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Abstract: The ever-growing interest in cryogenic applications has prompted the investigation for
energy-efficient and high-density memory technologies that are able to operate efficiently at ex-
tremely low temperatures. This work analyzes three appealing embedded memory technologies
under cooling—from room temperature (300 K) down to cryogenic levels (77 K). As the temperature
goes down to 77 K, six-transistor static random-access memory (6T-SRAM) presents slight improve-
ments for static noise margin (SNM) during hold and read operations, while suffering from lower
(−16%) write SNM. Gain-cell embedded DRAM (GC-eDRAM) shows significant benefits under
these conditions, with read voltage margins and data retention time improved by about 2× and
900×, respectively. Non-volatile spin-transfer torque magnetic random access memory (STT-MRAM)
based on single- or double-barrier magnetic tunnel junctions (MTJs) exhibit higher read voltage
sensing margins (36% and 48%, respectively), at the cost of longer write access time (1.45× and 2.1×,
respectively). The above characteristics make the considered memory technologies to be attractive
candidates not only for high-performance computing, but also enable the possibility to bridge the gap
from room-temperature to the realm of cryogenic applications that operate down to liquid helium
temperatures and below.

Keywords: cryogenic; 77 K; cold electronics; low-power; embedded memory; SRAM; Gain-Cell
embedded DRAM (GC-eDRAM); STT-MRAM; magnetic tunnel junction (MTJ)

1. Introduction

Cryogenic electronics is an emerging approach to improve computer performance
and deal with the static power consumption issue resulting from transistor scaling towards
the end of Moore’s law [1–3]. MOS technology operating at cryogenic temperatures
provides some benefits, such as steeper subthreshold slope, increased carrier mobility,
and increased saturation velocity, leading to semiconductor-based circuits with faster
operation, reduced leakage, and improved energy-efficiency [4,5]. As shown in Figure 1,
MOS technologies operating at cryogenic temperatures are interesting for a wide spectrum
of applications including high-performance computing [6,7], control systems for quantum
processors [8,9], and aerospace applications [5,10,11]. The need for electronic devices
capable of operating at cryogenic temperatures has always been a sought-after feature in
deep space applications; however, high-performance computing and especially quantum
computing are now increasing the demand for processors and memories that can operate
at very low temperatures. While quantum computing systems operate in the mK range,
memory sub-systems capable of operating at the liquid nitrogen boiling point (77 K) and
interfacing systems operating at helium temperatures (4 K) are requested as more cost-
effective solutions [2,12]. This potentially enables the possibility to bridge the gap from
room-temperature to cryogenic applications that operate down to 4 K and below [8].
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Figure 1. Cryogenic applications: from high-performance computing and deep space electronics,
to quantum computing.

The benefits of cooling down processors and memory systems to cryogenic temper-
atures as low as 77 K have recently been demonstrated [2,13,14]. The studies reported
in [11,13,15] mainly focus on traditional embedded memories based on six-transistor static
random access memory (6T-SRAM), which are shown to provide significant improve-
ments in terms of performance. However, the relatively large bitcell area of 6T-SRAM
limits the overall on-chip memory density and the many leakage paths present in these
memories limit the achievable power savings [16]. To improve on these issues, other
memory technologies like Gain-Cell embedded DRAMs (GC-eDRAMs) and spin-transfer
torque magnetic RAMs (STT-MRAMs) were recently proposed as promising candidates for
cryogenic computing applications [5,14,16].

GC-eDRAMs has recently been evaluated at 77 K [5,13], showing that it is a viable
alternative to 6T-SRAM under cryogenic operation. In addition to the reduced cell area
footprint, the refresh power of GC-eDRAMs is highly reduced at 77 K thanks to the sup-
pressed MOS transistor leakage current when operating at 77 K. This leads to overall static
(retention) power savings as compared to 6T-SRAM. In particular, for a 2T mixed pMOS-
nMOS GC-eDRAM, the data retention time is found to be in the range of ms, enabling
considerable power savings as compared to the room temperature operating condition [5].
GC-eDRAMs based on 3T topology have also been evaluated in [13], demonstrating that
cache performance similar to 6T-SRAM can be obtained, while achieving higher density,
comparable access speed, and lower power. A recent test-chip of 2T-based GC-eDRAM has
been evaluated in the temperature range from 4 K to 300 K for various supply voltages [12].
The prototype shows outstanding improvements, in terms of data retention time, by about
six orders of magnitude when cooling down from 300 K to 4 K. Therefore, GC-eDRAMs
can be considered as a power-effective solution to build embedded memories operating at
cryogenic temperatures.

STT-MRAM based on single-barrier magnetic tunnel junction (SMTJ) operating at
77 K has been demonstrated to be an energy-efficient solution for larger cache sizes [16].
However, due to relatively high switching currents, it suffers from longer write access than
6T-SRAM technology. In addition, for smaller cache sizes, SMTJ-based STT-MRAM exhibits
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latency and energy penalties under write access. To deal with this, and to further reduce
the energy consumption of SMTJ-based STT-MRAMs operating at 77 K, STT-MRAM based
on double-barrier MTJ (DMTJ) with two reference layers has also been proposed [17]. In
addition, leveraging the thermal stability factor of MTJ devices has also been considered as
a promising alternative to build reliable, energy-efficient, and high density STT-MRAMs
at 77 K. While this was experimentally demonstrated for SMTJ-based STT-MRAM, as re-
ported by Taiwan Semiconductor Manufacturing Company (TSMC) [14], a DMTJ-based
STT-MRAM cryogenic simulation study with such an approach is also reported in [18],
suggesting that, in contrast to conventional 6T-SRAM, better energy-efficiency can be
achieved even for small-to-large cryogenic embedded memories.

In this paper, we present a comparative evaluation between GC-eDRAM, 6T-SRAM,
and STT-MRAM memories when operating at 77 K. The analysis is carried out based on a
65 nm commercial process design kit (PDK) calibrated for 77 K under silicon measurements.
For simulating the STT-MRAMs, our study uses state-of-the-art SMTJ and DMTJ Verilog-A
compact models [19,20]. The results presented within this study are based on comprehen-
sive bitcell-level simulations carried out through exhaustive Monte Carlo simulations. As
the main result of this work, we show the key figure-of-merits of the considered memory
technologies when cooled down from 300 K to 77 K. We show that 6T-SRAM offers slight
improvements (≈5%) in terms of hold and read static noise margins, while suffering from
lower write noise margins (−16%), while GC-eDRAM shows larger read voltage margins
and data retention time by about 2× and 900×, respectively. SMTJ- and DMTJ-based
STT-MRAMs benefit from higher read voltage sensing margins (36% and 48%, respectively),
while exhibiting longer write access times (1.45× and 2.1×, respectively).

The rest of the paper is organized as follows: Section 2 presents a brief review of the
considered memory technologies and their operating characteristics when operating at
cryogenic temperatures. Section 3 presents the simulation results, with the comparison at
77 K discussed in Section 4. Section 5 concludes this work.

2. Background

The embedded memory technologies considered in this work are shown in Figure 2:
(a) 6T-SRAM, (b) two-transistor mixed gain cell nMOS-pMOS (2T NW-PR GC-eDRAM),
and (c) STT-MRAM based on SMTJ or DMTJ.
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Figure 2. Considered embedded memory technologies: (a) six-transistor static random-access mem-
ory (6T-SRAM), (b) two-transistor mixed gain cell nMOS-pMOS (2T NW-PR), and (c) perpendicular
spin-transfer torque magnetic RAM (STT-MRAM) based on single barrier MTJ or double barrier MTJ.

• 6T-SRAM: It is based on a pair of cross-coupled inverters for storing the volatile data.
The cell is accessed for write and read operation by asserting the wordline (WL),
and driving bitline (BL) and BL to opposite logic values for write, or pre-charging
them for read. Although this is the most mature embedded memory technology
available in the market, it has barely been studied at cryogenic temperatures. Recently,
6T-SRAM was evaluated in [15], showing the different trade-offs in terms of static
noise margins.
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• GC-eDRAM: This circuit is most often constructed from two to four transistors, and the
dynamic (volatile) data is stored by means of the charge upon a parasitic capacitance,
which is commonly referred to as storage node (SN). The 2T mixed nMOS–pMOS
GC-eDRAM cell is chosen among different topologies in light of its better performance
at 77 K [5]. The write operation is done by asserting the write wordline (WWL) of the
nMOS write port (NW) and driving the write bitline (WBL) to VDD (‘1’) or ground
(‘0’), so that the charge is transferred to or from the SN. As for the read operation, first
the read bitline (RBL) is precharged, and then the pMOS read port (PR) is enabled by
asserting the read word line (RWL). If the SN is holding a ‘1’, the RBL is discharged to
ground, and if it is a ‘0’, the RBL is maintained at VDD. A recent study experimentally
demonstrates the GC-eDRAM capabilities when cooled down from room temperature
to the helium nitrogen boiling point [12].

• STT-MRAM: This bitcell consists of a MOS access transistor and an MTJ that stores
the non-volatile information. The MTJ stack is build with a reference layer (RL) and
a free layer (FL), sandwiching a thin oxide barrier (tOX). This structure is known as
an SMTJ, and presents relatively high switching currents, which impact the bit cell
write operation [21]. To deal with this, a possible solution is to use a DMTJ with two
reference layers (reference layer top (RLT) and bottom (RLB)) that enhance the total
torque acting on the FL, leading to lower switching currents, albeit with increased
resistance and reduced tunnel magnetoresistance (TMR) [22,23]. According to the
relative orientation of the FL with respect to that of the RL (or RLT in the case of the
DMTJ), two states are possible: parallel (P) or antiparallel (AP). For more detailed
information on the SMTJ and DMTJ structures, the reader is referred to our previous
works [21,24].
STT-MRAM cells can be built from different topologies, which have been previously
evaluated in the works reported in [21]. Among the different bitcell topologies,
the most area-efficient are the 1TRC and 1TSC configurations (1TRC and 1TSC are
referred to as one-transistor/one-MTJ in reverse connection (RC) and standard con-
nection (SC), respectively) for SMTJ and DMTJ, respectively, as shown in Figure 2c.

Table 1 shows the expected impact of cryogenic temperatures on the considered em-
bedded memory technologies. Conventional 6T-SRAM allows significant improvements
in terms of performance and power, mainly due to the faster memory access and reduced
leakage currents, albeit with reduced write static noise margin (WSNM). The GC-eDRAM
also presents power and performance advantages, while also requiring fewer refresh
operations at cryogenic temperatures, due to the reduced leakage currents. That being
said, GC-eDRAM is still a dynamic memory technology, such that long data retention still
requires refresh operations, which complicate the overall system design. When operating at
cryogenic temperatures, the STT-MRAM is expected to provide orders of magnitude better
endurance and an improved readout signal (due to the higher tunnel magnetoresistance),
at the only cost of higher write energy owing to the increased critical switching currents.
Overall, all the considered memory technologies benefit from less bitline resistance and
faster peripheral circuity when cooled down to cryogenic temperatures. Note that stan-
dalone (off-chip) dynamic random-access memory (DRAM) is also considered as a good
candidate for cryogenic computing [7]; however, this work is only focused on embedded
memory technologies.
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Table 1. Impact of cryogenic temperatures on different embedded memory technologies.

Impact of
Cryogenic Operation

Memory Technologies

SRAM GC-eDRAM STT-MRAM

Pros

Less leakage power Less refresh power Better endurance

Faster memory access
(e.g., read/write)

Faster memory access
(e.g., read/write)

Better logic robustness
(e.g., higher TMR)

Less bitline resistance Less bitline resistance Less bitline resistance

Faster peripheral circuitry Faster peripheral circuitry Faster peripheral circuitry

Cons Lower write SNM Refresh controller integration * Higher write energy

[*] It is referred as a disadvantage as compared to SRAM technology.

3. Simulation Analysis at Cryogenic Temperatures

The embedded memories taken into consideration within this study are designed
using a commercial 65 nm CMOS technology, whose BSIM4.7 transistor models were
calibrated at the operation temperature of 77 K. The calibrated models take into consid-
eration the impact of cryogenic temperatures on different process corners, along with
cryogenic-temperature dependent equations for different parameters like: leakage (e.g.,
GIDL), mobility, channel doping, body factor, series resistances, stress effects (on thresh-
old voltage, mobility, body factor), etc. As reported in our previous work [5], while the
cryogenic-aware calibrated model is roughly correspondent with the original PDK mod-
eling for the operating point of 300 K, as temperature goes down to 77 K, the calibrated
model tracks the silicon wafer measurements much more accurately.

The simulations of the STT-MRAMs use state-of-the-art Verilog-A SMTJ and DMTJ
compact models [19,20], with major device parameters that are presented in Table 2. The
STT-MRAM compact models are based on physical parameters, which were characterized
with experimental prototypes at 300 K. The impact of the cryogenic temperature is taken
into account according to the formulations provided in [17].

Table 2. SMTJ and DMTJ parameters.

Description Value

MTJ diameter—d 30 nm
Free layer thickness—tFL 1.2 nm

SMTJ barrier thickness—tOX 0.85 nm
DMTJ top barrier thickness—tOX,T 0.85 nm

DMTJ bottom barrier thickness—tOX,B 0.4 nm
Resistance-area product—RA 11 Ω · µm2

Spin polarization factor—P 0.66
Saturation magnetization—MS 1.58 T

Gilbert damping factor—α 0.03
Interfacial perpendicular
Anisotropy constant —Ki

1.3 × 10−3 J/ m2

The simulation analysis reported below is based on extensive Monte Carlo circuit-level
simulations of the considered memory technologies operating at 300 K and 77 K. These
Monte Carlo simulations consider both CMOS and MTJ variability (σ/µ). In particular,
for the MTJ devices, the Gaussian distributed variability is 5% for the cross-section area,
and 1% for tOX, tOX,T, tOX,B, and tFL [21,25,26]. The variability of the CMOS devices is
provided by the statistical models of the cryogenic PDK.
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3.1. Static Random-Access Memory (SRAM)

Stability is a crucial design metric in nano-scaled SRAM technologies. Figure 3 shows
the statistical distributions of the static noise margin (SNM) for hold (HSNM), read (RSNM),
and write (WSNM), when the SRAM is cooled down from 300 K to 77 K. The SNM metrics
can be measured by the method proposed by Hill [27]. It consists of plotting the voltage
transfer characteristics (VTC) of the SRAM inverters in order to find the noise margins that
the SRAM cell can tolerate without disturbing its state. Note that the above method is not
efficient for yield results in terms of stability. To deal with this, we used the most-accepted
methodology, first proposed by Seevinck et al. [28]. This method efficiently measures the
noise margin metrics with a DC sweep simulation. In particular, measuring noise margins
(HSNM, RSNM, WSNM) distributions provides a reliable yield estimation, typically at 6σ,
which is required for the design of high-density SRAM cells [29].

HSNM and RSNM consider the measure of the largest DC voltage that the SRAM
cell can withstand without flipping the stored state. As for the WSNM, it is the minimum
voltage required for the SRAM cell to be in a monostable state [29]. While the HSNM is
measured with the WL tied to ground, for the RSNM and WSNM the WL is asserted while
bitlines are driven to VDD and opposite logic values, respectively.
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Figure 3. Statistical distributions of the SRAM hold, read, and write static noise margin (SNM) at
(a–c) 300 K and (d–f) 77 K. Simulations consider a nominal VDD = 1.2 V.

As compared to the 300 K operating temperature, at 77 K the HSNM and RSNM
present a slight increase of about 7.66% and 3.31%, respectively. While this result is obtained
at a nominal VDD of 1.2 V, the HSNM and RSNM can be improved when operating at lower
VDD [15]. In particular, when operating in the subthreshold (VDD = 0.3 V) region, the HSNM
and RSNM increase by about 2× and 4×, respectively. This is due to the steeper transition
of the data storage nodes at 77 K [15]. As for the WSNM, it degrades by 15.6% at 77 K due
to the increased strength of the SRAM cell pull-up network at the low temperature.
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3.2. Gain-Cell Embedded DRAM (GC-eDRAM)

As opposed to 6T-SRAM, which has one universally accepted bitcell topology, previous
GC-eDRAM research has suggested a large variety of configurations, depending on the
target specifications and technology node. In our previous work [5], we demonstrated that
the mixed configuration nMOS-pMOS (2T NW-PR) GC-eDRAM cell represents the best
solution at 77 K for the considered 65 nm technology. Note that the following GC-eDRAM
results in terms of voltage margins and data retention capabilities were evaluated in the
worst-case condition. That is, when the WBL is driven to VDD or ground while the SN is ‘0’
or ‘1’, respectively.

Figure 4a shows the statistical distributions of the read bitline voltages when the
SN is holding a ‘1’ (VRBL(‘1′)) or ‘0’ (VRBL(‘0′)) at an operating temperature of 77 K and
considering a read pulse of 1 ns. The voltage margin VM, which is defined as the difference
between the RBL voltage for ‘1’ and ‘0’ (i.e., VM = VRBL(‘1′) −VRBL(‘0′)), is measured at 4 µs
after writing into the SN.
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Figure 4. Statistical distributions of the (a) read bitline voltages for ‘1’ (VRBL(‘1′)) and ‘0’ (VRBL(‘0′))
states at 77 K, and (b) its corresponding read voltage margin (VM) for 300 K and 77 K. Simulations
consider a nominal VDD = 1.2 V.

The figure shows the VM evaluated at both 3-sigma and 6-sigma with considerably
high margins when operating at 77 K. Moreover, Figure 4b shows the statistical distribu-
tions of the read voltage margin corresponding to the mean values measured in Figure 4a.
In addition to VM at 77 K, 300 K is also considered, to better show the benefits in terms of
voltage margins when the GC-eDRAM operates under cryogenic conditions. In particular,
VM at 77 K is improved by 2× as compared to 300 K simulation results.
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Because of the inherently dynamic characteristics of the GC-eDRAM, periodic re-
fresh operations are required. However, since the subthreshold leakage is substantially
suppressed at cryogenic temperatures, the memory retention time is expected to be consid-
erably improved. Accordingly, we extended our analysis on the considered 2T GC-eDRAM
cell to evaluate the data retention capabilities. Figure 5a,b show the worst-case storage
node deterioration after writing ‘0’/‘1’ into the 2T GC-eDRAM when operating at 300 K
and 77 K, respectively. While the blue curves show the degeneration of a logic ‘1’ level
when WBL is driven to ground, the red curves show the degeneration of the logic ‘0’ level
with WBL driven to VDD. As compared to the 300 K simulations, the 77 K operating point
shows improvements by orders of magnitude. In particular, it can be seen that the SN
degeneration at cryogenic temperatures is in the order of ms, which points out that energy-
wasting refresh operations could be considerably limited. This is further emphasized by
Figure 5c, which shows the statistical distribution of the data retention time (DRT) at 300 K
and 77 K. Here, we define DRT as the time it takes for the difference between the ‘0’ and
‘1’ SN voltages, reported in Figure 5a,b, to be 200 mV [30]. At 77 K, the DRT is improved
by 900× with respect to room temperature simulations, while also exhibiting 98% less
variability.
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Figure 5. Storage node (SN) degradation for (a) 300 K and (b) 77 K. (c) Data retention time (DRT) sta-
tistical distribution at room and cryogenic temperatures. Simulations consider a nominal VDD = 1.2 V.

3.3. Spin-Transfer Torque Magnetic RAM (STT-MRAM)

The 1TRC and 1TSC bitcell configurations were referenced in this work since they
are the most cost-effective solutions in terms of area and energy to build STT-MRAM
embedded memories based on SMTJ and DMTJ, respectively [21]. Figure 2c shows the
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1TRC and 1TSC configurations, where the RL (for the SMTJ) or RLB (for the DMTJ) are
connected to the BL.

Monte Carlo simulation results under write and read accesses are shown in Figures 6 and 7
for both SMTJ- and DMTJ-based STT-MRAM cells. The reported results refer to 300 K and
77 K simulations, while considering a write error rate (WER) and read disturbance rate
(RDR) of 10−7 and 10−9, respectively [31]. In particular, Figure 6 shows the statistical
distribution of the write pulse (tp) referred to the worst case between AP→ P and P→ AP
transitions. When cooling down to 77 K, we can observe a penalty of about 1.45× and 2.1×
in terms of tp for SMTJ- and DMTJ-based bitcells. This is because the critical switching
current dramatically increases as temperature goes down to cryogenic levels [16,17,32],
with an adverse impact on energy and latency for write operation. This can be counterbal-
anced by increasing the width of the access transistor. Note that tp is evaluated at 6-sigma
(tp,6σ). Although SMTJ- and DMTJ-based STT-MRAM solutions present an increased tp
of more than 50% as compared to the 300 K operating point, STT-MRAM based on DMTJ
allows a tp of a few ns, even for cryogenic temperatures.
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Figure 6. Monte Carlo results under write access: statistical distribution of the pulse width (referred
to the worst-case between AP→ P and P→ AP transitions) for SMTJ- and DMTJ-based STT-MRAM
bitcells operating at (a,b) 300 K and (c,d) 77 K.
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Figure 7. Monte Carlo results under read access: statistical distribution of the bitline voltages for
SMTJ- and DMTJ-based STT-MRAM bitcells operating at (a,b) 300 K and (c,d) 77 K.

To evaluate the reading performance of STT-MRAMs, we used the conventional
voltage sensing (CVS) scheme [33], which includes applying a fixed read current (Iread)
to the BL of the bitcell, and then comparing the BL voltage (VBL) with a reference voltage
(VREF) by means of a sense amplifier. Iread is set to be low enough to not disturb the
stored data (RDR = 10−9) (A read pulse width (tread) of 1 ns is considered). Figure 7
shows the statistical distribution of the bitline voltages for SMTJ- and DMTJ-based STT-
MRAM bitcells operating at 300 K and 77 K. From the two sensing operations, VBL(P) and
VBL(AP), the voltage sensing margin (VSM) is defined as: VSM = VBL(AP) − VBL(P). Due to
the rise in the TMR, VSM increases at cryogenic temperatures as compared to 300 K [14,32].
In particular, from Figure 7, we can observe VSM improvements by about 36% and 48% for
the SMTJ- and DMTJ-based STT-MRAMs. Note that, the DMTJ-based bitcell has reduced
sensing margins with respect its SMTJ-based counterpart. In both the cases, the sensing
margins can be improved by adopting proper BL boosting design techniques [34,35].

4. Comparison Results

In order to complete our analysis and make a direct comparison between the different
memory technologies, we have measured their main characteristics, including area, sens-
ing margins, data retention capabilities, read/write access, and both power and energy
consumption. Table 3 summarizes the simulation results for a 128-word memory bank
operating at 77 K and considering a nominal VDD. Note that the data reported in terms of
area corresponds to a standard full-custom design, i.e., not using “pushed rules”.

From Table 3, the STT-MRAM configurations are the most area-efficient solutions,
presenting a bitcell area footprint of about 88% and 56% less than the 6T-SRAM and GC-
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eDRAM, respectively. This characteristic make them very attractive for designing dense,
non-volatile embedded memory banks. In terms of sensing margins, the GC-eDRAM is the
technology that benefits the most from operating at 77 K, showing VM improvements up to
90%. While the STT-MRAM cells also present improvements in terms of VSM, the 6T-SRAM
maintains comparable HSNM and RSNM, along with reduced WSNM. As for the data
retention capabilities, while 6T-SRAM and STT-MRAM provide static and non-volatile
behavior, respectively, GC-eDRAM exhibits DRTs in the order of ms, allowing reduced
refresh operations with respect to the room temperature operating point.

From Table 3, the STT-MRAM is the most penalized in terms of access time, mainly
due to larger write time at 77 K. In particular, the DMTJ-based STT-MRAMs suffer from
longer write times of about 24×, on average, as compared to 6T-SRAM and GC-eDRAM.
In terms of write and read energy, the GC-eDRAM is the most energy-efficient solution,
showing write and read improvements of about 63% and 70%, respectively, as compared to
6T-SRAM. However, differently from STT-MRAM and 6T-SRAM, GC-eDRAM still requires
energy consuming refresh operations, although much less than the room temperature
operation. Finally, the leakage power is also measured in standby mode. While STT-
MRAM technology presents almost zero leakage (the only leakage contribution is due to
the periphery), 6T-SRAM presents 98% higher leakage power than GC-eDRAM.

Table 3. Figures of merit of different embedded memory technologies under a cryogenic temperature
of 77 K and a nominal voltage of VDD = 1.2 V.

Parameter 6T-SRAM
2T Mixed GC
nMOS-pMOS
(2T NW-PR)

SMTJ-Based
STT-MRAM

DMTJ-Based
STT-MRAM

Normalized Area 1X 0.27X 0.12X 0.12X

Noise or Sensing
Margin * ( mV)

(464/187
/562) 591 244 108

DRT ( ms) Static 23.3 Non-Volatile Non-Volatile

Read time
( ns) 0.252 0.26 1 1

Write time
( ns) 0.133 0.144 19.4 3.28

Read
Energy/bit ( fJ) 2.279 0.739 16.4 4.63

Write
Energy/bit ( fJ) 2.430 0.852 969 165

Refresh
Energy/bit ( fJ) — 1.591 — —

Leakage
Power/bit † ( fW) 376.2 6.768 ‡ 0

* Sensing margin is referred as the noise margins (HSNM/RSNM/WSNM), VM (at 4 µs), and VSM for the
6T-SRAM, GC-eDRAM, and STT-MRAM configurations, respectively; † The values refer to the bitcell in standby
mode; ‡ Average power from 0 to DRT. Refresh operation is neglected.

5. Conclusions

In this work, we investigated the impact of cryogenic temperatures on different em-
bedded memory technologies. Our study was carried out using a commercial 65 nm 1.2 V
CMOS technology fully calibrated under silicon measurements at cryogenic temperatures.
Obtained results demonstrate that embedded memory technologies benefit in different
figures-of-merit when cooled down from 300 K to 77 K. Although the most commercially
mature technology, 6T-SRAM, is faster and less leaky at cryogenic temperatures, its rela-



Electronics 2022, 11, 61 12 of 14

tively large area footprint and reduced write static noise margin at 77 K are less desired.
GC-eDRAM excels in most of figures-of-merit, and even if refresh operations are required,
the resulting refresh power is considerably lower than when operating at room temperature.
In particular, GC-eDRAM benefits from improved read voltage margins and data reten-
tion time by about 2× and 900×, respectively. STT-MRAMs based on SMTJ present high
write overhead due to increased switching currents at cryogenic temperatures. However,
the DMTJ-based solution significantly reduces the write penalty (by 83%). Furthermore,
the readout capability of STT-MRAMs is improved, enabling more reliable read operations
at cryogenic temperatures. Overall, our evaluation points out that embedded memory
technologies can be interesting for cryogenic applications, not only for high-performance
computing, but also for bridging the gap from room-temperature to the realm of cryogenic
applications that operate down to liquid helium temperatures and below.
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STT-MRAM Spin-Transfer Torque MRAM
MTJ Magnetic Tunnel Kunction
SMTJ Single-barrier MTJ
DMTJ Double-barrier MTJ
TSMC Taiwan Semiconductor Manufacturing Company
PDK Process Design Kit
SN Storage Node
NW nMOS write port
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FL Free Layer
TMR tunnel magnetoresistance
P parallel
AP antiparallel
RC Reverse Connection
SC Standard Connection
SNM Static Noise Margin
WSNM Write SNM
RSNM Read SNM
HSNM Hold SNM
VTC voltage transfer characteristics
DRT Data Retention time
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