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Abstract: Deep learning methods have been applied to malware detection. However, deep learning
algorithms are not safe, which can easily be fooled by adversarial samples. In this paper, we study
how to generate malware adversarial samples using deep learning models. Gradient-based methods
are usually used to generate adversarial samples. These methods generate adversarial samples
case-by-case, which is very time-consuming to generate a large number of adversarial samples. To
address this issue, we propose a novel method to generate adversarial malware samples. Different
from gradient-based methods, we extract feature byte sequences from benign samples. Feature byte
sequences represent the characteristics of benign samples and can affect classification decision. We
directly inject feature byte sequences into malware samples to generate adversarial samples. Feature
byte sequences can be shared to produce different adversarial samples, which can efficiently generate
a large number of adversarial samples. We compare the proposed method with the randomly injecting
and gradient-based methods. The experimental results show that the adversarial samples generated
using our proposed method have a high successful rate.

Keywords: adversarial sample; malware detection; deep learning; convolutional neural network

1. Introduction

Deep neural networks have been successfully applied in different fields, such as
computer vision and natural language processing. Recently, deep neural networks have
gained attention to improve the performance of malware detection [1-4]. Deep learning
algorithms can automatically learn features from training data, so malware detectors can
implement end-to-end training based on it. Most of the approaches directly use binary
Windows portable executable (PE) files as input data for the malware detection model
to distinguish malicious and benign samples. The experimental results show that deep
learning-based malware detectors can achieve high detection accuracy.

Despite their successful application in different fields, deep learning methods are
sensitive to small perturbations in input samples. Szegedy et al. [5] found that small
changes on input samples can cause classification errors. These perturbed samples are
called adversarial samples. In the field of malware, similar methods have been proposed to
evade malware detectors [6-8]. These methods are usually optimized by computing the
gradient of the objective function, with respect to each byte of a source malware binary.
Gradient-based methods generate adversarial samples case-by-case. Each time they only
translate a source malware sample into a corresponding adversarial malware sample. If
the number of padding bytes needed to inject into a malware is large, the time cost for
generating an adversarial sample is very high. Therefore, these methods are not suitable
for generating a large number of adversarial samples.

In this paper, we propose an efficient deep learning-based method for generating
malware adversarial examples. We firstly extracted the feature byte sequences from benign
samples, according to their importance. The importance of a sequence for classification
is evaluated by a feature weight calculation method. Feature byte sequences were then
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injected into malware samples to generate adversarial samples. Since benign sequences can
be stored into a database and shared by different malware samples, our proposed method
can generate adversarial samples more efficiently. We tried to use two different strategies,
the end-of-file and the mid-file, to inject binary sequences into a PE file. The experimental
results show that the adversarial samples generated using our proposed method have a
high successful rate for attacking CNN-based malware detectors.

The rest of this paper is organized as follows. In Section 2, we introduce the related
work. In Section 3, we propose the research motivation and the method for generat-
ing malware adversarial examples. The experiments and discussions are described in
Sections 4 and 5, respectively. Finally, we give our conclusions in Section 6.

2. Related Work

Deep learning methods have been widely applied in many fields and achieved ex-
cellent experimental results. However, recent studies show that deep learning models
are sensitive to small perturbations in the input data [6,9]. The data samples after adding
perturbations are called adversarial samples. Adversarial samples may cause deep learning
algorithms to make wrong decision. The methods for generating adversarial samples can
be divided into two categories: black- and white-box algorithms. The white-box algorithms
assume that attackers have detailed information about the structure and parameters of the
deep learning model [5,10]. Such information can be exploited to calculate perturbations.
For black-box algorithms [11,12], any information about deep learning models is unknown.
The perturbations of adversarial samples are usually computed based on the gradients of
the loss function, with respect to the input data and a target label.

Goodfellow et al. [9] made a point that adversarial samples are the result of the learning
models being too linear, rather than too nonlinear, and proposed the fast gradient sign
algorithm to generate adversarial examples (FGSM). They found that networks with hidden
units which have unbounded active functions simply respond by making their hidden unit
activations very large, so it is better to only change the original input. Papernot et al. [12]
proposed the Jacobian matrix-based method (JSMA) to generate adversarial samples. JSMA
constructs adversarial samples by computing forward derivatives of deep neural network.
This model uses knowledge of the network architecture to create adversarial saliency
maps. The saliency maps indicate which input features an adversary should perturb, in
order to impact output result of classification. Xiao et al. [13] proposed an optimization
framework for the attacker to find the near-optimal label flips that maximally reduces the
classification performance. The framework simultaneously models the adversary’s attempt
and the defender’s reaction in a loss minimization problem. Based on this framework,
they developed an algorithm of attacking support vector machines (SVMs). Moosavi-
Dezfooli et al. [11] proposed Deepfool, which is based on an iterative linearization of the
classifier to generate minimal perturbations that are sufficient to change class labels. The
experimental results show that Deepfool can generate smaller perturbations than that
generated by FGSM.

Sometimes attackers cannot obtain the detail knowledge about the deep learning
model. For example, only the network outputs on certain inputs can be observed. Under
these cases, black-box algorithms are applied to adversarial samples generation. Black-box
attack was firstly proposed by Papernot et al. [14]. They trained a substitute network
to fit the unknown neural network, and then generated adversarial examples using the
substitute neural network [12]. The substitute network is a simulator of the target network.
Therefore, the success of the black-box attack depends on the transferability property to
hold between the target and substitute network. Liu et al. [15] conducted an extensive
study of the transferability over large models and a large-scale dataset. Their results prove
that the transferability for non-targeted adversarial samples is prominent, even for large
models and a large-scale dataset. They also presented novel, ensemble-based approaches
to generate transferable adversarial samples.
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In the malware detection field, different black- and white-box algorithms are also
presented. Different from images, there are semantic dependencies between bytes in an
executable, any modification to a byte value may cause the executable cannot be executed
or loss its intrusive functionality. To avoid this problem, some methods [7,16] generate
adversarial malware samples by appending specific bytes at the end of executables. The
input size of deep learning-based detector is fixed. If the size of an executable is bigger
than the fixed size, it cannot be used to generate an adversarial sample. To solve this issue,
padding bytes can be injected into the gaps between sections in a PE file [17].

Hu and Tan [18] used the generative adversarial network to generate adversarial
samples. They constructed a substitute detector to fit the black-box malware detector.
Then, the generative adversarial network is trained to minimize the probability that the
generated adversarial samples are predicted as malware by the substitute detector. Al-
Dujaili et al. [19] investigated the methods that reduce adversarial blind spots for DNN
based detectors. They considered it a saddle-point optimization problem and used the
inner maximize methods to improve the robustness of DNN. Hu and Tan [20] proposed
a black-box algorithm to evade a RNN-based detector. They trained a substitute RNN
to approximate the victim RNN, then used the generative RNN to output sequential
adversarial samples. Chen et al. [21] proposed the adversarial crafting algorithm based on
the Jacobian matrix to generate adversarial samples.

Bojan et al. [16] proposed a white-box algorithm for evading the deep learning-based
detector MalConv [3]. The algorithm is a gradient-based method which aims to minimize
the confidence associated to the malicious class. To preserve the intrusive functional-
ity of an executable, they appended padding bytes at the end of each malware sample.
Suciu et al. [7] also proposed a white-box algorithm to evade Malconv model. Based on
FGSM, they proposed the one-shot FGSM append attack. The algorithm uses the gradient
value of the classification loss, with respect to the target label to update the appended
byte values.

Apart from the above-mentioned malware adversarial sample generation methods,
there are some other methods. Kreuk et al. [22] proposed to generate adversarial examples
by appending to the malware binary file a small section. Peng et al. [23] used a generative
adversarial network to generate semantics aware adversarial malware samples, which can
fool the detection algorithms. They trained a recurrent neural network BiLSTM based a
substitute detector to fit the black-box malware detector. In [24], the authors proposed
two white-box methods and one black-box method to attack the CNN-based malware
detector MalConv [3]. Recently, Chen et al. [25] used the deep reinforcement learning to
generate malware adversarial examples, which has high success rate. A comparison of
typical methods for generating adversarial samples is given in Table A1l (see Appendix A).

3. Methodology for Generating Adversarial Malware Examples
3.1. Motivations

Different deep learning-based detectors have been proposed [3,20,26]. As one of
the most popular algorithms in deep learning, convolutional neural network (CNN) is
widely applied in these detectors. Since CNN can automatically learn features from
training samples, these detectors directly use a binary executable file as input and classify
it. In our work we focus on how to generate adversarial samples which can evade CNN-
based malware detectors. The problem of generating adversarial malware samples can be
formalized as follows.

An executable x is represented as a sequence of L binary bytes x = (x1,x2,---,x1),
where x; is between 0 and 255 and L is the length of an executable. In our work we set
L = 2 x 10°. If the length of an executable is less than 2 x 10°, zeros are padded at the end of
the file. The malware detector is denoted as fy(x) : x — [0,1], where 6 is the parameters of
a detector, and fy(x) outputs the probability that x is malware. If fy(x) > 0.5, x is classified
as malware, otherwise x is classified as benign.
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Given a malicious file which is correctly classified as malware, an adversarial sample
generation method can inject carefully-selected bytes into an executable (while preserving
its runtime functionality), so that the executable can be classified as benign.

Conventional methods use gradient-based algorithm to generate adversarial sam-
ples [7,16]. These approaches use the input gradient value to update the injected byte
values. Gradient value is calculated by minimizing the classification loss function of a
detector, with respect to the target label. The gradient-based algorithm is an iterative
algorithm and only one byte value is computed per iteration. Therefore, the computation
cost for generating an adversarial sample is high, which is not suitable for generating a
large number of adversarial examples. The motivation of our research is to design a method
which can generate adversarial samples efficiently.

3.2. Finding Data Area Important for Classification

To evade the detection of malware detectors, we need to inject padding bytes into a
source malware binary to change its category. To avoid using gradient-based algorithms
to calculate the values of injected padding bytes, the padding bytes we use are the byte
sequences extracted from benign executables. If these byte sequences can represent the
characteristics of benign executables, the probability that an adversarial malware sample
can fool a detector will increase. Therefore, our main task is to extract byte sequences which
can represent the characteristics of benign executables.

To evade the detection of malware detectors, we need to inject padding bytes into a
source malware binary to change its category. To avoid using gradient-based algorithms
to calculate the values of injected padding bytes, the padding bytes we use are the byte
sequences extracted from benign executables. If these byte sequences can represent the
characteristics of benign executables, the probability that an adversarial malware example
can fool a detector will increase. Therefore, our main task is to extract byte sequences which
can represent the characteristics of benign executables.

CNN-based detectors generate explicit feature maps for input samples. Figure 1 gives
an example for CNN convolution operation. The input data is a sequence. When we apply
convolution to the input data, we mix two buckets of information. The first bucket is the
input data. The second bucket is the convolution kernel, a single matrix of floating-point
numbers. The output of the kernel is the altered sequence which is often called a feature
map. Usually there are multiple convolution kernels and each kernel outputs a feature
map. Feature maps represent features of an input data at different level. Through analyzing
feature maps, we can discover which features are more important for decision making, and
the data corresponding to important features can be used to construct adversarial samples.

input sequence the kth convolutional the kth feature
kernel map FeatureMap,
1({0|l1]0(1]0O0 01111 1|1

Figure 1. Convolution of a sequence with a convolution kernel.

Grad-CAM [27] algorithm provides explanations for decisions from a large class of
CNN-based models. We use the Grad-CAM algorithm to evaluate the important values of
each feature map for a target class c. The important value of a feature map, with respect to
a specific class is computed as Equation (1). af indicates the importance of FeatureMapy,
with respect to class c.

B 1 Y 05¢
~ Len_FeatureMapy = dFeatureMapy|i]

i

)
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where FeatureMapy is the kth feature map, FeatureMapy[i] is the ith element of FeatureMapy,
Len_FeatureMapy is the number of elements of FeatureMapy, c is a class label, S is the
input for class c in the softmax layer (classification layer in a CNN).

To discover the importance area of the input data for class c, the contributions of all
feature maps need to be considered. The weighted sum of all feature maps is computed,
which is defined as Equation (2). L¢ is called the class-discriminative localization map,
which has the same size as a feature map.

L¢ = ReLU()  ajFeatureMapy) ()
k

In (2) the ReLU function (ReLU(x) = Max(0, x)) is applied to the linear combination of
feature maps because only the features that have a positive impact on class ¢ are considered.
Without the ReLU function, the localization map sometimes highlights more than just the
class of interest and performs worse at localization. Each element L¢[i] can be seen as a
feature extracted from the input data. The element L¢[i], with a greater value, will also have
more positive impact on class c. We can find the data area that is important for class c by
mapping L°[i] back to the corresponding data area in the input.

3.3. Generating Adversarial Examples

In reality the structure and parameters of a malware detector are unknown. In order to
obtain the feature maps, we have to create a pseudo detector, which can simulate the true
detector. MalConv [3] is a typical CNN-based detector. In our work, we select MalConv
network as the pseudo detector. The network structure of MalConv is shown in Figure 2.

Convolution
PE File ]

————> Embedding > Gating
le— |

Convolution

Classes Temporal

Max-pooling

Softmax Fully Connected

Figure 2. Structure of MalConv.

We regard an executable (PE file) as a byte stream. The input of MalConv is a fixed-
length sequence from a PE file. If the length of an executable is shorter than the fixed-length,
a number of zeros are inserted at the end of an executable. In MalConv, the first layer
is an embedding layer, where each byte of an input sequence is converted into an 8-
dimensional embedding vector. MalConv has two parallel convolutional layers. These
embedding vectors are then transferred to two one-dimensional convolutional layers to
generate feature maps, respectively. The next layer is a temporal max pooling layer, which
combines the outputs of the two convolutional layers and passes them to a fully connected
layer and a softmax layer for classification.

In our paper, we use Equation (1) to calculate the important value of each feature
map, with respect to class ¢, denoted as aj,, which is the important value of the kth
feature map generated from the /th convolutional layer FeatureMap;;. MalConv has
two parallel convolutional layers. We normalize «j, for each independent convolutional
layer, respectively, which is shown as Equation (3).

o g
Wik Yool 3)

The class-discriminative localization map is calculated as the weighted sum of the
feature maps generated by the two parallel convolutional layers, which is shown as
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Equation (4). Here, we set all convolution kernels to have the same size; thus, all fea-
ture maps, as well as the class-discriminative localization map, have the same size, which
are one-dimensional vectors. Different CNN-based networks have different structures.
Another key problem we should resolve is how to locate the byte sequences in a source
binary file, according to the class-discriminative localization map.

L® =ReLU()_ ) wj,FeatureMap ) @)
L&

A MalConv model has two independent convolutional layers, and each convolution
layer has multiple convolution kernels. To simplify data mapping, we set the kernel length
equal to the kernel’s moving stride, all kernels have the same length, and the length of the
input data is 2 x 10° bytes. The mapping relationship between a feature map and an input
data can be constructed as follows.

In [3], the authors tried different parameter settings to test the performance of MalConv.
We followed [3] and set the length and the moving stride of a kernel as 500, and the kernel
number of each convolutional layer as 128. Figure 3 shows the relationships between an
input data and a features map. In Figure 3, each square in the first row represents an
input byte, and each square in the second row represents the embedding vector of an input
byte. Kernell is a one-dimensional convolution kernel of a convolutional layer, whose
length is 500. Kernell is convolved across the embedding data, computing the dot product
between the entries of the kernel and the embedding data and producing a one-dimensional
feature map FeatureMap;. If each convolutional layer has 128 kernels, we can obtain 128
one-dimensional feature maps from one convolutional layer. The embedding data has
the same length as the input data. Therefore, each feature map has 4000 elements. In
Figure 3, the fourth row shows the mapping relationship between an element of a feature
map and a byte sequence in the input data. For example, the first element of FeatureMap;,
FeatureMap [1], is calculated by convoluting Kernell with the first five hundred elements
of the embedding vector, and each input byte corresponds to an element of the embedding
vector. Therefore, FeatureMap, [1] is related with the first five hundred bytes of the input
data. The class-discriminative localization map is the weighted sum of all feature maps, so
it has the same mapping relationship as that of a features map.

Input data 1 2 500 | 501 502 1000 2x108

Embedding data 1 2 o | s00 | s01 | s02 | .. |1000]| .. |2x10s

/I [
e
[/

Kernel, 1 5 _
FeatureMap, 1 2 .. | 500 | 501 | 502 | .. | 4000

Figure 3. Mapping feature map back to raw data.

To generate adversarial examples, we firstly train a MalConv model as the pseudo
detector. Then, we create a dataset for feature extraction. All samples in the dataset
are benign samples and can be correctly classified as benign by a detector. We input a
sample to the pseudo detector and obtain the class-discriminative localization map L€
of the sample. According to the mapping relationship between input data and the class-
discriminative localization map, we can extract the byte sequences from the input data,
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which can represent the features of a sample. We usually extract the byte sequences
corresponding to the elements having the greatest value in L°. We call these byte sequences
as feature byte sequences, which can be stored and shared by different adversarial samples.
When generating an adversarial example, we randomly select one or multiple sequences
and inject them into a malware sample.

Different from adversarial samples of image, feature byte sequences injected into a
malware sample should have concrete program semantics. Sometimes the head and tail of
a feature byte sequences are separated from other bytes of a program and cannot represent
complete program semantics. In this case, we should extend a feature byte sequence to
include the separate parts. For example, a feature byte sequence (bytes in the box), extracted
according to the mapping relationship, is shown in Figure 4. The decompiling codes of
the binary bytes are shown in Figure 5. We can see the head byte FF and the tail byte 45
cannot represent correct program semantics. To generate a feature byte sequence having
correct program semantics, we should extend the feature byte sequences to include 8B and
08. From this point we can see the injected byte sequences, generated using our method,
are explainable.

8B[FF 55 8B EC ... 83 EC 20 8B 45|08

Figure 4. A sample of a feature byte sequence.

8B FF mov edi, edi

55 push ebp

8BEC mov ebp, esp
83EC20 sub esp, 00000020h
8B4508 mov eax, [ebp+08h]

Figure 5. Decompiling codes of a binary byte sequence.

To more accurately locate the important area in the input data, we train several
MalConv models with different parameter settings and combine the class-discriminative
localization map from all MalConv models to locate the important area of the input data.

Algorithm 1 gives the algorithm for extracting feature byte sequences from input data
using multiple detection models. The length of convolution kernels in different MalConv
models can be different. For the convenience of extracting feature byte sequences, we define
anew data structure byteWeight Map. It is a vector having the same length as the input data.
Each element in byteWeight Map records the important value of the corresponding byte of
the input data. The important values of input bytes are assigned according to L¢. According
to the mapping relationship, we can find the byte sequence corresponding to L{ (the ith
element of L°); then, the values of the elements of byteWeight Map corresponding to the
byte sequence are set as L. The function SetByteWeight() implements this objective. Due
to multiple models used to locate feature byte sequences, we use L{ and byteWeight Map;
represent the class-discriminative localization map and byteWeight Map, generated from
model M; (the ith detector). The vector f ByteWeight Map is the sum of all byteWeight Map;,
which stores the final important value of each byte of the input data.

In Algorithm 1, Model Num is the number of models, and thresh gives the threshold
of important value for selecting feature sequences. Xyepigy, is the input data. The function
GetFeatureMap() returns all the feature maps generated by model M;. FeatureMapi[n]
is the nth element of the kth feature map generated by the jth convolutional layer of a
MalConv model. The function ExtFeaSeq() extracts all bytes whose important values
are bigger than thresh from Xyepjq,, according to vector fByteWeight Map. The continuous
bytes, having the same important value, consist of a feature byte sequence. Figure 6 shows a
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sample how to extract feature byte sequences from input data. We set thresh as 50; therefore,
only two feature byte sequences (sequences in black box) are extracted from input data.

input data

...... 51 51 51 51 51|48 48 48 48 |72 72 72 72 72 72 72|......

fByteWeightMap

Figure 6. Extracting feature byte sequences.

Algorithm 1: Extracting feature byte sequences of a benign sample.

Input: Xpepjgn, ¢ = benign, My, -+, MytoderNum, ModelNum, thresh
Output: featureByteSequence Array|]

=
fByteWeightMap = 0;
fori =1to ModelNum do

FeatureMapArray = GetFeatureMap (Mirxbem’gn>}

N
WeightVector = 0;

for each FeatureMap;y in FeatureMapArray do
95¢

Al = 1 Z .
jk Len_FeatureMapjx “~" oFeatureMap;[n]’

end
for each ocjg « do

w]‘?,k = Normalize(a;k) ;
WeightVector = WeightVector + w]?,kFeatureMap]',k;
end
L§ = ReLU(WeightVector);
byteWeight Map; = SetByteWeight (LS);
fByteWeightMap = fByteWeightMap + byteWeight Map;;
end
featureByteSequence|[] = ExtFeaSeq <foteWeightMap, thresh, xbenign)

3.4. Strategies for Injecting Feature Sequences

A malware adversarial sample should preserve the same semantics as that of a source
file. It requires that any byte in the source executable cannot be changed. Therefore, feature
sequences should be injected into the spare space of an executable, which cannot be exe-
cuted by a computer. Two strategies can be adopted to locate spare space in an executable:
mid-file and end-of-file injection. We apply both strategies to generate adversarial samples
in our work.

Mid-file injection: we locate the gaps between neighboring PE sections by parsing a PE
file header. The gaps are placed by the compiler, since the physical size allocated to a PE
section is greater than its virtual size. The length of a gap is calculated as RawSize-VirtualSize.
The index of the start address of a gap is computed as PointerToRawData (offset address of a
section) + VirtualSize. We collect the start address and length of each gap in an executable,
then inject the feature byte sequences with appropriate length into these gaps.

End-of-file injection: another strategy we use is adding new sections at the end of
a PE file and injecting feature byte sequences into the newly added sections. Since the
new sections are not accessed by program code, the semantics of the original PE file are
preserved. The process of adding a new section block includes three steps. First, we modify
the value of bytes, which store the number and size of sections in the PE file header and
update the values of file alignment and section alignment. Then, we use the offset address
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of the last section block plus the offset address of the new block as the final offset address.
Next, we set the attribute values of the new section, such as the section name, execution
attributes, size of the hard disk, and size of the memory. Finally, we modify the offset
address of the aligned section and the offset address of the file in the section table and
modify the size of image in the PE header.

Similar to [17], our method adopting the mid-file injection generates adversarial sam-
ples by injecting perturbed bytes in the gaps between neighboring PE sections. The method
adopting end-of-file injection generates malware adversarial examples by adding new
sections at the end of PE file, which is similar to previous methods [7,16,22,24]. However,
all these methods [7,16,17,22,24] are belong to gradient-based method, which is optimized
by computing the gradient of the objective function, with respect to each byte of a source
malware binary. The gradient-based algorithm is an iterative algorithm and only one byte
value is computed per iteration. Generating an adversarial malware sample by gradient-
based method spends much time, so it is not applicable for generating a large number of
adversarial samples. To avoid using gradient-based algorithms to calculate the values of
injected padding bytes, our methods use the byte sequences extracted from benign executa-
bles to generate adversarial samples. In addition, our methods aim to evade CNN-based
malware detectors, which is similar to [23]. We make a more detailed comparison between
our method and the gradient-based method [16] in Sections 4 and 5.

4. Experiments
4.1. Dataset Description

The malware samples we used came from the VirusShare project at http:/ /virusshare.
com/ (accessed on 1 December 2021). We downloaded 20,000 malicious samples, whose
sizes were between 1 KB and 5 MB. The benign samples were collected from Windows
platforms. We collected 20,000 benign Windows PE files in total. Two criteria were used to
assess the quality of adversarial samples. The successful rate (SR) of the adversarial attack
is defined as the percentage of the adversarial samples that can evade a detector. Another
is the time cost for generating adversarial samples, which is used to evaluate the efficiency
of the proposed algorithm. The experimental environment was 64-bit Ubuntul4 operating
system, CPU Intel® Xeon Silver 4116 with 256 G memory.

4.2. Experimental Results

In the experiments, we trained four MalConv detectors. The description of parameter
setting, training data, and detection accuracy is shown in Table 1. In Table 1, the column
“Kernel Number” gives the kernel number for each convolutional layer. The training
samples included fifty percent benign files and fifty percent malicious files, i.e., 5000 benign
files and 5000 malicious files. The accuracy is defined as the percentage of the testing
samples that can be correctly classified.

Table 1. Parameter setting for detectors.

Detector Kernel Length Moving Stride Kernel Number Training Samples Accuracy
MalConv1 200 200 200 20,000 92.5%
MalConv2 400 400 150 20,000 92.6%
MalConv3 500 500 128 20,000 94.1%
MalConv4 800 800 100 20,000 91.8%

To objectively evaluate the successful rate that adversarial examples evade detection,
in each experiment, we selected one MalConv model as the detector and used the remaining
models to generate feature byte sequences. We repeated the experiments four times and
used the average successful rate of four experiments to evaluate the performance of the
proposed method. For each experiment, we randomly chose 100 benign samples from the
testing set and use Algorithm 1 to extract the features sequences from benign samples.
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Only the sequences with the highest important value in each sample were selected. We got
about two thousand feature sequences per experiment. We randomly selected 1000 samples
that were correctly classified as malware from the testing set and injected feature sequences
into them, in order to generate adversarial samples.

To observe how the number of injected bytes affects the performance of the proposed
method, we injected different numbers of bytes into a sample. The number of the injected
bytes was set to 1000, 2000, 5000, 10,000, and 20,000, respectively. In our work, two injection
strategies were applied to inject feature byte sequences.

The experimental results, adopting the mid-file and the end-of-file strategies, are
shown in Tables 2 and 3, respectively. In two tables, “Avg Time Cost Per Sample” means
the time cost for generating an adversarial sample.

Table 2. SR of the proposed method adopting the mid-file strategy.

No. of Injected Bytes 1000 2000 5000 10,000
SR of Experiment 1 0.42 0.55 0.78 0.88
SR of Experiment 2 0.46 0.57 0.77 0.86
SR of Experiment 3 0.45 0.59 0.78 0.90
SR of Experiment 4 0.41 0.61 0.76 0.89
Average SR 0.44 0.58 0.77 0.88
Avg Time Cost Per Sample(min) 0.2 0.5 1.1 2.1

Table 3. SR of the proposed method adopting the end-of-file strategy.

No. of Injected Bytes 1000 2000 5000 10,000 20,000
SR of Experiment 1 0.34 0.41 0.60 0.77 0.88
SR of Experiment 2 0.37 0.44 0.61 0.73 0.90
SR of Experiment 3 0.32 0.40 0.64 0.74 0.91
SR of Experiment 4 0.33 0.43 0.63 0.76 0.87
Average SR 0.34 0.42 0.62 0.75 0.89
Avg Time Cost Per Sample(min) 0.2 0.2 0.4 0.9 1.9

To verify whether the feature sequences can represent the characteristics of benign
executables, we compared the proposed method with the randomly injecting method. The
randomly injecting method randomly extracts byte sequences from benign executables
and injects them into malware to generate adversarial samples. For the randomly injecting
methods, we also used two different strategies to inject randomly extracted sequences. The
experimental results are shown in Tables 4 and 5, respectively.

Table 4. SR of the randomly injecting method adopting mid-file strategy.

No. of Injected Bytes 1000 2000 5000 10,000
SR of Experiment 1 0.09 0.11 0.18 0.21
SR of Experiment 2 0.09 0.11 0.17 0.20
SR of Experiment 3 0.06 0.13 0.15 0.24
SR of Experiment 4 0.08 0.13 0.14 0.23

Average SR 0.08 0.12 0.16 0.22

From Tables 2-5, we can see that the successful rate of the proposed method was signifi-
cantly higher than that of the randomly injecting method, which was about 30-60% higher
than that of the corresponding randomly injecting method. It proves that the feature se-
quences injected into adversarial samples can reflect the characteristics of benign executables,
which can influence the decision of the detectors. The injected sequences were extracted
from benign executables. If more benign sequences were injected in a malware sample, a
malware sample will be more similar as a benign sample. Therefore, we can see, for both
methods, that the success rate increased with the length of the injected bytes increasing.
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Table 5. SR of the randomly injecting method adopting end-of-file strategy.
No. of Injected Bytes 1000 2000 5000 10,000 20,000

SR of Experiment 1 0.03 0.07 0.07 0.10 0.18
SR of Experiment 2 0.05 0.05 0.09 0.12 0.15
SR of Experiment 3 0.03 0.06 0.09 0.11 0.16
SR of Experiment 4 0.05 0.06 0.07 0.11 0.19

Average SR 0.04 0.06 0.08 0.11 0.17

For the end-of-file strategy, all malicious features in malware samples are preserved
and not modified. Compared with the end-of-file strategy, the mid-file strategy injects
feature sequences into the gaps between sections, which destroys some malicious features
of malware samples. To mislead the detector, the end-file strategy needs to inject more
feature byte sequences to counteract the effects of the original malicious features. Therefore,
from Tables 2-5 we can see when injecting the same number of benign bytes into malware
samples, the successful rate of the method adopting the mid-file strategy is higher than that
adopting the end-of-file strategy. For the proposed method, the successful rate adopting
the mid-file strategy is about 3-23% higher than that adopting the end-of-file strategy. For
the randomly injecting method, the successful rate adopting the mid-file strategy is about
4-11% higher than that adopting the end-of-file strategy.

We also compare the proposed method with the gradient-based method [16]. The
end-of-file strategy is adopted to inject feature sequences. For the gradient-based method,
the gradient is calculated by minimizing the classification loss of the detector, with respect
to the target label. In the experiment we select two different classification loss functions
to calculate the gradient. One is the softmax classification loss (see Equation (5)), which
is used to train MalConv. The other is the mean-square error (see Equation (6)), which is
often used to train conventional back propagation (BP) networks.

oT ()

1| K . el
Looftmax(6) = —— 1y = jlog———— 5)
sof tmax m g}; Z;C:l RIEN
1 «m . 2
Lms(e) = m Zi:l (]/i - yi) (6)

Due to the limitation of computing cost, only 200 adversarial samples are generated
for each experiment and the maximum number of the injected bytes is less than 10,000.
The experimental results adopting two different classification loss functions are shown in
Table 6. We can see the successful rate of the proposed method adopting the end-of-file
strategy is about 6-10 percent higher than that of the gradient-based method adopting
softmax classification loss. The successful rate of the gradient-based method adopting
softmax classification loss is about 5-17 percent higher than the method adopting mean
squared error loss.

Table 6. SR of the gradient-based method [16].

Softmax Classification Loss Mean Squared Error
Byte seq. len. 1000 2000 5000 10,000 1000 2000 5000 10,000
Experiment 1 0.23 0.33 0.52 0.70 0.15 0.25 0.36 0.51
Experiment 2 0.26 0.39 0.55 0.66 0.21 0.27 0.40 0.49
Experiment 3 0.25 0.30 0.56 0.69 0.19 0.29 0.42 0.52
Experiment 4 0.22 0.32 0.53 0.71 0.22 0.30 0.41 0.54
Average SR 0.24 0.31 0.54 0.69 0.19 0.28 0.40 0.52

Avg Time Cost Per Sample(min) 25 51 99 239 23 47 100 240
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5. Discussion

From the experiments we can see the gradient-based algorithm takes a relatively
long time to generate an adversarial sample. In our work, 200 adversarial samples are
generated for each experiment. The gradient-based method takes an average about 100 min
to generate an adversarial sample (See Table 6), because it only generates one appended
byte per iteration. In addition, it is hard to determine the iteration number when appended
bytes converge to their optimal values. If we use the gradient-based algorithm to generate
a large amount of adversarial samples, the time cost is very high. For the proposed method,
most time is spent on training a CNN-based detector. In the experiments, we spent about
10 h training a MalConv model. The time for extracting feature sequences is about one hour.
Injecting feature sequences into a PE file can be done in a very short time (the average time
in our experiment is about one minute, see Tables 2 and 3). Because the feature sequences
can be shared by all adversarial samples, the proposed method is suitable for generating a
large number of adversarial samples.

Interpretability is another challenge faced by adversarial sample generation algo-
rithms. The gradient-based methods calculate the value of injected bytes by minimizing
the classification loss of a detector, with respect to the target label. These injected bytes
have no explainable semantics and are only treated as binary values. Different from the
gradient-based methods, the proposed method injects feature byte sequences into malware.
A feature sequence is a byte sequence extracted from a benign executable. By decompiling
the executable, the semantics of a feature byte sequences can be clearly defined. Therefore,
using the proposed method we can explain the meaning of the injected bytes.

In our study, the proposed method is only designed to generate the adversarial samples
for CNN-based detectors. The feature byte sequences are selected based on the convolution
operation of CNN. This means that we need to know in advance which algorithms a
detector uses. Compared with our proposed method, the gradient-based methods are more
commonly used methods, which do not assume the classification methods a detector uses.
So, they can be more widely used to generated adversarial samples for different neural
networks, such as BP network, CNN [16], and RNN [20].

Generating malware adversarial samples is different from generating image adver-
sarial samples. For image adversarial samples, we can directly update each pixel. For
malware adversarial samples, we cannot modify any byte of a source executable, otherwise
we cannot guarantee that it can be executed correctly. Therefore, we have to inject padding
bytes into the gaps or the end of a PE file. The number of gaps and the length of each gap
in a PE file are limited. Using the mid-file strategy, sometimes we cannot find enough gaps
to store feature byte sequences in an executable, which may reduce the successful rate. For
the end-of-file strategy, we can append any number of section blocks at the end of a PE file
by modifying the PE file structure. Therefore, it is relatively easy for the end-file strategy
to inject enough bytes to generate an adversarial sample. However, adversarial samples
generated using the end-of-file strategy are prone to be detected by simply analyzing the
PE section table or examining if such sections are accessed by program instructions. In
addition, if the length of a malware sample is greater than the input length of a detector,
and the end-of file strategy cannot be applied.

6. Conclusions

In this paper we study how to generate malware adversarial samples. Different from
previous gradient-based methods, we generate malware adversarial examples by injecting
byte sequences into a source executable. The injected byte sequences can be shared by
different adversarial samples. Our proposed method is efficient and suitable for generating
a large number of adversarial samples. We proposed the algorithm to extract feature byte
sequences for CNN-based deep learning models. Feature byte sequences can represent
the characteristics of benign samples. Compared with the padding bytes generated using
gradient-based methods, the feature byte sequences are explainable. The experimental
results show that the adversarial samples, generated using the proposed method, have a
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high successful rate, and the proposed method is suitable for generating a large number of
adversarial samples. It is possible that a more robust malware detector can be trained using
the generated adversarial samples and the original samples. In this work, we have not
yet provided definitive evidence for the benefits of the generated adversarial samples in
improving performance of malware detection, due to the complexity of adversarial training
malware detectors. In our future work, we plan to investigate how to use the generated
adversarial malware samples to improve the performance of malware detection models.
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Appendix A

Table Al. Typical adversarial samples generation methods.

Approach

Prior Knowledge

Descriptions & Advantages

Disadvantages

Generating image adversarial samples

Szegedy et al. [5] White-box Distortion rate of the generated adversarial sample is low. Calculation process is complex and time-consuming.
Goodfellow et al. [9] White-box It can generate alarge numb.er of adversa.nal samples Ease of optimization has come E.lt the cost of models that are
effectively and can be used in deep learning models. easily misled.
. . . The modification to the original input is small, and the Calculation process is complex and time-consuming, and it is
Moosavi-Dezfooli et al. [11] Black-box generated adversarial sample has good attack effect. difficult to apply to large datasets.
Papernot et al. [12] White-box The original inputis less modlfled an(?l the process of The method needs to be trained with large, labeled datasets.
generating adversarial samples is simple.
An optimization framework for the adversary to find the It can only be suitable for Support Vector Machines.
Xiao et al. [13] White-box near-optimal label flips that maximally degrades the Adpversarial label noise is inevitable due to the limitation of
classifier’s performance. quality control mechanisms.
An approach based on a novel substitute training algorithm . .
. . - . Construction process of the approach is complex and
Papernot et al. [14] Black-box using synthetic data generation to craft adversarial examples time-consumine. So. it is difficult to applv to laree datasets
misclassified by black-box DNNS. & >0 PPy & '
An ensemble-based approach can generate transferable Performance of generating targeted transferable adversarial
Liu et al. [15] Black-box adversarial examples which can successfully attack examples of the model is poor, compared to other
Clarifai.com. previous models.
Generating malware adversarial samples
The one-shot FGSM append attack uses the gradient value of
Suciu et al. [7] White-box the classification loss, with respect to the target label to The success rate of append attacks is relatively low.
update the appended byte values.
Adversarial malware samples are generated by injecting
Kolosnjaji et al. [16] White-box padding bytes at the end of file, which can preserve the Applicable for the deep learning-based detector MalConv.
intrusive functionality of an executable.
Kreuk et al. [17] White-box The same payload can be injected into different locations and Applicable for CNN-based malware detector.

can be effective when applied to different malware files.
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Table Al. Cont.

Approach Prior Knowledge Descriptions & Advantages Disadvantages
An approach can decrease the detection rate to nearly zero
Hu et al. [18] Black-box and make the retraining based defensive method against Suitable for machine learning-based malware detector.
adversarial examples hard to work.
Hu et al. [20] Black-box The generated adversarial examples can attack a RNN-based Not applicable for attacking other systems except
malware detector. RNN-based malware detectors.
Chen et al. [21] White-box A method based on J agoblan matrix to generate It is not applicable for generating a large number of samples.
adversarial samples.
The method generates adversarial examples by appending to  The method heavily relies on the learned embeddings of the
Kreuk et al. [22] White-box the binary file a small section and has high attack model, which can hinder the transferability of adversarial
success rates. examples with different byte embeddings.

P tal. [23] Black-box It outruns other GAN based schemes in performance and has ~ The generation process is complex and time-consuming, and

engetat a lower overhead of API call inserting. it is applicable for CNN-based detectors.

White-box Attack success rate of the method is high, and it can be
Chen et al. [24] Blaclf—b(c))x’ readily extended to other similar adversarial machine Not applicable for generating a large number of samples.
learning tasks.

Chen et al. [25] Black-box It uses reinforcement learning to generate malware Not applicable for generating a large number of samples.

adversarial samples which has high success rate of attack.
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