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Abstract: In the construction of new smart cities, traditional fire-detection systems can be replaced
with vision-based systems to establish fire safety in society using emerging technologies, such as
digital cameras, computer vision, artificial intelligence, and deep learning. In this study, we developed
a fire detector that accurately detects even small sparks and sounds an alarm within 8 s of a fire
outbreak. A novel convolutional neural network was developed to detect fire regions using an
enhanced You Only Look Once (YOLO) v4network. Based on the improved YOLOv4 algorithm, we
adapted the network to operate on the Banana Pi M3 board using only three layers. Initially, we
examined the originalYOLOv4 approach to determine the accuracy of predictions of candidate fire
regions. However, the anticipated results were not observed after several experiments involving this
approach to detect fire accidents. We improved the traditional YOLOv4 network by increasing the
size of the training dataset based on data augmentation techniques for the real-time monitoring of
fire disasters. By modifying the network structure through automatic color augmentation, reducing
parameters, etc., the proposed method successfully detected and notified the incidence of disastrous
fires with a high speed and accuracy in different weather environments—sunny or cloudy, day
or night. Experimental results revealed that the proposed method can be used successfully for
the protection of smart cities and in monitoring fires in urban areas. Finally, we compared the
performance of our method with that of recently reported fire-detection approaches employing
widely used performance matrices to test the fire classification results achieved.

Keywords: fire detection; smart city; YOLOv4; surveillance system; fire-like lights

1. Introduction

Fire has contributed to the development of human society in various fields since its
inception. However, once a fire gets out of control, it can cause severe damage to human life
and property. It is critical to avoid such losses of human life and property. Statistics released
by the Korean National Fire Agency revealed that 40,030 fires occurred across South Korea
in 2019, resulting in 284 deaths and 2219 injuries. Furthermore, an average of 110 fires
and 0.8 fire-related fatalities occurred daily, leading to KRW 2.2 billion in fire property
damages. In 2020, more than 50 people were killed in a fire after a 33-story tower block
building completely burned down in Ulsan, and a warehouse blaze occurred in Incheon,
both incidents in major Korean cities. During the combustion process, fire exhibits many
physical properties. Researchers and engineers have developed vision-based fire detectors
(VFDs) as well as fire detectors that are sound-sensitive, flame-sensitive, temperature-
sensitive, gas-sensitive, or solid-sensitive to address these diverse properties [1]. The
chemical properties of smoke are detected by sensors, causing an alarm to sound. However,
this approach may result in false alarms. The alarm will not go off until the smoke gets
close enough to the sensors to activate them. These detection systems were created as
components of traditional alert systems, and they detected certain properties of the flame,
such as its smoke and temperature. In some cases, involving broad coverage areas and wild
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(forest areas) or high temperatures, a sensor-based detection system [2,3] is impractical
because it will result in numerous false warnings. Furthermore, such systems do not
provide visual information that would be critical for aiding firefighters in comprehending
the situation at a fire incident rapidly. The surroundings can easily interfere with infrared
or ultraviolet detectors [4,5], and because of their low detection range, such detectors are
not appropriate for broad, open regions. Although satellite remote sensing [6] is effective
in identifying large-scale forest fires, it is not capable of detecting early-stage fires. If a
real fire occurs at various locations, such as in vast mountains, buildings, and industries,
conventional sensor-based fire detection systems can detect them early. To improve the
detection of fire in real-time and control false-positive warnings, a VFD system is essential.

The VFD is a unique non-contact fire detector. The VFD can identify a fire from a
distance based on the flame data or shape of the smoke of the fire. VFDs have progressively
gained popularity with the advancement of computer vision and machine learning, and
they have been in use for many years. Moreover, VFDs are more reliable and well-built
than traditional fire detection technologies. As a result, VFDs have significantly improved
the detection of fires in large areas, such as forests, warehouses, and retail malls. The early
identification of fires is essential to emergency prevention. The major objective of VFDs
is to achieve a robust detection rate with a low false alarm rate. Furthermore, VFDs are
applicable in daytime and nighttime surveillance.

At present, several public areas feature closed-circuit television (CCTV), installed
for surveillance and monitoring. CCTV can be employed in fire detection; however, it
is not a “smart” system in this regard. As a result, artificial intelligence (AI) techniques
must be applied to train the fire detection system, and the system must first recognize
the fire before the alarm can be activated. Subsequently, the system will determine the
fire intensity and volume. In this scenario, the VFD system can assist in preventing
disasters by detecting large and hazardous fires early. To this end, the VFD system provides
numerous benefits, including a high accuracy, rapid fire detection, and adjustable custom
installation. The VFD and alarm system can be built using a low-cost camera and a small
yet robust embedded computer, such as Raspberry Pi, Banana Pi, or Arduino. The input
image data will be processed in real-time via AI methods to evaluate the presence of a
flame or flame hazard. Image processing algorithms can be applied to detect fire through
various approaches. The simplest approach is to use an RGB color model with a threshold
because the fire region in an image is typically red. However, this approach is prone
to false positives owing to the presence of red colors in the surroundings. Meanwhile,
AI- and deep learning (DL)-based image recognition methods can learn and recognize
complex image data automatically. Such methods have received considerable attention
and produced robust results in diverse applications, including autonomous driving, object
detection and recognition, medical diagnostics, and visual search. Several researchers have
applied convolutional neural networks (CNNs) and transformers to the field of vision-
based fire detection, resulting in the development of models trained in collecting fire
image characteristics [7–14]. Many CNNs have been studied for fire detection applications,
including faster R-CNN [15], YOLO [16], and SSD [17]. Modern city planning aims to create
sophisticated, safe, and sustainable smart cities. Several technologies, such as fire-detection
and fire-alarm systems, have to be considered while building AI-based smart cities. There is
a high demand for early and accurate fire detection systems to ensure the safety of human
life and property. Surveillance cameras are being installed in smart cities to monitor every
process, and the use of such cameras for fire detection may present an additional reasonable
and reliable solution.

To solve the problem mentioned above, we developed a new fire detection method that
can be applied to eliminate disastrous situations, including fire accidents. We improved the
performance of the classic YOLOv4 network to enable the detection of fire hazards at the
initial stage to reduce the loss of human lives. About 70–80% of fire-related deaths occur
owing to toxic gases; therefore, it is important to detect fire scenes rapidly without false
alarms using AI methods.
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The remainder of the manuscript is organized as follows. Section 2 reviews the
related research and introduces the information pertaining to well-known fire detection
algorithms. Section 3 describes the proposed fire-detection approach; we describe our
dataset, system and training results in detail. Section 4 contains the experimental results,
which are evaluated based on the time required for flame recognition and the accuracy rate.
Finally, Section 5 provides the conclusions and plans for future study.

2. Related Work

Various sensor- and vision-based fire detection systems have been proposed by re-
searchers. Their advantages and disadvantages have also been presented in several review
papers [18–21]. In this section, we present state-of-the-art fire detection and segmen-
tation methods that are divided into two categories: DL-based and vision-transformer-
based methods.

2.1. Fire Detection and Segmentation Method Based on DL

In the last decade, AI and DL approaches have facilitated extensive advancements in
several computer vision problems, such as medical diagnosis [22], object detection [23],
autonomous driving [24], road monitoring [24], object segmentation [25], and satellite
image analysis [26,27]. The comprehensive feature map produced using convolutional
layers was primarily responsible for this. DL algorithms were able to identify each pixel
in the image efficiently and define the appearance of objects accurately during object
segmentation. These algorithms performed more reliably than traditional machine learning
models [25].

Numerous studies have been conducted over the years using DL approaches to
address fire detection tasks. We have analyzed some of these studies; Muhammad et al. [28]
proposed a novel energy-friendly and computationally effective CNN design, motivated by
the SqueezeNet [29] structure for the fire detection, localization, and semantic perception
of the appearance of fires observed via CCTV surveillance networks. Gonzalez et al. [30]
employed CNNs to identify fires in images with a high accuracy and performance, allowing
the system to operate in real-time. This system was part of a new unmanned autonomous
vehicle detection system for wildfire monitoring and the calculation of location and range.
Two networks, AlexNet [31] and a pure CNN, were used to identify the fire features from
images. In 2020, novel VFD approaches based on sophisticated CNN models for object
identification were proposed by Li et al. [32]. These VFD techniques, which used Faster-
RCNN, SSD, and YOLOv3, were compared in terms of their false alarm rates and accuracy.
The experimental results revealed that the YOLOv3 algorithm yielded the most robust
result with an accuracy of 83.7%.

Encoder–decoder architectures have recently emerged as one of the most popular
designs for semantic segmentation. First, the encoder, which contains convolution and
pooling layers, produces a high-dimensional feature map from the input images. Second,
the decoder, which consists of unpooling and deconvolution layers, decodes the given
features and defines the object mask [33]. Owing to the successful performance of various
tasks, such as image segmentation, numerous studies have been conducted based on the
encoder–decoder structure to segment objects. For example, Zhang et al. [34] presented an
efficient DL model based on U-Net and SqueezeNet for forest fire detection and recognition.
The proposed framework is divided into two stages: a segmentation module that extracts
the shape of a fire and a classification module that determines whether the detected fire
area is correct. Owing to its high performance when used in the forest fire detection and
segmentation tasks, Akhloufi et al. [35] combined this encoder–decoder with a deep-fire
model. This model achieved an FM-score of 97.09% in training and 91% in testing using a
small dataset (419 images from the CorsicanFire wildfire dataset as training data) and Dice
loss as the loss function [35]. The experimental results confirmed the high effectiveness of
the model in segmenting wildfires in the unstructured surroundings wherein uncontrolled
forest fires occur. As a refinement of U-Net, Bochkov et al. [36] proposed the UUNet



Electronics 2022, 11, 73 4 of 17

concatenative model—a new DL model. Binary and multiclass U-Net techniques were
combined in this approach. It allows multiclass (color-based) segmentation of signals
acquired from the binary part of single-nature objects obtained (fire regions). In addition, a
custom fire-image dataset consisting of 6250 samples with a size of 224 × 224 pixels was
created, which outperformed the original U-Net by 3% and 2% in multiclass segmentation
and binary segmentation, respectively.

Xu et al. [37] introduced a forest fire detection technique based on ensemble learning
using CNNs. Two individual object detectors, YOLOv5 [38] and EfficientDet [39], and a
classifier based on EfficientNet [40] are combined to localize and detect fires in various
scenarios with high accuracies. The pipeline proposed therein achieved a more reliable
detection precision of 99.4% using a dataset including 2976 forest-fire images and 7605 for-
est images without fires. Furthermore, the capacity to identify forest fires in a variety
of settings while lowering the rate of false positive alarms was emphasized. The final
detection results will be determined using a decision method based on the outcomes of
these three learners, which will improve detection accuracy and reduce false positives.

2.2. Fire Detection and Segmentation Method Based on Transformers

Many CNN-based methods rely mainly on the convolution operator, which extracts the
local features of an image. However, they are restricted in their ability to simulate the global
context and have a high computational cost. Transformers have recently been presented
as a method to overcome these restrictions by creating long-range interactions between
input patches by applying the self-attention method, which constitutes the foundation of
transformers. These approaches simulate the relationships between each input feature
and other features. They define the global contextual data of each item by considering
its interaction with other details. Researchers initially applied transformers to natural
language processing problems and obtained robust results. Because of their excellent
performance, transformers have since been adopted in computer vision problems, such
as object detection and recognition, text segmentation, image classification, and video
processing. There are mainly two types of transformers, pure transformers and hybrid
transformers (which combine CNNs with a transformer). The quantity of learning data is
the most important factor influencing the transformer performance. Dosovitskiy et al. [41]
introduced a vision transformer for image classification tasks. When pre-trained at a
sufficiently large scale and applied to jobs with fewer data points, the vision transformer
produced outstanding results. The vision transformer advances or outperforms the state-of-
the-art methods on several image recognition benchmarks when pre-trained on the public
ImageNet-21k dataset or the in-house JFT-300M dataset, which contains 300 million labelled
images. The top model results, in particular, obtained 88.55% accuracy on ImageNet, 90.72%
on ImageNet-ReaL, 94.55% on CIFAR-100, and 77.63% on the VTAB suite of 19 problems.
More recently, Shahid et al. [42] proposed an accurate analysis of the vision transformer
model [41] to determine how the framework may be used for vision-based fire detection.
The vision transformer does not use convolution and overcomes the drawbacks of CNN-
based techniques, including translation invariance and locality. To construct a series,
the images were first assembled into patches, which were subsequently flattened and
inserted. Position embedding is used to maintain positional knowledge in these patches.
The sequence is then placed into multiple multi-head attention layers, which results in
the final representation. In the classification layer, the token sequence is passed as the
input to a softmax function. Rafik et al. [14] explored the potential of vision transformers
in the context of forest fire segmentation using visible spectrum images. This framework
improved upon two vision transformers, Medical Transformer [43] and TransUNet [44], for
fire detection. They demonstrated the advantages of transformers for fire detection in a
variety of scenarios, including a variety of input sizes and backbone models that comprised
either pure or hybrid transformers, and the experimental results were obtained using
Dice loss as the loss function and the CorsicanFire dataset for training and evaluation. In
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addition, IoT-based fire detection methods are also becoming a more active and attractive
research area for scholars [45–47].

3. Fire Detection and Classification
3.1. Dataset

Our preparation database contained 9200 nighttime and daytime flame pictures, as
shown in Table 1. We gathered them from freely accessible databases and Google pictures
under various conditions (size, color, and shape). In any case, the normal outcome could not
be accomplished with these datasets, and we may not achieve the expected fire recognition
accuracy in real-time environments. To resolve this issue, we endeavored to utilize the
image transformation method to increase the number of fire-scene pictures in the dataset.
The subsequent subsection exhaustively describes the production of the dataset.

Table 1. Separation of flame images in the database.

Database Publicly Available Datasets Video Frames Total

Flame Frames 4336 4864 9200

Rotating all the images manually and labeling them again requires considerable
processing time. Therefore, we created special software for this using the transformation
matrix theory in the OpenCV framework. Image transformation can be expressed in the
form of matrix multiplication via affine transformation. Affine transformation is widely
used for performing rotation operations, and the following 2 × 3 matrices represent it:

M =

[
a00 a01 a02
a10 a11 a12

]
(1)

The representation of the two-dimensional (2D) vector that we want to transform is
as follows.

X =

[
x
y

]
(2)

We can obtain a transformed vector as follows.

T = M ∗ [(x, y, 1)]T (3)

M =

[
a00 a01 a02
a10 a11 a12

]
(4)

In the above matrices, T indicates the transform vector, and M indicates the rota-
tion matrix.

The transformation of the matrix can be expressed in terms of the angle of rotation
and coordinates of the center, as detailed in [48].[

α β (1 − α) ∗ centre.x − β ∗ centre.y
−β α β ∗ centre.x + (1 − α) ∗ centre.y

]
(5)

In this transformation, α = scale ∗ cos θ, β = scale ∗ sin θ, and θ is the rotation angle.
We calculated at scale = 1. Usually, the image size and reference point changes after rotation,
and the transformation matrix has to be modified. Figure 1 shows the calculation of the
new dimensions.

Subsequently, the width and height of the new image size were calculated using the
following Equation (6):

new.width = h ∗ sin(θ)+w ∗ cos(θ)
new.height = h ∗ cos(θ)+w ∗ sin(θ)

(6)
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Finally, as the image resizes, the coordinates of the rotation point (center of the im-
age) also change. The newly obtained image center coordinates are calculated using the
following transformation matrix:[

α β (1 − α)∗centre.x − β ∗ centre.y +
(

new. width
2 − centre.x

)
−β α β ∗ centre.x + (1 − α)∗centre.y + (new. height/2 − centre.y)

]
(7)

where α = cos θ, β = sin θ, and θ is the rotation angle. While rotating an image, we
encountered an aliasing effect and holes in the output image. This problem can be easily
solved using the interpolation operation. Unlike our previous research, we rotated all fire
pictures by 90◦, 180◦, and 270◦, as shown in Figure 2.

Figure 1. Image rotation schema.
Figure 1. Image rotation schema.

(a) (b) (c) (d)

Figure 2. Original image (a); 90° rotation (b); 180° rotation (c); 270° rotation (d).
Figure 2. (a) Original image; (b) 90◦ rotation of (a); (c) 180◦ rotation of (a), and (d) 270◦ rotation of (a).

After applying this method, we increased the dataset images by three times the number
of original augmented frames. As previously mentioned, our data consisted of 9200 original
images. The total size of datasets increased to 27,600 after the effective augmentation
method used in this step. Moreover, over 10,000 fire-like images were added to prevent
false-positive outcomes, as shown in Table 2. The power of CNN structures fundamentally
depends on the number of training dataset images and their resolutions. Consequently, it
is necessary to expand the training dataset based on the data augmentation approaches.

Next, we set the flame in each image according to the YOLO training using the
LabelImg tool. The tag folder is a TXT document that preserves the flame locations in the
frame coordinates. Furthermore, it was utilized in the convolutional neural network as
part of the learning procedure. Additionally, we used flame-like pictures to the training
set; however, the tag folder comprised free TXT documents. The reason for adding these
non-flammable frame sequences during the learning process is to reduce the number of
false-positive detections.
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Table 2. Separation of flame and flame-like images in the database.

Database Training
Images

Testing
Images Total

Flame frames
Flame-like images

24,385
10,000

3215
0

27,600
10,000

3.2. System Overview

In this subsection, we provide a short outline of the proposed fire detector for the rapid
and accurate identification of fire candidate areas regardless of the size, color, movement,
shape, speed, or appearance of the fire. In our methodology, several techniques were
developed to accomplish the intended purpose. As shown in Figure 3, we first obtained the
original input video sequences from a static camera in real-time. Second, we downsized
the original images to resolution of 416 × 416 using the OpenCV framework to avoid
complexity within the training and classification task. Smaller images train significantly
faster, and may even converge faster, and we will be able to train larger batches using
such images. Additionally, using low-dimensional images can help our network generalize
better, as there are fewer data to overfit. In our study, we also employed images with
608 × 608 dimensions; they decreased the processing time during training and testing.
Notably, large-scale images may occasionally help increase the fire detection accuracy, but
processing them can be time consuming.
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Third, the image enhancement approach was applied to resized images to improve the
image quality and increase the number of augmented flame pictures for training the CNN
network. Fourth, we operated the network based on pretrained weights by initializing the
model. Finally, fire classification accuracy evaluated and predicted the occurrence of a fire.
YOLOv4 utilizes the cross-stage partial (CSP) connection with Darknet-53 at the backbone
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for feature extraction. At the fire detection and classification stage, the extracted features
are compressed and passed through a CNN backbone for predicting fire scores. Based on
the surveillance control system, fire accidents were monitored until the fire was recognized.
When fire areas are recognized, the red light located on the camera is turned on, and it
transmits an emergency alarm to the system operator and firefighting office. The proposed
fire detector can be employed for smart city surveillance system applications to enhance
the fire safety of the environment. Our method accurately detects and classifies fire regions,
even identifying background color intensities that closely resemble the pixel values of the
color of the fire.

3.3. Fire Detection Process

Three main tasks contribute to the detection of any type of object in real-time scenes
with a high speed and accuracy: object classification (type of object), object localization
(object located in the image), and object location in the image detection (object position).
The YOLO detector is a DL-based approach for object classification. Thus far, five different
versions of YOLO have been released: YOLOv1 to YOLOv5. Almost all types of YOLO
versions are currently used to identify objects, but all types may not be equally effective in
detecting fires. In this study, we used YOLOv4 for fire detection, which was an evolution
of the YOLOv3 model. We started our research by examining YOLO networks with the
currently available 9200 608 × 608 and 416 × 416 fire images. In our previously published
paper [16], we achieved a high accuracy using the YOLOv3 network with images of 608 ×
608 resolution. However, the training and testing process takes more time than expected
because of the large input images and low frames per second (FPS) values. The AP and
FPS of YOLOv4 have increased by 10% and 12% (45 FPS) respectively, compared to those
of YOLOv3. In addition, several new features were added to build a suitable algorithm for
the efficient training and detection of moving objects, which are detailed in the following
subsections. First, we evaluated the fire identification performance of YOLOv4 to test the
correctness of the prediction of flames with a limited database. As shown in Table 3, the
detector was examined using standard variants without any revisions in the calculation
stage with 50,000 cycles. The default network employs automatic color augmentation
as hue = 0.1, saturation = 1.5, and exposure = 1.5 values to increase the accuracy during
the training.

Table 3. Constructing pretrained weights using a limited dataset.

Algorithm Input Size
Training
Accuracy

(AP50)

Testing
Accuracy

(AP50)

Weight
Size

Number of
Iterations

Training
Time (h)

YOLOv4 608 × 608
416 × 416

81.1% 74.3% 245 MB
50,000

67 h

YOLOv4 84.5% 79.1% 245 MB 45 h

The results were obtained in terms of the training and testing accuracy with different
parameters, as can be seen in Table 3. YOLOv4 yielded the highest result accuracy with an
input image size of 416 × 416. Although the YOLOv4 results are similar, they are not widely
used to eliminate fire detection cases; therefore, we chose YOLOv4 from YOLO standard
versions to use our research and decided to improve its results using data augmentation.
DL methods rely heavily on large datasets; otherwise, the method faces an overfitting
problem during the training process. Therefore, to avoid overfitting challenges, dropout
and data augmentation methods are usually employed.

The rest of the manuscript resembles the structure of [16], which was published
recently. The key difference is that we changed the main network from YOLOv3 to YOLOv4
to use new features and apply a fire detection area with a down sampled image size. To
improve accuracy, we modified the dataset and algorithm. We removed low-quality images
smaller than 416 × 416 pixels from the database. Detection tasks require better visual
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information to increase the classification accuracy. In addition to the data, we duplicated
the unlabeled data, which led to errors. During the training, we decided not to use
the color, saturation, or exposure parameters in the algorithms automatically: color = 0,
saturation = 0, and exposure = 0. In addition, we increased the quantity of data by changing
the contrast and brightness by certain values before training the images. Szeliski et al. [49]
stated that pixel transformation and local operators can be utilized to deal with pictures.
In pixel transformations, the value of each output pixel depends only on the values of the
corresponding input pixels. Brightness and contrast are good examples of pixel changes
and improved image quality.

g (x) = α f (x) + β (8)

In the above formula, α > 0 and β are commonly referred to as gain and bias parame-
ters, respectively, and these parameters affect the contrast and brightness. f (x) denotes the
source pixel of the image, and g (x) denotes the output pixel of the image. The following
equation can be used to simplify Equation (9):

g (i, j) = α f (i, j) + β (9)

where i and j indicate that the pixel is located in the i-th row and j-th column. By changing
the values of α (contrast [1–3]) and β (brightness [0–100]), we generated new augmented
data in the database. Brightness enhancement is one of the most significant techniques for
image improvement during the pre-processing stages. In [50–52], researchers employed
global color contrast enhancement and combined local and global contrast enhancement ap-
proaches.

We mention in Section 3.1 that we had 27,600 fired picture sequences and 10,000 fire
similar scene images. Removing low-quality and low-resolution frames from our final
database, we gathered a total of 20,100 good images to use in implementation. After
modifying the luminance and chromaticity of the flame frames, we increased the total
number of learning pictures around to 80,400, as shown in Table 4. First, we doubled the
contrast between the first inserted images. Eventually, we decreased the brightness of the
original input image by half.

Table 4. Separation of all flame images in the database.

Before After Filtering After Contrast
Increase (Double)

After Contrast
Decrease (Half)

20,100 20,100 20,100 20,100

Using our final dataset, we tested the YOLOV4 network with homogeneous image
sizes and iterations. Second experiment results are significantly different from the previous
experiment outputs. The improved YOLOv4 detector achieved a better accuracy than
previous detectors. However, the training process in this approach takes more time because
the number of dataset images increases considerably, as summarized in Table 5.

Table 5. Constructing pretrained weights using YOLOv4.

Algorithm Input Size
Training
Accuracy

(AP50)

Testing
Accuracy

(AP50)

Weight
Size

Number of
Iterations

Training
Time

YOLOv4 608 × 608
416 × 416

95.1% 94.7% 245 MB
50,000

87 h

YOLOv4 98.8% 96.3% 245 MB 72 h

Furthermore, we tested all YOLO network versions on the augmented fire dataset
(80,400 images) and compared the final accuracies; Table 6 reveals that YOLOv4 ranked the
highest in training with 98.8% accuracy. Furthermore, YOLOv3 achieved 97.1% (a difference
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of 1.7% from YOLOv4) and marginally trailed YOLOv4 in terms of the testing accuracy.
This was followed by YOLOv4tiny and YOLOv4tiny_3l. These algorithms consumed
more time than those in previous experiments because of the increased number of dataset
images. YOLOv4 was considered as an efficient and powerful fire detection model with
the highest prediction accuracy, even when the processing time was less than that of the
YOLOv4_tiny algorithm.

Table 6. Comparison of all YOLO networks based on a large dataset.

Algorithms Input Size
Training
Accuracy

(AP50)

Testing
Accuracy

(AP50)

Weight
Size

Number
of

Iterations

Training
Time

YOLOv4

416 × 416

98.8% 96.3% 245 MB

50,000

72 h

YOLOv4-tiny_3l 89.9% 85.7% 57 MB 37 h

YOLOv4-tiny 93.8% 91.2% 85 MB 43 h

YOLOv3 97.1% 94.6% 236 MB 82 h

YOLOv3-tiny_3l 92.6% 90.4% 63.7 MB 39 h

YOLOv3-tiny 85.3% 82.7% 53 MB 37.5 h

As mentioned above, owing to fire scenes, several errors occur in real-time fire detec-
tion at the wrong signal. In this research, we used 3000 sunrise and sunset images in the
training and not the testing steps of the model. This is because sunlight pixel values are
very close to fire color intensities, even though they are not real fires.

We examined the training weights in both experiments using a database of images
with no fires. YOLO networks “evaluate” regions based on their similarity to predefined
classes. Areas with the highest scores were recorded as positive, regardless of which class
they were closest to. The results are shown in Figure 4.
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It can be seen in Figure 4 that the weight files trained through the default algorithms
yielded a lot of mistakes. Although the fewest mistakes were exhibited by the YOLOv4
method, they are classified as major false positives. After adding fire-like images to
the dataset, the weight files were trained again, and the experiments revealed a 20-fold
reduction in errors compared to those in the default algorithms, as shown in Figure 5.
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Although we achieved the expected 98.8% score at this stage, we attempted to increase
the final accuracy using ideas from recently published papers. We deduced from [53]
that the detection of small flame regions is not easy and that most approaches cannot
detect them in a timely manner. To overcome this difficulty, we produced small-scale fire
images to improve the classification accuracy, as detailed in [16]. We used a large-scale
feature map to identify small moving objects and combine them with the feature map in
the previous layers, which helped preserve the fine-grained features, as mentioned in [32].
This extensive feature map, which contains the location data of the previous layers and
the complex properties of the deeper layers, has been used to recognize small-sized fire
regions. Another advantage of our method is that it can analyze the intentions of humans
as well as the safety of generated fire through AI. Fire detectors can make rapid decisions
in emergency situations and ignore alarms when cameras detect fires created by humans.

We increased the fire detection accuracy to 99.8%. With this result, we can detect any
type of fire in the early stage, even small-scale ones. Finally, we needed to implement our
method on the Banana Pi M3(BPI M3) board to enable the use of the proposed method with
a small convolutional neural network to reach a reduction in test process time and loss of
accuracy. The large CNN operating on the BPI M3 results in a slow performance and is
practically complicated. To accomplish this work, we utilized three layers of the improved
YOLOv4. In the next section, we compare the traditional in-depth study frameworks with
proposed method for efficiency and effectiveness analyses. To achieve this objective, we
trained our network using images depicting artificial fires that people use in their daily
lives. Providing a “golden time” for an initial response is the most important element of
our approach in dealing with and identifying catastrophic situations.

4. Experimental Results and Discussions

We constructed and examined the proposed system in the Anaconda 2020 Python
distribution on a PC with a 3.20 GHz CPU, 32 GB RAM, and two Nvidia GeForce 1080Ti
GPUs (Nvidia, Santa Clara, CA, USA). To estimate tkuldoshbay@gachon.ac.krhe perfor-
mance of the fire detection method, the model was tested on various indoor and outdoor
fire scenarios. The previous section discusses several experiments that were conducted
and implemented using YOLO classifier systems. Here, we focus on the analysis of the
execution of conventional fire detection techniques and the proposed approach in terms
of qualitative and quantitative results. Figures 6 and 7 show examples of visible experi-
ments in daytime and nighttime environments using the CSPDarknet-53 feature extractor.
CSPDarknet-53 is a CNN and backbone for object detection that uses DarkNet-53 [54,55]. It
employs a CSPNet strategy to partition the feature map of the base layer into two parts and
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subsequently merges them through a cross-stage hierarchy. The use of a split-and-merge
strategy allows for more gradient flow through the network.
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Experiments have demonstrated that our improved fire detector can relieve people’s
anxiety, and it enables the early suppression and rapid response irrespective of the time of
day or the shape or size of the fire. It is difficult to prevent fire accidents at initial stages
because of the false alarms by traditional fire detectors, such as those raised when moving
objects exhibiting similar color and pixel intensity values to those of fire regions in the
background area.

To evaluate and analyze the effectiveness of fire recognition cases, we compared the
proposed approach with recently published fire detection methods. To perform this task,
we employed widely used estimation metrics for object (static or dynamic) detection, as
in our previous publications [16,56]. First, we computed the precision and recall metrics
to measure the performance of an object detector by determining whether detection is
valid. Precision is the ability of a classifier to identify only the relevant objects; it is the
proportion of true positives detected. Recall measures the ability of the model to identify
all relevant cases; it is the proportion of true positives detected among all ground truths. A
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good model is one that can identify most ground-truth objects (exhibits high recall) while
identifying only the relevant objects (exhibits high precision). A perfect model is one with
a false-negative value = 0 (recall = 1) and a false-positive value = 0 (precision = 1). We
used following equations to estimate the average precision and recall measures of the fire
recognition systems:

Precision = TP
TP+FP

Recall = TP
TP+FN

(10)

where TP means true positives which denote accurately found flame pixels, FP means false
positives, and FN indicates the number of false negatives.

Evaluating an object detection model using precision and recall can provide valuable
insights into how the model performs at various confidence values. The F-measure (FM)
score is particularly helpful in determining the optimum confidence that balances the
precision and recall values for testing methods and can be evaluated using Equation (11),
which considers both precision and recall.

FM =
2 × precision × recall

precision + recall
(11)

In general, the use of a validation set (a set of data used to adjust the hyper-parameters)
and test set (a set of data used to evaluate the performance of a fully trained model) is
recommended to analyze the performance of models. The classification function only
evaluates the probability that a class object will appear in the image, which is a simple task
for the classifier to determine the correct predictions from incorrect predictions. However,
the object detection task further localizes the object through a boundary box associated
with a corresponding confidence score to report how accurately the object class boundary
box is defined [57]. The performance of our approach and other recently published fire
detection techniques is provided in Table 7.

Table 7. Quantitative results of fire detection approaches.

Approach Precision Recall FM Average

Valikhujaev et al. [56] 0.968 0.981 0.974 0.974

Abdusalomov et al. [16] 0.983 0.992 0.995 0.989

Dufour et al. [58] 0.951 0.948 0.952 0.951

Panagiotis et al. [15] 0.975 0.969 0.963 0.969

Redmon et al. [59] 0.962 0.943 0.956 0.953

Fei Shi et al. [60] 0.778 0.867 0.889 0.845

Chengzhi Cao et al. [61] 0.961 0.954 0.972 0.964

Renjie Xu et al. [37] 0.976 0.958 0.979 0.972

Fuquan Zhang et al. [2] 0.937 0.942 0.943 0.941

Byoungjun et al. [62] 0.955 0.958 0.962 0.958

Our Method (Improved YOLOv4) 0.982 0.997 0.997 0.991

In Table 7, we compare the experimental performance of our method with those of
existing approaches in terms of three metrics: precision, recall, and FM. Based on the results
of the analyzed methods, our methods perform the best in terms of FPs and FNs.

In addition, based on Table 7, we finalized the average accuracy using the precision,
recall, and FM metrics, as shown in Figure 8. The improved fire detector yielded an
approximate 99.1% accuracy, while other approaches yielded accuracies approximating
95%. We used the results in their papers for comparison; however, the accuracy of these
values is not easily verifiable because many articles are written on a project basis, and the
source codes and datasets of the papers are not publicly uploaded to the Internet. In the
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case of normal scenes, our method has proven the high accuracy of early fire detection by
reducing the computational time with correct final decisions even when the weather is
cloudy or rainy.
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5. Conclusions

This manuscript presents a new approach that uses the YOLO4 network to detect and
classify suspected regions of fire without delayed final decisions. We employed several
techniques to improve the accuracy of the default YOLOv4 method in fire detection and
achieved a high precision. A technique was created to consequently move labeled bounded
boxes at each instance of turning fire dataset images by 15◦. In addition, we created large
fire dataset images that depicted different fire and fire-like scenarios (daytime and nighttime
images) that will be freely available to everyone for research purposes. Important features
in the in-depth CNN were explored using large databases to make accurate predictions
and control overfitting issues. Another achievement of our method is that we implemented
it on a BPI M3 board which allowed us to reduce the processing time of CPU and GPU
tools compared to conventional flame recognition approaches. Current research shows that
it is important to detect fire accidents rapidly at their initial stages to increase safety in our
daily lives.

Therefore, we aim to continue our research in this area and improve our results further.
Our objective is to use the YOLOv5 and YOLACT models to identify fire incidents in
real-time with a reduced number of false positives.

Author Contributions: This manuscript was designed and written by K.A. K.A. conceived the main
idea of this study. M.M. wrote the program in Python and conducted all experiments. F.M. and
Y.I.C. supervised the study and contributed to the analysis and discussion of the algorithm and the
experimental results. All authors have read and agreed to the published version of the manuscript.
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