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Abstract: Maneuver planning, which plays a key role in selecting desired lanes and speeds, is an
essential element of autonomous driving. Generally, for a vehicle driving on a multilane road,
there are several potential maneuvers in both longitudinal and lateral directions. Selecting the best
maneuver from the various options represents a significant challenge. In this paper, we propose a
maneuver selection algorithm and combine it with a trajectory generation algorithm, which is based
on model predictive control (MPC). The maneuver selection method is a higher-level planner, which
selects only one maneuver from all possible maneuvers based on the current situation and delivers it
to a lower-level MPC-based trajectory tracking controller. The effectiveness of the proposed algorithm
is validated by simulating an overtaking scenario on a multilane highway.

Keywords: model predictive control; maneuver planning; autonomous driving

1. Introduction

Planning appropriate maneuvers and tracking reference trajectories are fundamental
tasks for an autonomous vehicle and thus must be incorporated in a control framework
for autonomous vehicles. With regard to motion planning and control, there are many
technical terms in the literature, including maneuver planning, task planning, motion
planning, trajectory planning, and path planning [1-7]. There are no universal definitions
for these terms, but they can usually be understood in their particular contexts.

In this paper, a maneuver (e.g., lane changing and decelerating) results from a higher-
level plan. Our approach selects the maneuver that the controlled vehicle will execute
at the next time step, and the selected maneuver is input to the lower-level trajectory
tracking controller.

Trajectory planning techniques for autonomous vehicles can be broadly classified into
four groups [4]: sampling based planning [8,9], interpolating curve planning [10-14], graph
search-based planning [3,15-17], and numerical optimization [18-21].

Sampling-based planning algorithms [8,9,22] plan trajectories by randomly sampling
the configuration space and finding connections [4]. These methods can provide fast
solutions and have therefore been used in self-driving vehicles [22-24]. However, the tra-
jectories are not continuous and therefore are uncomfortable for passengers. Interpolating
curve planning methods, e.g., using Clothoid curves, polynomial curves, Bézier curves,
or Spline curves [10-14], delivers smoother paths [4]. These methods are, e.g., used in
autonomous driving when comfort and safety are major concerns and the driving environ-
ment is structured and modeled [4]. However, in general, it is difficult to obtain a global
model of the environment. Graph search-based planning methods, e.g., applying Dijkstra’s
algorithm [15,16], the A* algorithm [3,17], or the D* algorithm [4], determine a path from
one point to another. However, these methods are not suitable for real-time applications,
where dynamic obstacles present one major challenge.

Numerical optimizations [18-21] obtain the optimal trajectory by solving a constrained
optimization problem. These methods can deal with constraints and uncertainties, so the
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controlled vehicle can take other traffic participants’ behaviors into consideration by setting
appropriate collision avoidance constraints [4]. Additional advantages for applications in
autonomous driving are that they can improve comfort by setting constraints on control
inputs, such that the global road information is not needed when combined with a receding
horizon strategy, as, e.g., in MPC, and these methods are applicable in real time and can
avoid moving obstacles. However, the computational complexity of MPC poses a challenge
because the optimization of the cost functions needs to be performed at every time step for
a potentially long prediction horizon [18].

MPC attracted attention in autonomous driving because of its ability to deal with
constraints caused by traffic rules, physical limitations, and collision avoidance. It predicts
future driving behavior based on vehicle models, including the point-mass model, the kine-
matic bicycle model, or the dynamic bicycle model [25]. Trajectory planning methods
based on MPC have been proposed, e.g., in [18,26-28]. In [18], multiple feasible maneuvers
are obtained using the maneuver planning method and these maneuvers are delivered
to the lower-level MPC controller for trajectory control. However, delivering multiple
maneuvers to the lower-level MPC might cause unnecessary computational burden. This
has motivated us to identify a better maneuver selection method, which finally selects only
one maneuver from all feasible/possible maneuvers, and then delivers this maneuver to
the lower-level MPC controller.

We propose a high-level maneuver planning method and combine it with a low-level
MPC-based trajectory control. The framework used in this paper, shown in Figure 1, con-
sists of four main modules: scenario perception, maneuver planning, MPC-based trajectory
control, and action. Our main concerns here are maneuver planning and MPC-based
trajectory control. The maneuver planning module contains two consecutive submodules:
maneuver generation and maneuver selection. Similarly, the MPC-based trajectory control
consists of two submodules: MPC-based reference trajectory generation and MPC-based
trajectory tracking.

Maneuver Planning

Maneuver Generation Maneuver Selection
Feasible Selected
Maneuvers Maneuver

Scenario
Perception

MPC-based
Trajectory Control

Costs &
Constraints

MPC-based
Trajectory Tracking

Action

MPC-based Reference
Trajectory Generation

Figure 1. Interconnection of maneuver planning and trajectory tracking.

Our method is based upon the method presented in [6]. We utilize the maneuver
generation method from [6] and improve it to make it more applicable in reality by re-
moving the necessity to explore an exceeding number of trajectories. Then we employ an
MPC controller instead of the sliding mode controller for tracking to avoid high switching
frequencies and to be able to take into account constraints.
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Our maneuver planning and trajectory control method works as follows: at each
time step, (1) we generate all possible maneuvers employing the maneuver generation
method from [6]; then, (2) select the desired lane and the longitudinal speed maneuver
using a maneuver selection method; after that, the trajectory control module (3) generates
a reference trajectory based on the selected maneuver, and (4) tracks it. More specifically,
a group of candidate maneuvers is initially generated with respect to the environment in
which the method in [6] is employed. Next, maneuvers which contribute less to meeting the
criteria for the best maneuver are excluded from these candidate maneuvers. The criteria
for excluding maneuvers involve the goal lane, the roadside edges, the time to collision
(TTC) [6,29], and the intervehicular time (TIV) [6]. In the trajectory control module, the de-
sired reference trajectory is generated by adjusting the cost function and constraints in
the MPC controller to account for the selected maneuver. The reference trajectory is then
tracked by MPC which, in addition, ensures that no constraints are violated.

The rest of the paper is organized as follows. Section 2 introduces the maneuver
planning method, including maneuver generation and maneuver selection. In Section 3, we
explain how model predictive control is applied by introducing the optimization problem of
the MPC controller, a model of the vehicle, the cost function, constraints, and the trajectory
generation for maneuvers. Simulation results are presented in Section 4, and Section 5
summarizes the paper and provides prospects for future research.

2. Maneuver Planning

In autonomous driving, maneuvers are the high-level strategies that describe what the
vehicle will do in the short term or long term. For example, lane changing is a short-term
goal and overtaking is a long-term goal. In this paper, the maneuver planning method is
executed at each time step. This maneuver planning method determines what the controlled
vehicle will do in the next time step, and we assume that the controlled vehicle knows the
long-term goal. Our method is designed for scenarios consisting of two vehicles, where
the controlled vehicle is the ego vehicle (EV), and the other one is the object vehicle (OV).
The EV assumes that the OV will maintain its current velocity at each time step. In this
paper, we make the common assumption that the position and velocity of the OV can be
observed by the EV [30-32].

Maneuver planning consists of maneuver generation and maneuver selection (see
Figure 1). For the maneuver generation, we use an approach presented in [6] and add
a novel approach for maneuver selection that first selects only one maneuver from the
generated options and then provides the maneuver information to the lower-level controller.
In [6], the lower-lever controller is a second-order sliding-mode controller. Ideal sliding
modes require high switching frequencies, which can burden the actuators and cause rapid
wear, and, therefore, lead to safety issues. We propose to replace the sliding-mode controller
with MPC to combine trajectory generation and tracking. This might again improve safety
in addition to safe maneuver selection by enforcing that no safety constraints are violated.

The main task of the maneuver selection submodule is to select the appropriate lane
in the lateral direction and the speed strategy in the longitudinal direction, see Section 2.3.
Additionally, the safety criteria used in selecting longitudinal maneuvers are presented in
Section 2.2.

2.1. Maneuver Generation

In [6], a vehicle driving on a multilane road is considered. Before a trajectory is
generated, nine feasible maneuvers are generated by a combination of both lateral and
longitudinal directions. In more detail, three feasible maneuvers can be chosen in the
longitudinal direction: decelerating (DE), maintaining current speed (CS), accelerating
(AC); meanwhile, there are three possible maneuvers in the lateral direction: changing to
the left lane (LCL), staying in the current lane (LK), or changing to the right lane (LCR).
Combining the maneuvers in both directions, nine combined maneuvers [6] can be obtained,
as shown in Figure 2.
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Figure 2. Nine feasible combined maneuvers. Boxes with the same color contain three different
maneuvers in the longitudinal direction: decelerating (DE), staying at/maintaining current speed
(CS), and accelerating (AC). Boxes with different colors represent distinct maneuvers in the lateral
direction. The red, yellow, and green boxes illustrate changing to left lane (LCL), keeping/continuing
moving in current lane (LK), and changing to right lane (LCR), respectively.

High-level maneuvers are then delivered to the lower-level controller for trajectory
tracking. If the maneuver planning method delivers multiple feasible maneuvers to the
controller, the controller will have to experience superfluous computational burden. Addi-
tionally, it is even worse when the controller is computationally expensive, for instance,
MPC. Autonomous vehicles can benefit from the ability of MPC to deal with constraints.
However, in order to efficiently use MPC as a low-level controller, we have to reduce the
computational burden. Our maneuver selection method contributes to this by selecting only
one maneuver during maneuver planning and, therefore, delivering only one maneuver to
the lower-level MPC controller, as shown in Section 2.3.

2.2. Safety Criteria

When selecting one maneuver from all feasible ones, safety is one of our major con-
cerns in both longitudinal and lateral directions. The safety criteria we use in selecting the
maneuver in the longitudinal direction are the time to collision (TTC) and the intervehic-
ular time (TIV). The risk of collision is higher for (1) high speed differences and (2) low
intervehicle distances [6]. TTC [6,29] and TIV [6] can be used to quantify this risk.

TTC was first proposed by Hayward in [29] to measure the risk level of the two-vehicle
scenarios where the two cars are close to each other and have different velocities. TTC can
deal with both lane-keeping scenarios and lane-changing scenarios [29]. However, there
exists a dangerous situation that cannot be detected by TTC: when two vehicles, at the
same speed, are close to each other. In this situation, the TTC is not small, even though the
two vehicles have a high likelihood of colliding. In order to also take this situation into
consideration, the intervehicular time (TIV) is introduced [6].

221. TTC

In [29], Hayward gives the definition of TTC: TTC represents the time required for two
vehicles to collide if they maintain their current longitudinal velocities. TTC is formulated
as follows:
|Axev,ov|

TTC =
| AzJev,ov |

)
where Axeyov is the relative distance between the EV and the OV in the longitudinal
direction with AxXey oy = Xey — Xov, Where Xy and X,y represent the longitudinal positions
of the EV and OV, respectively. We denote the relative velocity between these two vehicles in
the longitudinal direction with Avey oy = Vev — Vov, Where vey and v,y are the longitudinal
velocities of the EV and OV, respectively.

In general, a great TTC stands for a safer situation. In [6], if the TTC is greater than
10 s, it is supposed that there is no interaction between two vehicles. If the TTC is smaller
than 1.5 s, the situation is considered risky and a warning system is triggered.
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222. TIV

The TIV [6] can deal with the risky situation that TTC fails to detect: two vehicles with
the same (or similar) high speed are close to each other in the same lane. In this situation,
the TTC can be great because of the relative velocity between the two vehicles is zero (or
very small). However, this is actually a risky situation, because once the leading vehicle
decelerates or the following vehicle accelerates, they will most probably collide. The TIV is

defined as follows:
| Axev,ov |

o @
where Axey oy is the same as that in TTC, and v* is the velocity of the vehicle which is
following the other vehicle in the longitudinal direction. Here, v* = vy if the EV is behind
the OV, and v* = v,y if the EV is in front of the OV.

Great TIV indicates safer situations. According to [6], a TIV of 2 s is commonly used
as a boundary for safety.

Great TTC and TIV indicate a lower risk level [6]. In this paper, a situation with
great TTC and TIV at the same time is considered safe. Additionally, TTC and TIV might
consider the following safe situation dangerous: two vehicles without the intention of
changing lanes are driving in different lanes, but close to each other in the longitudinal
direction. However, this false danger can be recognized with further knowledge of the
lateral positions of the vehicles.

In the maneuver selection, the aim of the selection of the longitudinal maneuver is to
choose a maneuver with low risk, so the maneuver which can lead to greater TTC and TIV
will be selected.

TIV =

2.3. Maneuver Selection

The maneuver selection method selects only one maneuver from all possible maneu-
vers obtained from the maneuver generation method in [6]. The main idea of our maneuver
selection method is: remove less appropriate maneuvers from all possible ones obtained
from the maneuver generation based on selection criteria (details will be shown later);
therefore, only one maneuver is kept at the end of the maneuver selection.

Our maneuver selection method has two tasks: (i) selecting a lane choosing maneuver
in the lateral direction and (ii) obtaining a speed generating maneuver in the longitudinal
direction. The maneuver selection method is shown in Figure 3, where the tasks (i) and
(ii) are colored green and yellow, respectively. These two tasks in the maneuver selection
method will be explained in detail below.

. Lane- Speed-
Possible . peec Selected
choosing generating
maneuvers maneuver
maneuver maneuver

Figure 3. The maneuver selection method.

2.3.1. Lane-Choosing Maneuver in the Lateral Direction

In the lane-choosing maneuver in the lateral direction, we remove the less appropriate
maneuvers based on the constraints from the road edges and the current goal lane of the
vehicle. The process is shown as follows:

1. Remove the lateral maneuvers that will cause the road edge constraints to be violated. For
instance, if the vehicle is in the rightmost lane of the road, the maneuver of changing
to the right lane (LCR) is inadmissible.

2. Exclude the lateral maneuvers with which the vehicle is not heading towards the goal lane.
Here, we consider two cases: (a) the goal lane is the current lane; (b) the goal lane
is a different lane. In case (a), we simply remove the lane-changing maneuvers,
LCL and LCR. Case (b) is more complicated. If the goal lane is the lane at the left
(right) side of the current lane, we first exclude the lateral maneuver with which
the vehicle turns to the opposite/wrong direction, LCR (LCL) is therefore removed.
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Then, we consider whether the lane-changing maneuver is satisfied or not. If the
conditions for changing lanes are satisfied, we exclude the LK maneuver; otherwise
the lane-changing maneuver LCL (LCR) is removed.

After the lane-choosing maneuver, only one maneuver in the lateral direction remains.
Thus, before the only longitudinal maneuver has been selected from all three possible ones,
there are three combined maneuvers left.

2.3.2. Speed Generating Maneuver in the Longitudinal Direction

To select the longitudinal maneuver, the criteria used to remove the less appro-
priate maneuvers from all possible maneuvers are safety, efficiency, and smoothness.
Among them, safety is our prime concern. If after all less safe maneuvers have been
removed, there is more than one speed maneuver left, we take into account the efficiency
and smoothness to, finally, retain just one maneuver.

The safety criteria we use are TTC and TIV. Great TTC and TIV correspond to safer
situations. Therefore, maneuvers that contribute to increasing TTC and TIV are kept in the
selection process. The process of using TTC and TIV as criteria to select the longitudinal
maneuver/maneuvers is shown in Table 1.

Table 1. Selection of longitudinal maneuver based on the safety criteria TTC and TIV.

AxXeyov Avev,ov Possible Maneuver |Axevov| |Avevov] v* TTC TIV Result
DE t t

Aveyov < 0 CS

AC

DE

Axeyov <0 Aveyov > 0 CS
AC

DE

AVeyov =0 CS

AC

DE

Aveyov < 0 CS

AC

DE

Axeyov > 0 Aveyov > 0 CS
AC

DE

Aveyov = 0 Cs - — _

AC T i -

?

<+

CSs

— | <
— | —
N = | —
N = | = | =

DE

e R R

— | =
— | =
— |«

DE

— | =

AC

|
|
|
N R e N N N R
|

|+
I

DE/CS

|
|
N | = | =

R I N R e R
D = =Y Py P2y [Py

— | =
|

AC

NN
I

In Table 1, the first two columns show the current relative position and velocity of
the two vehicles. The third column enumerates the possible maneuvers obtained from
maneuver generation. The fourth, fifth, and sixth columns demonstrate how |Axeyov|,
|AvVey,ov| and v* will change if the specific maneuver has been executed. The seventh and
eighth columns show the trends of TTC and TIV, respectively, with the change of the
|AXevov|, |AVev,ov| and v*. The last column shows the longitudinal maneuver/maneuvers
left after removing maneuvers based on TTC and TIV.

We use labels (17, ‘)", “=’, ‘?’, and */’) to briefly represent the trend of the change in
the case of a specific maneuver. ‘1’ means the value of corresponding item will increase; ‘]’
means it is decreasing; ‘—’" means that there will be no change in terms of the corresponding
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value; *?” means the future change is unknown; ‘/” shows that we do not calculate the TTC
when Avgy,ov = 0.

In the following, we will discuss how to choose the longitudinal maneuver in two
distinct situations according to the relative positions of the two vehicles in the longitudinal
direction: the EV is behind the OV, and the EV is in front of the OV.

1.  The EV is behind the OV; Axey,ov < 0.
*  AUeyov < 0. The velocity of the EV is smaller than that of the OV:

When the EV maintains current longitudinal speed (CS), the distance be-
tween the two vehicles increases. Thus, both TTC and TIV increase as time
goes on;

The EV’s choice of deceleration (DE) will cause the distance between the two
vehicles (| Axev,ov|) to increase, but also cause the relative velocity (| Avey,ov|)
to increase. Thus, the effect of deceleration (DE) on TTC is unknown;
Choosing acceleration (AC) will cause the TIV to decrease. Thus, we will
not keep the AC.

Therefore, maintaining current longitudinal speed (CS) is the best choice.
*  AUeyov > 0. The velocity of the EV is greater than that of the OV, which is dan-
gerous:

Both maintaining current speed (CS) and acceleration (AC) will definitely
cause a decrease of the TTC and TIV;

However, by executing deceleration (DE), TTC and TIV will probably
trend upward.

Consequently, deceleration (DE) is selected as the longitudinal maneuver per-
formed in this situation.
* AUy ov = 0. The two vehicles have the same longitudinal speed:

Under this circumstance, only TIV is used to estimate the risk;

Whether the distance between the two vehicles is small or not, decreasing
the speed of the EV is a safe maneuver, which contributes to obtaining a
greater TIV.

Thus, deceleration (DE) is selected for the EV in this situation.
2. The EV is in front of the OV; Axeyov > 0.
*  AUeyov < 0. The velocity of the EV is less than that of the OV:

Not only deceleration (DE), but also maintaining current speed (CS) will
cause a decreasing trend of the TTC and TIV;

Additionally, when choosing acceleration (AC), TIV will experience a rapid
drop, while TTC might show an upward trend.

This is not a safe situation, but increasing the speed of the EV will probably con-
tribute to avoiding possible collisions, so AC is taken as the longitudinal maneuver.
*  AUeyov > 0. The velocity of the EV is greater than that of the OV:

Both decelerating (DE) and maintaining current speed (CS) are beneficial to
increasing TTC and TIV, so they can be taken as candidate maneuvers;
Furthermore, DE has a negative effect on the efficiency and smoothness.

Therefore, we finally keep CS as the longitudinal maneuver in this situation.
®*  AUeyov = 0. The EV and OV drive at same speed:

In this situation, TTC is not calculated and only TIV is considered as
a safety criterion;

Increasing the speed (AC) will help obtain greater TIV;

Neither decreasing (DE), nor maintaining current speed (CS) will contribute
to increasing TIV.

Therefore, acceleration (AC) is selected.
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All the situations we discuss require that the OV be within the detectable area of
the EV. This is also mathematically described as |AxXey,ov| < Ax™@X, where Ax™@ is the
longitudinally maximum detectable distance.

After excluding less appropriate maneuvers in both lateral and longitudinal directions,
only one longitudinal maneuver and one lateral maneuver are left. Combining the selected
maneuvers in both directions, we eventually obtain a single maneuver.

3. Model Predictive Control

The maneuver selected by the maneuver selection method is delivered to the lower-
level MPC-based trajectory control module, which contains two submodules, reference
trajectory generation and trajectory tracking, as shown in Figure 1.

MPC is used to generate and track trajectories because it will not only consider a
cost function, thus allowing for energy efficiency, but also take into account collision
avoidance constraints and thus further contribute to safety. As a low-level trajectory
tracking controller, MPC realizes the maneuver selected from high-level maneuver planning
by setting reference states in the cost function and by adjusting constraints.

Reference trajectory generation is the first step in the MPC-based trajectory control
module. However, maneuver planning and trajectory planning are coupled by specifying
parameters in the cost function and in the constraints of MPC, so we will define a model,
a cost function, and constraints for MPC before we introduce the trajectory generation.

3.1. Optimization Problem of the MPC Controller

At each time step, MPC minimizes an optimal control cost function with respect to
constraints on a short prediction horizon to obtain the current control input. A dynamic
system model is used to predict states in the prediction horizon for different choices of
control input trajectories which finally allows to obtain the optimal inputs.

The constrained optimization problem that MPC solves at each time step is shown
as follows:

min V(& u) = ngnlljzolz@(kwk)) T VHEN)) (3a)
subject to
Gk +1) = f(&(k), u(k)) (3b)
¢(0) = 2o (3c)
é(k)e X,k=0,...,N—1 (3d)
Z(N) € & (3¢)
u(k) e, k=0,...,N—1 (3f)

where Equation (3a) represents the cost function. The cost function is the sum of stage
costs and terminal cost for a prediction horizon of length N [33]. In Equation (3a), V (&, u)
is the cost function, I((k), u(k)) is the stage cost at time k, and V¢(¢(N)) is the terminal
cost. ¢(k) and u(k) are the state vector and control input vector, respectively.

The constraints for states and inputs are given in Equation (3b—f). Among these,
Equation (3b) is the dynamic system model, which is a vehicle model in this paper. y is
the initial state. X, X r and U are the sets of admissible states, terminal states and
inputs, respectively.

We will discuss the system model, constraints, and the cost function for autonomous
driving in the following subsections.

3.2. Vehicle Model

A vehicle model can be used to predict future states. Various vehicle models, with dif-
ferent modeling depths, e.g., point-mass model, Fiala tire model, dynamic bicycle model,
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or kinematic bicycle model are available [34-38]. In this paper, for simplicity, we choose
the point-mass model [34], but any other model that includes position and speed of the
vehicle is also suitable.

This point-mass model is described by the following equation

E(k+1) = A&(k) + Bu(k) )
10T 0 T?2/2 0

o1 oT 7 0 T?%/)2

A=lo o1 0 |B7| 1 0 ®)
000 1 0 T

where ¢(k) = [x(k),y(k),vx(k),vy(k)]T is the state vector. x(k) and y(k) represent the
longitudinal and lateral positions, respectively. vy (k) and v, (k) are the longitudinal and

lateral velocities, respectively. u(k) = [ax(k),ay(k)] T'is the input vector. a,(k), a, (k) is the
longitudinal and lateral acceleration, respectively. Moreover, A and B are system matrices
and T is the sampling interval.

3.3. Constraints

The constraints are used to enforce restrictions on states and inputs. For our au-
tonomous driving application, we include constraints for traffic rules, collision avoidance,
and physical limitations of vehicles.

3.3.1. State Constraints
This part contains the states’ constraints for obeying traffic rules and avoiding collisions.

e  Constraints for Traffic Rules:

x(k) € [0, 400] (6)

y(k) € [wyen/2, MWane — Wyen /2] @)
0x(k) € [Vxpnins Vximax] 8

0y (k) € [Oyanins Vyonas ] €)

where Wy, is the width of vehicles, w,,e is the width of each lane, and m is the
number of lanes. As shown in Equation (6), the vehicle can move forward freely in
the longitudinal direction. Equation (7) is designed for keeping the vehicle within
the road edges. Constraints (8) and (9) give the upper and lower limits to velocities in
longitudinal and lateral directions, respectively.

*  Safety constraint:
In order to avoid collisions, a region around each vehicle is defined that other vehicles
are not allowed to enter [34,38]. The region can be any convex shape larger than
the shape of the vehicle [38]. As in [34,39—41], an elliptic region is chosen for our
implementation, as shown in Figure 4.
This safety constraint is then realized by the following inequality:

Ax gv,ov Ay gv,ov
S >, (10)

where a and b are the major and minor axes of the ellipse, respectively. The longitudinal
distance between the EV and one OV is Axeyov. The lateral distance between these
two vehicles is Ayev,ov. The center of the ellipse-shaped region is the same as the center
of the vehicle. Since we use a point-mass model that does not provide information
about the current orientation of the vehicle, the major axis of the ellipse is chosen to be
aligned with the lanes.
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For safety, the ellipse-shaped region has to be large enough that the vehicle shape is
covered by the ellipse for all possible vehicle orientations. In order to find appropriate
a and b, we consider the vehicle turning left or right, see Figure 4. If the vehicle is
covered by the ellipse here, it will also be covered for all other orientations. Let /e,
and wyen denote the length and the width of a vehicle, respectively. Then it holds for a
and b:

l
0<\/( V;h)2+(w§h)2+(5<b<a (11)

where § > 0.

B
Wyeh ve

Figure 4. Safe region for a vehicle that is turning left.

3.3.2. Input Constraints

Input constraints are restrictions on the accelerations in both longitudinal and lateral
directions. These constraints stem from the physical limitations of the vehicles.

ax (k) € [axmin’ axmax] (12)
a]/(k) € [aYmin’aYmax] (13)

3.4. Cost Function

The cost function for an MPC-controlled vehicle is designed for tracking the reference
trajectory while realizing smooth and energy efficient driving.
The cost function V (¢, 1) at each time step is

N-1
VEw) = L [u7Quik) +82()TRAZ ()|

=0 (14)
+AZ(N)TSAG(N)
where A (k) = &(k) — Gref(k) and AG(N) = G(N) — Gref(N). Cref(k) and §ref(N) are the
reference states for the vehicle to track. A¢ is the error between the predicted states and
the reference states. The weighting matrices Q, R, and S are defined by Q = diag(q1,42),
R = diag(rl, rp, 13, 1’4), and S = diag(sl, S»,83, 54), where q1, 492,71, v2,713,74, 51, 52, 53, and S4
are elements in the matrices, and non-negative real numbers.

The terms AZ(k)TRAZ (k) and AZ(N)TSAZ(N) are used for tracking reference states,
where, in particular, the reference lateral position and longitudinal velocity are relevant.
The term u(k)TQu(k) is designed to punish large control inputs, to ensure that the vehicle
drives smoothly and in an energy-efficient way.

The cost function acts as a bridge in our combined maneuver planning and trajectory
control method. The maneuver selected from the maneuver planning method determines
the reference trajectories in the cost function. The reference trajectories will be tracked by
minimizing the cost function with all constraints being satisfied simultaneously. In the
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following subsection, we will introduce the reference trajectory generation and trajec-
tory tracking.

3.5. MPC-Based Reference Trajectory Generation

MPC-based reference trajectory generation aims to translate the selected semantic
maneuver to a reference trajectory. At each time step, the selected maneuver is executed by
setting appropriate costs and constraints of the MPC controller, as shown in Figure 1.

We set values of the reference states &.q¢(k) and &o¢(N) in the cost function (14) based on

T
the selected maneuver. In the reference states &,¢(k) = {xref(k), Yref(K), U res(k), Uy,ref(k)i| ,

the first two elements x,.¢(k) and y,c¢(k) are reference positions in longitudinal and lateral
directions, respectively. Corresponding reference velocities are represented by v, ¢(k) and
0y ref (k). Among these reference states, only ye¢(k) and v, r¢(k) are directly determined
by the selected maneuver. The maneuver planning has no impact on the reference states
Xref (k) and vy ef(k). However, this does not mean that the maneuver planning will not
affect the longitudinal position x(k) and lateral velocity v(k). It will affect them implicitly
by the coupling of states and control inputs in the constrained optimal control problem.

The elements in the weighting matrices R = diag(r1,1,73,74) and S = diag(sy, s2,53,54)
in the cost function (14) allow tracking performances to be tuned. The maneuver planning
will directly set the lateral reference position and the longitudinal reference velocity of
the vehicle. Therefore, we choose r9, 13,52, 53 > 0 and small constants are assigned to the
elements 11, 74,51, and s4.

The selected lane maneuver will determine the value of the lateral reference position
Yref, and the speed maneuver will determine the longitudinal reference velocity v, ref. Yref
is set to be the lateral center of the target lane. This applies to both lane keeping (LK) and
lane changing (LCL and LCR). The rules for setting v, .o¢ vary according to the relative
position of the two vehicles in the lateral direction. For the situation where two vehicles
are in the same lane: (1) If the selected maneuver is maintaining the current speed (CS), let
Uy ref b€ the same as its current longitudinal velocity; (2) For decelerating (DE), the reference
velocity v, rf is the minimum between 75% of the current longitudinal velocity of the EV
and the longitudinal velocity of the vehicle in front of the EV; (3) If the vehicle intends to
accelerate (AC), we specify v, e to be the maximum of 125% of the current longitudinal
velocity of the EV, the longitudinal velocity of the OV, and the longitudinal speed limit.
When the two vehicles are in the same lane, v, ¢ is equal to the speed limit.

4. Simulation Results

To validate the effectiveness of the proposed method, a simulation is conducted in
MATLARB for a highway environment. In this section, we will first introduce two scenarios.
Then, we explain how the maneuver planning and trajectory control method is applied.
Finally, we show simulation results and discuss the effectiveness of our method.

4.1. Scenario Description

We consider two scenarios, a vehicle-following scenario and an overtaking scenario.
We discuss maneuver and trajectory planning for both scenarios. However, we simulate
only the overtaking scenario because it includes all lateral and longitudinal maneuvers,
and car-following will occur when overtaking.

The environment is a three-lane highway. All these three lanes have the same width
and there is no curvature. There are two vehicles, an EV (red) and an OV (blue), as shown
in Figure 5. The three lanes are labeled as Ly, L1, and L, respectively. The rightmost lane
Ly is the slow lane. The leftmost lane L; is the fast lane, which is intended to be only for
overtaking. Initially, we assume that the EV is driving in the slow lane Ly, with longitudinal
velocity 35 m/s. The OV is driving in the middle lane L; with a lower longitudinal velocity
of 20 m/s. The initial longitudinal positions of EV and OV are 10 m and 90 m, respectively.
On a highway, overtaking on the right side is forbidden [2]. Therefore, with these initial
settings, the EV has two possible options: following the OV in Lj or overtaking on the left.
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Figure 5. Car-following and overtaking.

In order to better describe the maneuver and trajectory planning, the two possible
scenarios are divided into six stages: Sp, S1, Sz, S3, S4, and S5, as shown in Figure 5. Sy is
the initial stage. In stages Sp and Sq, car-following is realized (S9 — S1). The overtaking
consists of stages So, Sz, S3, S4, and S5 (So — Sp — S3 — S4 — Ss). In these stages, the OV
is always in the middle lane L;, while the EV drives in different lanes. In detail:

*  So: The EV is driving behind the OV in L with a greater longitudinal velocity.

¢ 51: The EV is following the OV in Ly with a smaller longitudinal velocity.

* Sy: The EV is driving in lane L;, waiting for a chance to change to L,. This is a
transition stage.

*  53: The EV reaches lane L; and drives in L; before overtaking the OV from the left,
looking for an opportunity to go back to lane L. In this stage, lane keeping also occurs.

e 5S4 The EV reaches lane L, and is preparing for moving to lane L.

e  S5: The EV drives in lane L.

4.2. Maneuver Planning

The procedure of maneuver selection is shown in Figure 6. The box represents the nine
possible combinations of maneuvers in the lateral and longitudinal directions. The tiny
cubes without numbers on them stand for current candidate maneuvers. The tiny cubes
with numbers inside represent the maneuvers that are excluded from the candidate maneu-
vers. The numbers, ‘1’,2’,’3’, "4’, ’5’, and ‘6’, represent the reasons for removing maneuvers.
Among them, ‘1, 2", and ‘3’ are for removing lateral maneuvers, and ‘4’, ‘5’, and ‘6’ are the
reasons for removing longitudinal maneuvers. They stand for:

*  1—The vehicle will reach the edge of the road if it turns left (or right).

e 2—The goal is to change lane but the the safety constraints for changing lane is
not satisfied.

*  3—By conducting these maneuvers, the vehicle cannot move to the target lane even
though the conditions for changing lane are fulfilled.

*  4—These maneuvers contribute less/nothing to increasing TTC and TIV.

¢  5—These maneuvers contribute less to improving efficiency.

*  6—Selecting these maneuvers has a negative or no positive impact on smoothness of
driving behaviors.

In the following, we explain how the proposed maneuver selection method works in
the two possible scenarios, the car-following scenario and the overtaking scenario.

4.2.1. Maneuver Selection in Car-Following Scenario: Sg — S1

Following the OV in the current lane is an excessively conservative but feasible choice
in terms of collision avoidance. To implement the maneuver selection, one maneuver will
be selected from all possible maneuvers in each direction. The lateral maneuver is first
selected. Changing to the right lane (LCR) is excluded because of the boundary constraints.
Then, we remove changing to the left lane (LCL) because it is inconsistent with current
goal scenario (car-following), so only lane keeping (LK) is left. Finally, longitudinally, both
TTC and TIV will definitely decrease if keeping the current speed (CS) or accelerating
(AC), but decelerating (DE) probably causes an increase in TTC and TIV, so decelerating is
selected as a longitudinal maneuver. Combining the results of maneuver selection in both
directions, we obtain the LK+DE maneuver for this car-following scenario.
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Figure 6. Maneuver Selection: The box displays the 9 possible maneuvers: LCL+DE, LCL+CS,
LCL+AC, LK+DE, LK+CS, LK+AC, LCR+DE, LCR+CS, and LCR+AC.

4.2.2. Maneuver Selection in Overtaking Scenario: Sop — S, — S3 — S4 — S5

Overtaking, although highly efficient for the EV, will increase the risk of collision
with other traffic participants and requires a careful trajectory design. The stage sequence
So — Sp = S3 — S4 — S5 can be divided into four steps: (i) S9 — Sy, (ii) So — S3,
(iii) S3 —+ S4, and (iv) S4 — Ss.

Note that the target lane of each stage change is not the current lane. In contrast to
car-following, the EV now has to examine the environment to judge whether the conditions
for changing lanes are satisfied. If not, the EV has to stay in its current lane and wait. The
only difference to the maneuver selection procedure in car-following is that now the lane
change condition is taken into account.

We do not use TTC and TIV in stage S3, where the EV and OV are in different lanes,
because this configuration is safe in the lateral direction. However, the distance in the
longitudinal direction might be small, leading to small TTC and TIV, which is a false risk
indicator (see discussion in Section 2.2).

4.3. MPC-Based Trajectory Control

The maneuvers selected from the maneuver planning are delivered to the MPC con-
troller for trajectory control. In order to validate our combined maneuver planning and
MPC-based trajectory control method, we simulate the overtaking scenario shown in
Figure 5.
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The parameters of the road and vehicle, the limits of speed and acceleration, the param-
eters of the safety constraints, the prediction horizon, the sampling time, and the weighting
matrices are set to:

Wiane = 9.25m, Wy = 1.83 m,

Uy, = 13.6m/s, vy =70m/s,

Ay .. = —9 m/s?, Axpoy = 6m/s?,

Ay = —0.5 m/s?, Ao = 0.5 m/s?,

a=5m, b=2625m, (15)
N=25 T=02

g1 =1, g,=01,

ra = 0, ry = 10, r3 = 100, ¥ :O,
S1 :O, Sy = 10, S3 = 100, S4 = 0.

The initial positions of both vehicles are shown in Figure 7.

S [ Ty oy - ------
= (5) """ § - T T T T T T T T T - - - - - -
0 50 100 150 200

z(m)

Figure 7. Initial states of the vehicles.

From Section 4.1, we know that there are five stages and four stage changes in the over-
taking scenario, as shown in Figure 5. The simulation results of our combined maneuver
planning and MPC-based trajectory control method are shown in Figure 8. The successive
five figures show the five stages in the overtaking scenario: Sy, Sz, S3, S4, Ss.

e n
i e
0

50 100 150 200 250

150 200 250 300 350
2(m)

150 200 250 300 350
x(m)

Figure 8. Five stages for the overtaking scenario: Sy, Sy, S3, S4, Ss.

In Figure 8, the dark red rectangle is the current position of the EV, and the other red
rectangles stand for the past trajectory of the EV. Similarly, the dark blue rectangle is the
current position of the OV, and all other blue rectangles indicate the trajectory of the OV.

The maneuvers that the EV selects can also be extracted from Figure 8. The lateral
maneuvers can be observed directly from the lateral positions of the EV (red). The changes
of density of the rectangles indicate the longitudinal maneuvers. When the density of the
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rectangles in a trajectory changes from sparse to dense, the vehicle executes a deceleration
maneuver, and vice versa. In addition, no change in the longitudinal distance between
rectangles implies that the vehicle drives at a constant longitudinal velocity.

5. Conclusions

In this paper, we propose a maneuver selection method which chooses one maneu-
ver from all potential ones by excluding less appropriate maneuvers based on five rules
involving lane edges, the goal lane, safety, efficiency, and smoothness. Furthermore,
an MPC-based trajectory generation method is used to execute the selected maneuver by
designing a corresponding cost function and constraints for the MPC controller.

We validate the proposed method for an overtaking scenario on a three-lane highway.
The whole overtaking scenario can be divided into five stages. The results show that at
each stage, the ego vehicle can successfully reach the desired lane, conduct the desired
speed maneuver, and avoid collisions.

Our current maneuver planning method is executed at each time step, which allows
the autonomous vehicle to rapidly adjust its behavior in risky situations. However, the high
frequency of updating also causes unnecessary computational burden when the driving
environment is mostly safe. Therefore, a trade-off between ensuring fast response when
necessary and avoiding unnecessary computation should be achieved in future work.
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Abbreviations

The following abbreviations are used in this manuscript:

MPC  model predictive control
TTC  time to collision

TIV intervehicular time

DE decelerating

CS maintaining current speed
AC accelerating

LCL  changing to the left lane
LCR  changing to the right lane
LK keeping moving in the current lane
EV ego vehicle

ov object vehicle
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