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Abstract: Detecting stress when performing physical activities is an interesting field that has received
relatively little research interest to date. In this paper, we took a first step towards redressing this,
through a comprehensive review and the design of a low-cost body area network (BAN) made of a set
of wearables that allow physiological signals and human movements to be captured simultaneously.
We used four different wearables: OpenBCI and three other open-hardware custom-made designs
that communicate via bluetooth low energy (BLE) to an external computer—following the edge-
computingconcept—hosting applications for data synchronization and storage. We obtained a
large number of physiological signals (electroencephalography (EEG), electrocardiography (ECG),
breathing rate (BR), electrodermal activity (EDA), and skin temperature (ST)) with which we analyzed
internal states in general, but with a focus on stress. The findings show the reliability and feasibility
of the proposed body area network (BAN) according to battery lifetime (greater than 15 h), packet
loss rate (0% for our custom-made designs), and signal quality (signal-noise ratio (SNR) of 9.8 dB
for the ECG circuit, and 61.6 dB for the EDA). Moreover, we conducted a preliminary experiment to
gauge the main ECG features for stress detection during rest.

Keywords: wearable; emotion; stress; human activity recognition; EDA; ECG; EEG; BR; ST; inertial units

1. Introduction

The wearable technology market has mushroomed over the last decade, along with the
development of the Internet of Things (IoT), and this trend shows no sign of abating (https:
//www.grandviewresearch.com/industry-analysis/global-wearable-sensor-market, ac-
cessed on 24 November 2021). Human movement analysis (HMA) using wearable inertial
sensors has become a new research hotspot due to its extensive use in a large variety of
application domains such as health-care, sports tracking, fitness, game console design, and
smart homes. Attention has focused especially on the benefits that these devices have on
people’s health [1]. Several studies have demonstrated its efficacy in controlling people’s
weight [2], creating adherence to physical activity (PA) [3–5], regulating the intensity of
PA; especially for those who have suffered from heart failure [6], assessing rehabilitation
exercises [7,8], reducing sedentary behavior (SB) [9] for the elderly [10,11], etc.

We are interested in measuring the induced psychological stress on physiological signals
when people perform different activities. The resulting information could be used to adapt
the level or intensity of the activity being performed, or change the ambient conditions
where possible. Applied to PA, for example, the goal would be to create adherence to certain
programs, increasing the time working out, and reducing the SB by dynamically adapting
the intensity of the exercise and/or adding motivating elements to the environment.
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Emotion recognition and HMA detection might require wearable devices containing
motion-sensitive elements (such as inertial units), and specific circuits that measure subtle
physiological changes in bio-electrical signals caused by variations in the emotional state.
Detecting stress when performing physical activities has received growing interest in the
last years and it is an emerging research topic. Real applications involve the development
of tasks that can become very challenging. The challenges can be summarized as follows:

• The need for a low-cost framework with a design that allows capturing physiological
signals and human movements through wearables at the same time. Data generated
and collected play a key role in the stress response. Therefore, data quality is essential
to ensure the best information possible.

• As body area networks generate large volumes of data, the need to manage and
maintain these datasets is of great importance.

• The assessment of a wide range of physiological signals could help to better under-
stand the mechanisms of the stress response with different persons and situations.

• Selection of features to produce a good performance using a low number of features at
a low computational cost. A reduced number of features reduces the risk of overfitting
while a low computational cost contributes to implementing real-time systems using
wearable electronics.

• The autonomy of wearable devices is a critical factor during device engineering.

In this work, we outline the first steps towards this goal and provide a complete
description of the devices and optimal wearable placements for HMA. The devices included
in this network measure a great variety of physiological signals in real time and send the
information to a remote computer for their storage and synchronization. The collected raw
data involves a starting point for researchers to analyze the subject’s emotional states and
the identification of the PA. In summary, the main contributions of this work are as follows:

• This paper includes a comprehensive review of state-of-the-art technologies focusing
especially on current status and research trends.

• We propose a new wearable low-cost body network with three own designs and an
overall of thirteen different measurements.

• Experimental results validate the proposal through the analysis of some functional
characteristics such as the signal quality, the packet loss rate, and the battery life.

• A preliminary study is conducted in order to extract the main ECG features for stress
detection during rest.

The rest of this paper is organized as follows. A review of related work is presented in
Section 1.1. Then the details of our proposed BAN are introduced in Section 2. Section 3
describes the methodology while results and discussion are presented in Sections 4 and 5,
respectively. Finally, the last section concludes this paper and suggests some future work.

1.1. Related Works
1.1.1. Human Movement Analysis (HMA)

The taxonomy of applications for HMA involves (1) motion measurement, or (2) its
classification. In the former, kinematic measures from different body parts, such as velocity,
acceleration, or orientation, are obtained to assess range of motion (ROM), the intensity of
physical exercise, its quality, or another characteristic. In the latter, the aim is to detect or
identify, the human movement or activity.

On the upper limbs, typical placements include putting the inertial unit on a glove, in
a watch, or on an armband, to detect fingers, hand, or arm movements, respectively. On the
lower limbs, these devices can be integrated into an insole of a shoe, placed at the ankle,
calf, and/or thigh, and are very useful for detecting displacements at different speeds or
for the analysis of walking quality. On the trunk, studies have placed the wearables at
different positions on the back, chest, waist, or hip to identify activities such as walking,
running, lying, standing, etc. Finally, on the head, they are usually included in a headband
or placed behind the ears [12].
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PA is an example of human activity that can be classified into four groups depending
on its intensity: very low, low, medium, and high [13]. Lying down, eating, walking, or
running are examples of activities sorted from very low to high intensity. Other activities
can be considered transitional. For example, lying on a bed or standing still are two very
low-intensity activities, while getting up is a transition between them.

Tables 1 and 2 summarize a review of recent works, sorted by year of publication,
related to human activity recognition through wearables, while Figure 1 depicts some
relevant conclusions. Overall, most of the studies detected a variable number of human
activities, from one to nine, including the identification of sports [14–16], activities of daily
living (ADL) [17–19], also featuring house activities [20] such as washing, shelving items,
sweeping, ironing, vacuuming, driving, etc. In most studies, the typical attempted activities
were: walking, jogging, standing, sitting, lying, squatting, going upstairs/downstairs,
running, among others. Some papers also included the recognition of coughing [21] or
the phases associated to drinking [22]. Only a small number of studies included a greater
number of activities (>20) [23,24].

Table 1. Description of selected studies for HMA identification. Some acronyms: accelerometer
(Acc), breathing rate (BR), deep belief network (DBN), Decision tree (DT), electrocardiography
(ECG), extreme learning machine (ELM), electromyography (EMG), inertial measurement unit (IMU),
random forest (RF), support vector machine (SVM).

Ref. #Activities Devices and
Placement Metrics Classification and comments

[25]
6 (standing, sitting, lying,
walking, and transitions:
sit-to-stand and stand-to-sit)

3 Acc at chest and
both thighs Sensitivity of 96.2% DT

[26] 7 (sitting, walking, standing,
running, cycling, ...)

2 Acc at dominant
wrist and ankle Accuracy of 96% k-NN classifier

[27] 9 (walk, go upstairs, jump, run,
stand, sit, ...) 1 IMU at the right hip Accuracy of 96.1%

Compressed sensing to save
energy. It uses sparse lineal
combination to identify the
training classes

[28] 8 (lying, standing, cycling,
running, walking, ...)

1 Acc at the back and at
three different positions Accuracy of 79.42%

Several classifiers tested. Best
results with J48 when the Acc is
at the upper back

[29] 3 (standing up, walking,
and running)

5 Acc (head, 2 at the
back, arm and forearm) Accuracy of 80% Methods based only

on thresholds

[22] 6 phases associated to drinking
Pressure sensors
integrated in a ribbon
placed around the arm

Accuracy of 92.3% ELM classifier with sigmoid
functions

[30,31] 12 (stair descent/ascent, lying,
standing, sitting, walking, ...)

3 Accs placed on chest,
thigh and ankle Accuracy of 96.6% Best classifier based on k-NN

[20]
8 (walking, running, standing,
climbing up/down, sitting,
jumping, and jogging)

6 Smartphones around
the body and a
smartwatch

F-score of 89% RF

[32]
6 (sitting down, standing up,
walking, going upstairs,
resting, and running).

1 Acc and ECG Accuracy of 96.35%

The use of the ECG was crucial
for detecting the activities and
estimating the energy
expenditure
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Table 1. Cont.

Ref. #Activities Devices and
Placement Metrics Classification and comments

[33] 12 from the PAMAP2 dataset 2 Acc at the wrist
and chest Accuracy of 80.6% (RF)

Two classifiers tested: RF and
SVM. The dataset includes
13 sensors. With all of them the
accuracy rises up to 91.1%
with kNN

[23] 33 from the REALDISP dataset 9 Acc spread all over
the body

96.5% accuracy with 6
sensors

Deep believe network DBN for
classification, and PART, RF and
DT for feature selection

[34] 5 (running, walking, standing,
sitting, and dining)

3 Acc: both wrists
and waist

Accuracy of 81%. With
1 Acc at the wrist, the
accuracy was of 80%.

Three classifiers tested: RF,
DT, SVM

[14]
4 exercises (biceps curls, lateral
raises, contraction, and vertical
raises)

EMG y Acc at the arm Accuracy of 85.7% Only 3 participants in the study.
Authors used the k-NN classifier

[35]

8 (standing, walking, running,
climbing up stairs, downstairs,
sit-up, vacuuming and
brushing teeth)

5 biomedical sensors
(ECG, EMG, BR, force,
and Acc

Accuracy OF 99.86% The best of out of three
classifiers was k-NN.

[19] 13 (house activities, walking at
different speeds, ...)

Smartwatch and
pressure sensor in the
shoe sole

Accuracy of 89%. With
only the pressure
sensor the accuracy
was of 81%

The study also includes
free-living activities

Figure 1. Representation of (a) the number of IMUs included in the literature review, (b) the most
common human activities detected, and (c) the usual sensor placement.
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Table 2. Description of selected studies for HMA identification. Some acronyms: accelerometer (Acc),
activities of daily living (ADL), breathing rate (BR), convolutional neural networks (CNN), deep
learning (DL), decision tree (DT), electrocardiography (ECG), electromyography (EMG), gaussian
mixture model (GMM), hierarchical hybrid classification (HHC), hidden Markov models (HMM),
inertial measurement unit (IMU), nonparametric weighted feature extraction (NWFE), principal
component analysis (PCA), random forest (RF).

Ref. #Activities Devices and Placement Metrics Classification and Comments

[21]
6 (coughing, walking,
standing, sitting, squatting
or lying)

ECG, and Acc at the chest Accuracy of 96.92% Classifier based on DT

[24]

24 ( running at differnt
intensities, walking in
different scenarios,
standing, lying, ...)

1 Acc at the wrist

Accuracy of 92.7%
(GMM) and 94.7%
(HMM). The accuracy for
free-living activities was
of 80%

Temporal and frequency
features obtained in laboratory
to train GMM and
HMM models

[15] 11 sports + 10 ADL from
a dataset 2 IMUs at wrist and ankle

Accuracy of
98.23% (ADL) and
99.55% (sports)

Feature selection NWFE
and PCA

[36]

12 (sitting down, standing,
lying, walking, running,
going upstairs)
with/without weight.

Smartphone in the left
pocket of the pants
and ECG

Accuracy of 94% Uses a set of
weighted classifiers

[37] 13 (walking, jogging,
squatting, ...)

Elastic belt around the
chest containing an Acc
and that can measure BR

Accuracy of 97.22% HHC combining DL and
methods based on thresholds

[17]
4 (walking, running, sitting
down, and getting on
a bus)

3 Acc at hip, thigh and
ankle. Other 3 Acc on
clothes close to the other
sensor placements

High correlation between
the two datasets

Studies the reliability and
performances of slack sensors

[16] 11 sports + 10 ADL from
a dataset 1 IMU at the thigh Accuracy of 95.16%

It detects activities involving
cyclic movements in lower
limbs. It uses HMM, GMM
and Expectation-Maximization

[38]

Group 1 (eating, writing,
and clapping)
Group 2 (walking, sitting
down, and running)

Smartphones and
smartwatches

Accuracy of 94.9%
(Group 1) and 92.1%
(Group 2)

Several classifiers. Best results
with RF

[18] 4 (lying, sitting down,
standing up, and walking) 1 Acc Accuracy of 93% It uses the kNN classifier

[39]

Multiple benchmark
datasets, namely UCI-HAR,
OPPORTUNITY,
UniMib-SHAR and
PAMAP2

UCI-HAR (smartphone),
OPPORTUNITY
(72 sensors distributed on
body), PAMAP2 (3 IMUs
and an ECG),
UniMib-SHAR
(smartphone)

UCI-HAR (accuracy of
96.98%), OPPORTUNITY
(accuracy of 80.23%),
PAMAP2 (accuracy of
91.93%), UniMib-SHAR
(accuracy of 75.42%)

A shallow CNN that considers
cross-channel communication

[40]

UCI HAR database
(6 activities), USC HAR
database (12 activities),
SKODA database
(11 activities)

Accelerometer, gyroscope,
and magnetometer
embedded on a
smartphone placed on
the waist

UCI dataset (accuracy of
99.29%), USC dataset
(accuracy of 99.02%),
SKODA dataset
(accuracy of 97.21%)

Deep CNN architecture that is
trained to extract features from
different transformed spaces
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Detecting human movements through wearables is achieved mainly by accelerome-
ters [30–32], inertial units, that also include gyroscopes or magnetometers [16,27], or the
use of smartphones or smartwatches [36,38], which integrate all these elements. Other
studies have also analyzed the use of a set of pressure sensors placed in a shoe insole [19]
or integrated into an armband, to detect upper limb movements [22]. In turn physiological
variables, such as muscular activity [14], breathing [35,37], and heart rate [21,32,36], have
also demonstrated their effectiveness in measuring the intensity of the activity and improv-
ing the detection of human activity in general. Many commercial wearables use heart
rate (HR) based on a photoplethysmography (PPG) circuit embedded in a smartwatch [41],
which helps keep HR under a maximum limit during PA and is especially useful for people
who have suffered heart failure [6].

More than half of the studies analyzed considered using only one inertial element,
while fewer than 13% of them used four or more inertial units. We also analyzed the
frequency of placement of these wearables. The preferred position was the the wrist [24],
ankle [26], thigh [15], or chest [37].

Results showed that the accuracy was high in general, in the range [80%–100%) [28,29]
using a wide variety of classifiers. Traditionally, various methods from the field of signal
processing have been leveraged to distill collected sensor data. These have included k-
NN [14,30,33,35], random forest (RF), decision tree (DT) [20,38], gaussian mixture model
(GMM) and hidden Markov models (HMM) [16,24] or even models based exclusively on
thresholds [29] ], all of which requires domain-specific expert knowledge to process raw
data. Feature engineering is required to fit a model and this is expensive and not scalable.
Deep learning, especially CNN, that can automatically learn intricate activity features, have
gained a lot of attention in HMA task. There are currently two approaches to this last line
of work those [37,39] that directly employ the collected raw sensor data for automated
feature extraction using the deep neural network and those [40] that represent the time
series data in a modified space that makes the feature extraction process easier by reducing
the effects of noise or random variations.

The number of participants enrolled in these studies varied greatly. More than 150 peo-
ple took part in [24], while other studies accomplished the experiment with very few subjects
(<3) [14,17,34]. There was a median number of 10 participants in the selected studies in
Tables 1 and 2. Researchers have created various public benchmark datasets to test machine
learning algorithms in HMA tasks. The following are examples of these datasets:

• UCI-HAR Dataset [42]: This was collected by University of California Irvine. The
six ADL activities performed in a supervised scenario were standing, lying, walking,
walking upstairs, and walking downstairs. The data were collected by triaxial angular
velocity.

• OPPORTUNITY Dataset [43]: The project was conducted by the University of Sussex.
They built a rich sensor environment consisting of 15 wireless and wired networked
sensor systems. As a result, they collected 17 morning activity data.

• PAMAP2 Dataset [44]: This was collected by the Department of Augmented Vision
German Research Center of artificial intelligence. The researchers recorded 18 activities
including walking, cycling, rope jumping, etc. All subjects wore three IMUs and a
heart-rate monitor.

• UniMib-SHAR Dataset [45]: This was collected by the University of Milan-Bicocca. The
samples were acquired by a smartphone with Android operating system. The whole
dataset was designed to monitor human activity and detect falls. A total of 30 volunteers
contributed 11,771 samples.

1.1.2. Stress Detection

Phychological stress can be defined as “a state of mental or emotional strain or tension
resulting from adverse or demanding circumstances” that taken to an extreme might
produce distress. Like other kinds of emotions, stress can be defined by the circumplex
model [46], which holds that any emotion can be represented in an N-dimensional space,
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where two of the coordinate axis would explain most of the emotional variations. These
axis are called valence and arousal [47]. Valence is related to pleasure and varies from low
values (very unpleasant) to high values (very pleasant). Arousal is related to the intensity
of emotion, ranging from very low to very high.

Emotions have their origin in the brain but may indirectly affect other physiological
signals [48]. Namely, stress produces an increase in the electrical activity of the sympathetic
nervous system (SNS), that along with the inhibition of the parasympathetic nervous
system (PSNS), makes changes in heart rate (HR), breathing rate (BR), electrodermal
activity (EDA), and skin temperature (ST). Several papers have directly analyzed emotions
through EEG [49–53] or studied their effects on variables such as HR [54,55], EDA [55,56],
BR [57], or ST [56]. Combining several of these signals in a multimodal approach may
benefit detection accuracy [58]. Accuracy varies depending on the number of detected
emotions, extracted features and the classification method. A relatively recent review [59]
found that emotion detection based on EEG signals could achieve an accuracy of 88.86%
for the four emotion classes. Multimodal measurements based on ECG, EMG, and other
bio-signals achieved 79.3% for four emotive states. Other techniques deal with the emotion
classification based on the use of images or speech. Every frame of the visual data is
analyzed to extract certain features (like anatomical landmarks). These facial features are
then used to train classifiers allowing the system to estimate emotions with an accuracy of
89% [59]. Speech or voice analysis can be used as a diagnostic tool to identify frustration
and stress, but the accuracy (80.46% for happiness and sadness) is not comparable to EEG
or facial landmarks [59].

Table 3 summarizes some recent studies found in the scientific literature about different
techniques used to detect stress and sorted in ascending order by publication year. The
most analyzed signal was the EDA [60–65] which is more efficient when it is obtained from
the left-hand fingers [66]. When using EDA features alone, the accuracy obtained was
generally high. For example, in [61], for a four-class classifier, associated with the quadrants
of the dimensional model for emotions (high valence and arousal—HVHA, low valence
and arousal—LVLA, high valence and low arousal—HVLA, and low valence and high
arousal—LVHA), the accuracy was 82%. With a binary classification (stress, no stress) [65]
higher accuracy (91%) can be achieved. Stress causes an increase in electrical bursts towards
the sweat glands that produce changes in skin conductance. In [67] the authors found that
the best consistent features from the EDA was the driver function given by Ledalab [68]
(a Matlab GUI for EDA analysis), which is obtained by applying a deconvolution process.
Other studies have used only HR features, derived from PPG or/and ECG signals [69], or
EEG features [70], with an accuracy of 86.9% or 97.95%, respectively.

Higher accuracies can be achieved by combining EDA with other physiological signals.
In [64], the authors proposed an experiment to evaluate different car setups with a simulator
with EDA, ECG, and eye tracking (ET). Results showed that the accuracy of 72% was
mainly due to EDA because there were no significant changes in HR or pupil size during
the experiment. In [63] the authors obtained an accuracy of 92% for detecting stress from
EDA, PPG, and Acc with an SVM classifier. Interestingly, in this work, the stress detection
was combined with the identification of other PAs.
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Table 3. Description of selected studies for stress detection. Some acronyms: CNN, electrocardiog-
raphy (ECG), EDA, electroencephalography (EEG), electromyography (EMG), electroeculography
(EOG), Eye tracking (ET) GMM, HHC, HMM, NWFE, principal component analysis (PCA), pho-
toplethysmography (PPG), Perceived stress level (PSS) RF, Skin conductance response (SCR),Trier
social stress test (TSST), SVM.

Ref. Purpose/Biosignals Methodology/# Participants Instruments Results

[69]
Detecting stress in
real-world driving with
ECG, PPG and Acc

Driving for a minimum of
10min several times for the
same route/21

RELIEFF for feature
reduction. LDA, DT,
k-NN, and an
Ensemble classifier
with Hill-Climbing

Accuracy of 86.9% for binary
detection of stress with
physiological and
driving features

[71]

Create a dataset for
interactive and perceptive
tasks collecting EDA, ECG
and PPG

Tasks: math, logic problems,
Stroop test and audio stimuli
to evoke emotions in
4 quadrants/62

SVM classifier

Accuracy of 78.2% for
high/low concentration and
88.9% for high arousal/low
valence in ECG + EDA.
Arousal 798%. Valence (71.6%)

[60]

Assess the accuracy of a
wearable sensor for stress
detection based on EDA
and PPG

Five lab conditions: rest, pace
breathing, standing, Stroop,
speech task and two ecological
conditions (slow walking,
keyboard typing)/40

Correlation.
Bland–Altman plot

Mean HR showed the best
accuracy over all conditions

[61]
Propose a CNN for robust
emotion recognition based
on EDA

Play music videos/
DEAP dataset

CNN for four
emotional quadrants:
high valence and
arousal (HVHA),
HVLA, LVLA, LVHA

Accuracy of 82% for
person-independent
classification

[72]

Stress monitoring using
smart bands (ST, PPG,
EDA and Acc) and
contextual information

Exams with a jury/16
Several classifiers.
Feature reduction
through PCA

Accuracy of 80% with MLP for
two-class output.
Improvement was obtained by
including weather information

[70] Recognize drivers’ stress
patterns from EEG

Three virtual driving scenarios
with different environmental
variables/50

Different classifiers
SVM, NN, RF Accuracy of 97.95% for SVM

[73]

Find relationship between
PSS and physiological
signals/EOG, HR, Acc,
and Gyro.

Two phases: resting/stressful
by performing a time-limited
task/20

Statistics. PSS Only HR correlated with PSS

[66]
Detection of changes in
GSR with pleasant and
unpleasant stim-uli

Videos to elicit emotions/17
EmpaticaE4 and
Shimmer3GSR at
different body places

Best places for measuring:
left-hand fingers and right foot

[62]
Create indicators for
cognitive markers based on
EDA, HR, Acc

Tasks: Reaction time task
Breathing exercises, Mental
calculation, Affective memory
task, etc./48

Phsyco. tests: PANAS,
SST, Physio: EP, ED,
and CL

Accuracy of 89%

[74] Study the effect of listening
to music on the ECG

Play music of different
rhythms: <40 BPM,
60–80 BPM and 120–140 BPM.
8 sessions/14

TP, HF, LF, HFR
and LFR

Fast music reduces activity in
PSNS (LFR and TP ↑, HFR ↓;
Intermediate music inhibits the
activity (LFR ↓, HRF ↑; Slow
music does not affect



Electronics 2022, 11, 155 9 of 30

Table 3. Cont.

Ref. Purpose/Biosignals Methodology/# Participants Instruments Results

[75]

Stress assessment during
virtual wheelchair
guidance using EMG
and EEG

Participants drove a virtual
wheelchair and filled in tests
(SAM, NASA-TL)/
10 paraplegics

Frequency bands from
EEG and amplitude,
PSD, Freq,.. from EMG.
PCA, ANOVA

Time pressure stressors were
the most influent. Thumb
muscle, parietal, and frontal
regions were the most
correlated with stress

[63]

Detect phsychological
stress in the presence of PA
using wristband biosignals:
PPG, EDA, Acc

Three levels: (1) non-stressful
events; (2) Meetings, drivings,..
(3) Stroop, IQ, ... tests /34

STAI, feature reduction
through PCA,
Classifiers. PA level
measured by MET

The best classifier was based
on SVM with a 99.1% for PA
and 92% for stress. Similar PA
for all subjects

[64]
Analyze biosignal to
evaluate a a car setup. EDA
at both hands, ECG, ET

Three setting with a simulator:
oversteering, normal and
understeering/4

Skin pulse response for
EDA, HR and puils size.
Statistical significance.
SVM classifier

Accuracy of 72% on EDA. No
significant changes on HR and
pupil size

[65]
Detection of stress during
user experience
evaluations with EDA

EDA from the WESAD
database, containing 3 affective
states: neutral, stress and
amusement/15

TSST. The SCR is
used to train
several classifiers

Accuracy of 91.1% for SVM for
stress/no-stress

[67]
Find features that reflect
emotional and cognitive
states from EDA signals

Three different stress tasks/20

47 features and three
applications: LedaLAB,
cvxEDA, snd
sparsEDA. SVM with
feature selection

Best consistent features over all
participants were the number
of response of driver function
from ledalab and cvxEDA and
TVSymp. Accuracy of 88.52%

2. The Proposed BAN

The goal of the proposed BAN, with multiple sensors measuring physiological signals
and body kinetics is to integrate and correlate the acquired data to observe the evolution of
stress during different PAs.

The BAN is intended for research purposes, giving preference to the collection of
raw signals for further analysis. The final selected set of signals—both physiological and
IMU—and wearables, may be less than the ones presented.

2.1. Hardware Designs

We designed a four-wearable-device body area network (BAN) to capture human
movements and physiological signals, both at the same time. A total of ten different
measurements were obtained with a network deployed on the body: four movement
measures from the IMUs placed at the wrist, ankle, chest and head; the ST obtained from
the wrist; the EDA at the middle phalanges; a one-channel ECG, with electrodes placed at
the chest; breathing rate (BR) with a sensor placed in an oxygen mask; an eight-channel
EEG. Additionally, the ambient temperature (Ta) could also be registered by three of these
devices, which may be useful for detecting when the activity is performed outdoors [76].

Three out of the four devices are based on the Arduino Nano 33 IoT, which runs at 3.3 V
and features an IMU with a 3-axis accelerometer and gyroscope, an ambient temperature
sensor, up to 6-channel 12-bit analog-to-digital converter (ADC), and a low-consumption
wireless bluetooth low energy (BLE) communication circuit (the BLE chipset in Arduino
Nano 33 IoT has −88 dBm in its receiver sensitivity and its transmit power is 5 dBm; on
the other hand, the Raspberry-Pi-4-model-B-BLE’s chipset has −96.5 dBm in its receiver
sensitivity and its transmit power is 8.5 dBm).

The simplest design is called the “Type 1”, which only registers body movements
through the IMU included in the Arduino Nano itself. The two other designs also take
physiological measurements. The “Type 2” includes ST and EDA circuits, whereas the
“Type 3” measures ECG and BR (Figure 2). To record the physiological signals, two addi-
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tional analog-to-digital channels of the Arduino Nano were used in both wearables. All
the wearable cases were the same size: 57 × 39 × 19 mm, they weighed roughly 45 g, and
made of PLA, which is a biocompatible material. The schematics can be found in the sup-
plementary material section or in GitHub (https://github.com/TAIS-RG/aai-wearables,
accessed on 28 December 2021).

(a) (b)
Figure 2. Samples of 2 of our proposed wearable designs. (a) Device that records the EDA and the
ST signals (Type 2). This is a bottom view and the printed circuit board; (b) the circuit board for
ECG and BR measurements (Type 3). The ECG connectors, the face mask and the piece hosting the
temperature sensor for air flow detection are also shown.

The fourth wearable is based on OpenBCI, that allows up to 16 EEG channels to be
measured, and features a 3-axis accelerometer, and a BLE. Table 4 summarizes the measures
picked up by each wearable type in the proposed BAN and the sampling frequencies used
to capture the physiological signal, battery level, and IMU outputs.

Table 4. Sampling frequency (Hz) used for each input signal.

Signal Type 1 Type 2 Type 3 OpenBCI

Accelerometer (3 axis) 26 26 26 25
Gyroscope (3 axis) 26 26 26 −

Ta 13 13 13 −
Battery 13 13 13 −

EDA − 26 − −
ST − 13 − −

ECG − − 208 −
BR − − 26 −

EEG − − − 250

2.1.1. Type 1: IMU and Ta

As explained above, this design is based on the Arduino Nano 33 IoT which incorpo-
rates the LM6DS3 circuit (calibration of the IMUs is not necessary, because the manufacturer
provides the calibrated devices, so it is not recommended to modify the settings), a 6-axis
IMU, sampled at 26 Hz, and a temperature sensor, sampled at a rate of 13 Hz. The wearable
also includes a charger (TP4056), a low-dropout regulator (LDO) (MIC5504), an on/off
switch, a 950 mAh Li-ion battery, and a level checker voltage divider, connected to the A0
input to monitor battery voltage level continuously (Figure 3).

https://github.com/TAIS-RG/aai-wearables
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Figure 3. Block diagram of the Type 1 wearable. It contains a battery charger, LDO, battery checker,
and an Arduinio Nano 33. These elements are also included in Types 2 and 3.

The designs shown below are based on this basic architecture. However, they differ in
the circuits added to measure the physiological signals.

2.1.2. Type 2: EDA and Skin Temperature (ST)

This wearable device contains the same functionalities as the “Type 1” but also adds
two circuits for the measurement of electrodermal activity (EDA) and skin temperature (ST)
(Figure 4). Basically, the EDA circuit follows the same structure as the one presented in [77].
It implements a first-stage non-inverter amplifier with a 16-step programmable gain in the
negative feedback branch, making it possible to adjust signal output to the type of electrode
(dry or wet) [78], and the subject’s skin resistance over a wide range (67 k–10 MΩ). For
this reason, a set of selectable resistors are multiplexed by an analog switch circuit (4066).
Four Arduino digital outputs (D5:D2) allow the specific gain to be controlled. Thus, it is
necessary to verify that the selected reference resistance is adequate to prevent the amplifier
from being saturated.

Figure 4. Block diagram of the the Type 2 wearable. It contains an EDA circuit with a programmable
gain amplifier to adapt to different skin resistances and a low-pass filter. The ST circuit is made of an
input amplifier and an output low-pass filter.
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Another amplifier, connected to a second-order passive low-pass filter, with a cutoff
frequency of 23.4 Hz, adjusts the output signal to the maximum range of the ADC and
completes the EDA circuit.

The Type 2 wearable also contains a circuit for measuring the ST. It is based on a
10 kΩ NTC thermistor (GA10K4A1A), that is placed in contact with the skin surface. The
circuit contains an inverter amplifier with a gain of 6.2 and a low-pass filter with a cutoff
frequency of 5.46 Hz. The operating range is 24–33 ◦C which is enough for the location of
the sensor, since human temperature changes from one part of the body to another [79,80].

2.1.3. Type 3: ECG and Breathing

This design contains the same functionalities as the “Type 1” and adds two circuits for
the measurement of ECG and BR (Figure 5).

Figure 5. Block diagram of the the “Type 3” wearable. It contains ECG and BR circuits.

The ECG is a slight modification of the one presented in [77]. It uses three passive elec-
trodes, one of them to reduce power line interference; a high-impedance-input differential
amplifier, with a gain of approximately 2; a passive one-pole high-pass filter with a T-shape
resistor network that removes skin-electrode potential without reducing the CMRR; an
instrumentation amplifier with a gain of 371, and a two-pole passive low-pass filter. The
ECG frequency bandwidth spans from 4.8 Hz up to 30 Hz.

The BR sensor is also based on the thermistor model GA10K4A1A, which was attached
to an oxygen facial mask. The aim of this design is not to measure inspiration/expiration
flow but just its rhythm. The thermistor responds quickly as the expired air flows around
the sensor, at a higher temperature than the ambient air. It has a first-stage inverter amplifier,
followed by a high filter with a cutoff frequency of 0.16 Hz that removes the dependence
on ambient temperature. A second amplifier, with a gain of 21.3, increases the temperature
variation caused by the respiratory flow.

2.1.4. OpenBCI

OpenBCI (https://openbci.com/, accessed on 28 December 2021) is a low-cost open-
hardware device for measuring EEG signals. It is based on the ADS1299-8 integrated circuit,
which is a low-noise, 8-channel, 24-bit, analog-to-digital converter for EEG and biopotential
measurements. It has an extension board that allows the number of EEG channels to be
increased to 16. The sampling rate is 250 Hz for 8-channel and 125 Hz for the 16-channel
settings. OpenBCI includes an IMU that delivers data at a rate of 25 Hz, along with the

https://openbci.com/
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EEG channels, through a BLE connection. As with the other wearable designs, we added a
charger circuit and a 950 mAh battery.

The validation of the data quality delivered by this consumer-grade EEG headset has
already been investigated and confirmed in different studies [81].

2.2. Software
2.2.1. Communication

As computation resources are more limited on wearables, some authors have sug-
gested using external and more powerful devices to process the signals [82,83]. In our case,
we used the “edge computing” concept implemented on a Raspberry Pi 4 B with Raspberry
Pi OS and an ad hoc application called LSL Recorder [84], for data synchronization and
storage, based on Lab-Streaming Layer (LSL). This software is an easy-to-use, open-source,
multi-platform, recording system developed on Java that can save data from several devices
at the same time, while maintaining synchronization with the experimental phase markers
based on LSL library, such that LSL is “a system for the unified collection of measurement
time series in research experiments that handles both the networking, time-synchronization,
(near-) real-time access as well as optionally the centralized collection, viewing and disk
recording of the data” [85] (Figure 6).

Figure 6. Illustration of the communication process. Signals are sent via the BAN network to the
coordinating node (edge computer), where they are inserted into LSL streams towards an ending node,
where data are read and stored.Left, sensor placements on the body; center, the BAN network showing
the information contained in each frame and their direction towards/from the edge-computer; bottom
right the LAN network that connects the edge-computer with the recording node.

Furthermore, communication is the biggest drain on power in wearables [86]. Less
data transmission means increased autonomy. In our wearables, data transmission was
reduced to 13 times per second andused frames with different lengths to send all available
data. The selected technology for the communication between different wearables and the
edge computer was BLE 4.2. To simplify transmission and reduce energy consumption, the
data collected were sent through only one characteristic of a single generic attribute profile
(GATT) of the BLE service to reduce the operation time of the communication service,
energy consumption, and consequently, extend the battery life. The service was defined
with the Universally Unique IDentifier (UUID) 0xACC0, and 0xACC5 characteristic for
sending data from the wearables). In the case of the Type 2 device, whose EDA resistor
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network can be configured in real time, an additional byte-length characteristic (0xACC6)
was implemented to allow users to select the desired resistor combination. Note that these
selected numbers are not currently assigned by any Bluetooth Alliance specification. Finally,
the OpenBCI used its own RFduino-based communication system and the implementation
of an additional service was not necessary.

2.2.2. GUI

The graphical interface is very simple and contains two differentiated areas allowing
users to manage communication with the custom-made wearables or with the OpenBCI
(Figure 7).

Figure 7. Application grafical user interface (GUI) developed to manage communication with the
wearables. The process consists of: searching for the devices, setting and starting to send data. The
color indicates the status: red means device not found, cyan indicates device found, and green
indicates that data is being sent.

Users can look for and connect to any wearable type, and not all of them have to be
active at the same time. As a wearable is turned on, the edge computer automatically starts
pairing it. By clicking on the wearable type in the GUI, the device begins transmitting
data. The GUI uses a color code to show the connection status (unpaired/turned off—red,
paired—cyan, and transmitting—green) for any wearable type and OpenBCI. Additionally,
for the Type 2, the GUI contains a checkbox list that allows the resistor network to be
configured in real-time (see Figure 7).

OpenBCI communicates through RFduino, whose dongle is detected as a COM port
by the operating system. Once this port is opened, the software controls the communication
in a different thread to avoid interference with the other wearables and the use of the
GUI itself.

2.2.3. Data Synchronization

As soon as the data are received, they are sent through the LSL cloud [85] which adds
a timestamp to every incoming piece of information. LSL uses the transmission control
protocol (TCP), which guarantees that the data are correctly received. LSL is very useful
for keeping the synchronization and data coherence in a simple way. The data streams are
recorded by LSL Recorder [84], a software application that can be run in any computer
connected to the same LAN as the edge computer, or on the edge computer itself.

Only the latency in the Bluetooth communication may be relevant, introducing a
maximum error between received signals of 38.5 ms, owing to the selected Bluetooth
transmission frequency of 13 Hz. Bluetooth keeps the received data in order.
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3. Methodology

The first step, before using the BAN, was to validate the proposal through the analysis
of some functional characteristics such as battery life, the packet loss rate and signal quality
for the ST and BR circuits, which were not based on previous works. In this study, we also
wanted to contribute with a preliminary study about the significant features of ECG for
detecting stress. Other physiological signals and kinematic information provided by IMUs
for human activity recognition did not fall within the scope of this work.

3.1. Battery Life and Packet Loss Rate

Battery life and packet loss rate tests were performed simultaneously. They consisted of
charging all the wearables to 100%, pairing them with the central node, and then recording
the received packets. The experiment ended when the battery level reached the minimum
recommended operating voltage for the battery (3.6 V). The ambient temperature field was
substituted by an incremental identifier to allow the estimation of the frame loss rate in our
custom-made wearables.

Every data packet transmitted by OpenBCI contains an incremental frame identifier,
which allows it to follow the same procedure as the one explained above. The difference
lay in the battery voltage measurement, which was performed by an external Arduino Uno,
whose analog input was connected to the battery.

3.2. Data Quality Assessment

The SNR figure was calculated to assess data quality. For the EDA, ST, and BR we
applied the same method as in [77]: a low-pass filter, with a cutoff frequency of 5 Hz, based
on a Gaussian window length of 50 implemented in Ledalab [68]; the output of this filter
was considered as the signal, whereas its difference with the original signal was the noise.

We did not perform any other SNR assessment, since, as explained above, OpenBCI
has already been validated by other studies [81], and some features of the proposed ECG
and EDA circuits had slight changes compared to their counterparts published in [77].
However, as the cutoff frequency of the high-pass input filter in the first stage of the ECG
circuit was increased, we expected the SNR to be worse than that reported in [77].

3.3. Human Activity and Stress Recognition

This section describes a set of human activities performed by participants in a room
with artificial lighting at a comfortable temperature. They wore the devices as shown in
Figure 6. The Type 1, 2, and 3 elements were placed at the left leg—over the bottom part
of peroneus longus—left wrist and chest—over the bottom part of sternum—respectively,
and the OpenBCI at the nape. We opted for Einthoven triangle’s lead II configuration for
ECG electrode placement.

Figure 8 depicts the sequence of the activities. The temporal order was: (1) sit for 5
min in front of a computer with the screen turned off; (2) stress test for 4 min; (3) stand
up and sit down several times for 2 min; (4) raise and lower both arms for 2 min; (5) walk
around the room for another 2 min. The first activity was longer than the others because it
also served as baseline for the physiological measurements for the stress test. Interleaved 1
min resting periods between activities helped the physiological baseline to recover before
the following activity started. A computer program controlled the different phases of the
experiment through visual and audio indications.
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Figure 8. Experimental temporal sequence. It contains five activities: initial rest, arithmetic task,
sit-to-stand activity, raising the arms, and walking. Two State-Trait Anxiety Inventory (STAI) tests
were given to participants at the beginning and end of the arithmetic task. The remainders were
three simple PAs with short interleaved resting periods to stabilize physiological variables.

The stress test consisted of performing an arithmetic task with time constraints based
on the Montreal Imaging Stress Task [87]. A Java application was developed to implement
the GUI interface [88], showing mathematical operations (add, subtract, multiplication)
whose results were always in the range between 0 and 9. Additional stressors were added
to motivate participants to improve their manipulated score indicator, which was always
less than the averaged population result.

Subjects filled in two questionnaires, based on the standard State-Trait Anxiety In-
ventory (STAI) [89], at the beginning of the experiment and at the end of the stress test.
The range of results of testing was between 0 and 60 with the minimum and maximum
values indicating total stress/anxiety and complete relaxation respectively. For this study,
we only analyzed the variations that a stressful situation could induce in the ECG signal.

Twelve people (two women and ten men) took part in this experiment with an age
range between 26 and 56 (mean 37.86; sd 9.93).

ECG Signal Processing for Stress Recognition

In general, outliers were avoided by using the interquartile-range method. Namely,
those values not within the (Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)) range were removed
from the analysis. Q1 and Q3 represent the lower and upper quartiles respectively.

Firstly, the RR segments were obtained using the Pan–Tompkins algorithm [90] to
estimate HR. Then, different temporal and frequency features were extracted from it [91]
(see Table 5 for a brief description). The mean frequencies of each band (fmVLF, fmLF,
fmHF), and the median of RR segments (Mrr), were also obtained. The statistical signif-
icance between the stressful situation and the initial resting period was found using the
one-way ANOVA analysis.

Table 5. Common features obtain from ECG data.

Domain Feature Description

Time

HRV Heart rate variability
SDNN Standard deviation of NN intervals

RMSSD Root mean square of successive
differences between normal heartbeats

pNN50 Percentage of successive RR intervals
that differ by more than 50 ms

Frequency
VLF Very low frequency, 0.003–0.04 Hz
LF Low frequency, 0.04–0.15 Hz
HF High frequency, 0.15–4 Hz
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4. Results

The next sections detail the results obtained regarding battery life, data quality, stress
indicators and physical activity from the signals captured by our proposal.

4.1. Battery Life and Data Loss Rate

In the data transmission test, no lost frames were detected in any device, barring a
small number in OpenBCI (see Figure 9 and Table 6). On the whole, these did not follow a
specific pattern, although, there were occasional bursts of up to 200 lost frames, according
to the frame indicator of the OpenBCI frame counter field.
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Figure 9. Battery voltage level over time. Under 3.6 V the devices turn off.

Table 6. Battery lifetime and frame loss rate for the four wearables.

Device Battery (h) Lost Frames (%)

Type 1 15.68 0
Type 2 16.06 0
Type 3 15.56 0

OpenBCI 17.97 246 · 10−6

4.2. Data Quality

Figure 10 shows some segments of the BR and ST signals and their Fourier transform
plots. Frequencies over 2 Hz were considered as noise, and, for the BR signal in particular,
the DC component was also removed from the analysis. As shown in the figure, the SNR
for BR was 29 dB and 8 dB for ST. In the case of the ECG, the SNR was 9.78 dB.
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Figure 10. BR and ST signal segments and their SNR during sit-to-stand activity. (a) BR signal:
3 complete exhalation/inspiration cycles. (b) SNR of the BR signal. (c) ST changes during 200 s of
exercise. (d) SNR of the ST signal.

4.3. Human Activity and Physiological Signals

This section shows some signals captured during the experiment. At the beginning of
the experiment, there was a 5 min activity consisting of sitting in a relaxed way. Figure 11
shows a segment of 30 s containing the ECG and BR signals. As one can see, the HR was
56 bpm and BR 12 bpm. A shorter ECG segment was also plotted to show the typical
QRS-complex and P and T waves. Frequencies higher than 20 Hz were removed from the
ECG signal through a low-pass digital filter with a length of 31 and a Hamming window.
This filtering was needed for power line interference removal. No filter was applied for the
BR signal.

Figure 12 shows the “Type 2” outputs during a period of the experiment comprising
rest and physical activity (sit-to-stand exercise). Motion activity, skin temperature and
conductance were monitored at the same time. Skin conductance increased during the
activity, and contains several peaks (phasic component), which are typical in EDA record-
ings. The ST was almost constant, although there was a slightly downward trend at the
end of the record, maybe due to an increase in skin hydration caused by more activity in
the sweat glands.
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Figure 11. ECG and breathing signals for 30 s. during the first phase of the experiment. From top
to bottom: (a) ECG signal; (b) ECG signal detail for 5 s; (c) breathing signal. Vertical units are in
converter units.

Figure 12. Main signals delivered by the Type 2 wearable during sit-to-stand exercise. From top
to bottom: (a) 3-axis accelerometer data in g units; (b) 3-axis gyroscope data in deg/s; (c) skin
conductance, and (d) skin temperature. At 20, 30, and 40 s the subject performed several movements
that are reflected as oscillations in the IMUs and as an increase in the skin conductance.

Finally, Figure 13 shows the set of data collected simultaneously from the accelerom-
eters of the four wearables when an activity was started after a resting period. The IMU
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axis for each wearable are also shown on the left. At rest, participants were sitting still.
Therefore, the gravity force made the vertical axis of all IMUs show higher values than
the others. Subjects then stood up and sat down several times, with brief periods when
they remained still. As can be seen, the resting position of the leg during the exercise was
different to the preceding segment of the experiment, when they were sitting still. The
identification of the activities through the IMU and the analysis of the physiological signals
will be addressed in future works.

Figure 13. Accelerometer signals collected during the activity of sitting down and standing up. These
movements cause oscillations in the IMUs data.

4.4. Main ECG Features for Stress Detection

The STAI tests allowed us to verify if there was any induced stress during that part
of the experiment. Results showed that the average difference between them, for all
participants, was −7.5 with a standard error of 2.18%. A negative value indicates that the
task was stressful. The ANOVA analysis confirmed the significance of such a difference
(p = 0.004). Consequently, the arithmetic task acted as an efficient stressor.

Table 7 contains the ANOVA p-values for all ECG features analyzed. As can be seen,
only ∆Mrr and ∆pNN50 had statistically significant differences, where both parameters
decreased around 10% and 50%, respectively, with respect to the resting period. Although
the total number of subjects is not high, the results obtained allow us to establish a trend.

Table 7. ANOVA p-values for each ECG feature.

Name p-Value Name p-Value

∆SDNN 0.97 ∆RMSSD 0.25
∆pNN50 <0.01 ∆Mrr <0.01
∆VLF 0.39 ∆fmVLF 0.51
∆LF 0.65 ∆fmLF 0.69
∆HF 0.80 ∆fHF 0.79

5. Discussion
5.1. Hardware Design

Many wearable units have been employed for research, health, or sport tracking
purposes. Some of them allow researchers to access the raw data, while others deliver
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processed data. In this work, we have focused on the former, and particularly on those
with continuous streaming of acquired data. Table 8 presents a summary of the main
features of some commercial units [92], along with new designs found in recent papers.
All of them have IMUs for HMA, but not many include the necessary electronics for the
measurement of physiological signals. Commercial solutions are available for acquiring
multiple bio-electrical sources (EMG, ECG), skin conductance, or breathing rhythm through
the measure of thorax movements with an elastic strap.

Table 8. Main features for some commercial wearable units and devices found in the scientific
literature. † Consumption when streaming; ‡ Equivalent area for a circular-shape wearable.

Ref. Autonomy/Consumption Size (mm) Weight
(g)

Raw
Data

Storage
Unit Wireless Physio.

Signals IMU

Xsens MTW 3.5 h 34.5 × 58 × 4.5 27 Yes No Yes No Yes
Xsens Mti-G 660 mW 57 × 42 × 23.5 58 Yes No No No Yes
Xsens Mti-610 [31] <1 W 41 × 28 × 13 8.9 Yes No No No Yes
Physilog 3 71 mA 50 × 40 × 16 36 Yes Yes No No Yes
UAV V3 420 mW 38 × 70 × 25 34 Yes No No No Yes
activPAL [19] 7 days 53 × 35 × 7 15 No No No No Yes
Shimmer3 Ebio 8 h † 65 × 32 × 12 31 Yes Yes Yes Yes Yes
Ours 16 h/60 mA/222 mW 57 × 39 × 18 45 Yes No Yes Yes Yes
[26] 12.2 mA/51 mW 39 × 33 × 5 – Yes Yes Yes No Yes
[28] – 31.5 × 21.5 × 6 9 Yes Yes No No Yes
[21] 48 h/<5 mA 43 × 43 × 6 ‡ – Yes No Yes Yes Yes
[15] – 56 × 37 × 15 16 Yes No Yes No Yes

The size and weight of the wearable units are important from the user’s perspective.
The smaller and lighter the wearable, the more comfortable it is. As for size, the proposed
solutions are in line with many other devices. However, the weight is inconvenient, mainly
due to the battery (20 g) and the wearable case, with 2 mm thick walls.

Not all wearables deliver raw data or make them accessible for the researcher. For
example, the ativPAL, a smartwatch endowed with an IMU, only offers processed data to
customers. The remaining units in Table 8 store the raw data in internal memory or/and
can transmit them, in real-time, through a wireless link.

A key factor in wearables is battery lifetime or power consumption. Our devices
stream data continuously and keep working for 16 h on average, powered by a 950 mAh
Li–ion battery (Figure 9), which is more than enough for many ADLs scenarios in research.
Several commercial units show a higher consumption than ours, but battery lifetime is
much longer in the newest designs [21]. To conclude, we will need to extend the lifetime of
our wearables.

There are a range of alternatives for reducing power consumption [93]: (a) Task of-
floading. It reduces the processing on the wearable itself and using edge computing [82] or
fog computing [94] when possible. (b) Duty cycling. It puts the processor into sleep state
to reduce power consumption, even though it may affect activity recognition [95]. (c)
Low-power communications. Data transmission is the most consuming task in wearables [96],
and BLE and Zigbee are the most efficient technologies. (d) Low-power hardware design,
which involves designing with low-power units or increasing the integration level with
application-specific integrated circuit (ASIC) or system on-chip (SoC) [97]. (e) Data compres-
sion. When the sampling frequency is high, the volume of data is considerable. In this case,
compressing techniques, which are also useful for protecting biological information should
be implemented [98].

We tested the effect of increasing packet length up to 200 bytes to reduce the number
of radio wake-ups. With this frame size, the device can send data at a rate of 4.33 Hz.
However, we did not obtain a significant improvement in their autonomy (an increase of
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just 0.84%). The processor selected for all wearable types was an important source of power
drain. According to the manufacturer’s electrical specifications, the Arduino Nano IoT
needs 47 mA in continuous operation. In the future, the duty cycling solution should be
implemented to save power and extend battery lifetime.

5.2. Signal Quality

Although there is plenty of literature on ECG circuit solutions, SNR is not often found
in their results. Table 9 shows a comparative between our ECG circuit and studies that
used the same fabrication technology. In general, our circuit scored quite well in SNR.
Additionally, ECG signals acquired by conventional equipment, which is at the disposal
of researchers through databases like PhysioNet [99], show an SNR of 10 dB on average,
which is similar to our results. Higher SNR figures can be found in ECG designs based on
integrated circuits [100] (26.37 dB) but with the main drawback of higher cost.

Table 9. Comparative with other low-cost ECG circuits.

Feature [101] [102] [77] Ours

Bandwidth (Hz) [0.05 100] [0.5 40] [0.1 30] [4.5 30]
Fs (Hz) NA 1000 256–1200 208

SNR (dB) 5.77 7.01 11.96 9.78

There are also relatively few studies involving EDA circuit design that include SNR in
their results. Table 10 shows a comparative according to several features. Our design gets a
slightly lower SNR than in [102] when using wet electrodes. With the low-pass filtering at
the end of the second stage, the SNR increased to 61.64 dB.

Table 10. Comparative with other low-cost EDA circuits. † SNR for wet electrodes; § The platform
does not apply any kind of filtering .

Feature [103] [102] [104] [77] Ours

N◦ channels 1 1 1 2 1
Electrode Dry Wet Dry Dry/Wet Dry/Wet

Bandwidth (Hz) [0 1.5] [0 2.8] [0.5 4] [0–Fs/2] § [0 13]
Fs (Hz) 10 1000 1000 32–256 26

SNR (dB) NA 52.32 NA 50.45 † 61.64 †

In a previous work [77], the authors tested different boards for the ST measurement,
with SNR higher than 50 dB. Our results obtained an improved SNR of 74.76 dB with this
new design.

In [105], the authors presented a BR design which measured torso movements using a
pressure-sensor array, obtaining an SNR of 9.7 dB. Our design outperformed that value
by more than 20 dB using their method, and 377.66 dB using the method described above.
While our design may seem unfriendly and obtrusive, it has the advantage that it is more
insensitive to motion artifacts than a pressure sensor placed around the chest during the
practice of PA. Some models on the market use a flexible thread that fits behind the ears,
and a set of two short prongs, placed in the nostrils, and a third prong that falls down just in
front of the mouth. However, unlike this more friendly design, the facial mask guarantees
that the whole inhaled or exhaled air flows around the temperature sensor.

5.3. Artifacts

An important question regarding the recording of physiological signals when per-
forming PA is to know the extent to which motion artifacts will affect feature extraction.
For example, in ECG recording, typical picked-up noise may come from several sources.
One of the most important, known as motion artifact, is due to the geometrical changes



Electronics 2022, 11, 155 23 of 30

between the electrode surface, the electrolyte, and the skin, that temporally affects electrode
impedance. Another common issue is interferences due to other bio-potential sources like
muscular activation EMG that generally appear as an increase of background noise in the
baseline of the ECG signal. Nevertheless, we do not expect this EMG interference to be-
come a serious problem limiting efficacy in extracting the heart rate (HR). Figure 14 shows
a segment of the ECG containing motion artifacts. As can be seen, these artifacts do not
appear to be significant enough to affect QRS-complex detection with the Pan–Tompkins
algorithm (Figure 15). In conclusion, the HR will not be affected by motion artifacts when
performing light PA.

Figure 14. Artifacts and rhythm alterations in physiological signals during sit-to-stand exercise. A
movement may cause motion noise in ECG, stop breathing, and poor electrode contact.

Figure 14 also shows a segment of BR during sit-to-stand exercise. Signal valleys and
peaks reflect the process of expiration and inspiration, falling on the former and rising
on the latter. At the beginning of the exercise, the valley extends for a while, because the
subject stops inhaling for a short period of time. This change in the normal breathing
pattern is common and appears frequently. Occasionally, other patterns consisting of a
sequence of two or more small peaks appears following the previous inhalation, as a result
of short inspirations. All these changing patterns in BR are the result of physiological
phenomena and may affect automatic BR estimation when based solely on peak on peaks
detection. An electrical noise, like the one shown in the figure, often appears, maybe as a
consequence of connector movements. However, this noise can easily be removed using a
digital low-pass filter.

Denoising techniques must be used for EEG data, with lower voltage values than
other bio-electrical signals, or when performing more vigorous activities, to reduce motion
artifacts’ influence [106,107]. However, we will study its usefulness and feasibility in
the future.
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Figure 15. Pan–Tompkins algorithm output (red circles) for an ECG segment including light PA.
Motion artifacts do not affect QRS-complex detection.

5.4. Stress Recognition

STAI test and two ECG features show a trend an increasing stress level during arith-
metic tasks. The smaller of pNN50 and Mrr indicated lower heartbeat variability, so
subjects’ arousal was increased, meaning that the PSNS activity decreased. These results
were consistent with previous studies where HR increased during stressful tasks [73].

Using different sources of bio-signals to detect stress, several studies have shown that
features coming from the ECG signal are significant [60], have high correlation indexes
with the perceived stress level (PSS) [73], and very high accuracy rates [72].

6. Conclusions and Future Work

In this paper, we have presented a completed BAN with low-cost wearables that
supposes an excellent framework for capturing physiological signals and detecting human
movements simultaneously. As a starting point, the paper includes a comprehensive
literature review that describes the most relevant techniques in this research field. The
proposed BAN includes a four wearable device body network with three own designs
and an overall of thirteen different measurements, where EDA, ST, ECG, EEG, and BR are
acquired as physiological measurements.

The experiments we conducted to validate the system and demonstrated the robust-
ness of data transmission with any packet loss detected during a long use of the system
providing more than 15 h of autonomy. The power consumption of wearable devices is a
critical factor during device engineering and our BAN can operate for up to 16 h using a
950 mAh battery. Finally, a preliminary study was conducted in order to extract the main
ECG features for stress detection during rest.

In future research, we will study other physiological signals and introduce stress
during the realization of human activities with the purpose of analyzing the mechanism
and correlation of stress and activity recognition, their assessment and detection approach
with wearable sensors. In addition, we will explore new techniques to increase the auton-
omy of the wearables based on the reduction of the amount of packets to transmit or on
implementing low-power consumption techniques. Finally, we will integrate the devices
into soft structures.
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Abbreviations
The following abbreviations are used in this manuscript:

Ta ambient temperature
Acc accelerometer
ADC analog-to-digital converter
ADL activities of daily living
ASIC application-specific integrated circuit
BAN body area network
BLE bluetooth low energy
BR breathing rate
CNN convolutional neural networks
DBN deep belief network
DL deep learning
DT decision tree
ECG electrocardiography
EDA electrodermal activity
EEG electroencephalography
ELM extreme learning machine
EMG electromyography
EOG electroeculography
ET eye tracking
GATT generic attribute profile
GMM Gaussian mixture model
GUI grafical user interface
HF high frequency
HHC hierarchical hybrid classification
HMA human movement analysis
HMM hidden Markov models
HR heart rate
HRV heart rate variability
IMU inertial measurement unit
LDO low-dropout regulator
LF low frequency
LSL lab-streaming layer
Mrr the median of RR segments
NN neural networks
NWFE nonparametric weighted feature extraction
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PA physical activity
PCA principal component analysis
pNN50 percentage of successive RR intervals that differ by more than 50 ms
PPG photoplethysmography
PSNS parasympathetic nervous system
PSS perceived stress level
RF random forest
RMSSD root mean square of successive differences between normal heartbeats
ROM range of motion
SB sedentary behavior
SCR skin conductance response
SDNN standard deviation of NN intervals
SNR signal-noise ratio
SNS sympathetic nervous system
SoC system on-chip
ST skin temperature
STAI state-trait anxiety inventory
SVM support vector machine
TCP transmission control protocol
TSST trier social stress test
UUID universally unique identifier
VLF very low frequency
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