
may focus on further improvement of the proposed system, keeping in mind the limitations
highlighted. Moreover, researchers are expected to investigate the further extension of
state-of-the-art research, from designing a deficiency diagnosis tool to a complete and
efficient support system for farmers.
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Abbreviations

DL deep learning
CNN convolutional neural network
TL transfer learning
ML machine learning
UAV unmanned aerial vehicle
IoT internet of things
ANN artificial neural network
SVM support vector machine
KNN k-nearest neighbor
RAN recurrent attention neural network
DRCNN deep residual convolutional neural networks
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48. Turkoglu, M.; Yanikoğlu, B.; Hanbay, D. PlantDiseaseNet: Convolutional neural network ensemble for plant disease and pest
detection. In Signal Image Video Processing; Springer: London, UK, 2021; pp. 1–9.

49. Vallabhajosyula, S.; Sistla, V.; Kolli, V.K.K. Transfer learning-based deep ensemble neural network for plant leaf disease detection.
J. Plant. Dis. Prot. 2021, 1–14. [CrossRef]

50. Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa yield prediction using UAV-based hyperspectral
imagery and ensemble learning. Remote Sens. 2020, 12, 2028. [CrossRef]

http://doi.org/10.1007/s41348-021-00465-8
http://doi.org/10.3390/rs12122028

	Introduction 
	Related Work 
	Materials and Method 
	Dataset Details 
	Data Augmentation 
	Proposed Rice Deficiency Identification System 
	Transfer Learning Models 
	Ensemble TL Models 


	Results 
	Results of Transfer Learning Models 
	Results of Ensemble TL Models 

	Discussion 
	Conclusions 
	References

