
Citation: Kao, M.-T.; Sung, D.-Y.; Kao,

S.-J.; Chang, F.-M. A Novel

Two-Stage Deep Learning Structure

for Network Flow Anomaly

Detection. Electronics 2022, 11, 1531.

https://doi.org/10.3390/

electronics11101531

Academic Editor: Andrea Prati

Received: 17 April 2022

Accepted: 7 May 2022

Published: 11 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Two-Stage Deep Learning Structure for Network Flow
Anomaly Detection
Ming-Tsung Kao 1 , Dian-Ye Sung 2, Shang-Juh Kao 1 and Fu-Min Chang 3,*

1 Department of Computer Science and Engineering, National Chung-Hsing University, 145, Xingda Rd.,
South Dist., Taichung 402, Taiwan; kevinkao@cs.nchu.edu.tw (M.-T.K.); sjkao@cs.nchu.edu.tw (S.-J.K.)

2 Southern Taiwan Business Group Chunghwa Telecom Co., Ltd., Taichung 402, Taiwan; 837680@cht.com.tw
3 Department of Finance, Chaoyang University of Technology, 168, Jifeng E. Rd., Wufeng District,

Taichung 413310, Taiwan
* Correspondence: fmchang@cyut.edu.tw

Abstract: Unknown cyber-attacks have appeared constantly. Several anomaly detection techniques
based on semi-supervised learning have been proposed to detect these unknown cyber-attacks.
Among them, the Denoising Auto-Encoder (DAE) scheme performs better than others in accuracy but
is not good enough in precision. This paper proposes a novel two-stage deep learning structure for
network flow anomaly detection by combining the models of Gate Recurrent Unit (GRU) and DAE. By
using supervised anomaly detection with a selection mechanism to assist semi-supervised anomaly
detection, the precision and accuracy of the anomaly detection system are improved. In the proposed
structure, we first use the GRU model to analyze the network flow and then take the outcome from
the Softmax function as a confidence score. When the score is more than or equal to the predefined
confidence threshold, the GRU model outputs the flow as a positive result, no matter the flow is
classified as normal or abnormal. When the score is less than the confidence threshold, GRU model
outputs the flow as a negative result and passes the flow to DAE model for flow classification. DAE
then determines a reconstruction error threshold by learning the pattern of normal flows. Accordingly,
the flow is normal or abnormal depending on whether it is under or over the reconstruction error
threshold. A comparative experiment is performed using NSL-KDD dataset as benchmark. The
results revealed that the precision using the proposed scheme is 0.83% better than DAE. The accuracy
using the proposed approach is 90.21%, which is better than Random Forest, Naïve Bayes, One-
Dimensional Convolutional Neural Network, two-stage Auto-Encoder, etc. In addition, the proposed
approach is also applied to the environment of software defined network (SDN). By adopting our
approach in SDN environment, the precision and F-measure are significantly improved.

Keywords: deep learning; gate recurrent unit; denoising auto-encoder; network intrusion
detection system

1. Introduction

In recent years, due to the massive increase in the number of unknown attacks, the de-
velopment of a network intrusion detection system (NIDS) that effectively resists unknown
attacks is an important topic for the network administrator [1]. As shown in Figure 1,
the NIDS server is deployed at the entrance of the connection between the Intranet and the
Internet. It monitors the network packets flowing into the Intranet, analyzes statistical data
collected from network flows, and uses detection mechanisms to determine if the flows
are normal or abnormal. This method can help network managers find abnormal network
conditions and then quickly take defensive measures.

Electronics 2022, 11, 1531. https://doi.org/10.3390/electronics11101531 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101531
https://doi.org/10.3390/electronics11101531
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3239-8696
https://doi.org/10.3390/electronics11101531
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101531?type=check_update&version=1

Electronics 2022, 11, 1531 2 of 18

Electronics 2022, 11, x FOR PEER REVIEW 2 of 18

.

Figure 1. The typical example of deploying the NIDS.

The detection scheme of the NIDS can be divided into signature-based intrusion de-
tection and anomaly-based intrusion detection. The former is currently the main detection
scheme of commercial NIDS, such as Snort and Suricata. This scheme analyzes the pat-
terns or behaviors of past attack flow samples by experts, writes the analysis results into
the flow judging rules, and compares the incoming flow with features to determine
whether it conforms to the attack behavior or not. With this scheme, the rate of misjudg-
ment is low, but it is difficult to detect unknown network attacks. The latter uses machine
learning or deep learning methods to train a classifier model through a mixture of abnor-
mal and normal flows. This method is easier to detect unknown attacks, but the accuracy
is low. On a real network, it is very difficult and time-consuming to label the flow types
one by one. Under normal circumstances, most of the available flow samples belong to
normal flow. To train the classifier from a small number of abnormal flow samples may
cause poor classification results and a high misjudging rate. Unknown attacks easily
evade the use of signature-based intrusion detection systems, causing harm to users.
Based on the above situations, most researchers use anomaly-based intrusion detection as
the detection scheme of NIDS.

V. Chandola et al. [2] pointed out that according to different learning methods, anom-
aly detection schemes are divided into three categories, supervised anomaly detection
(SAD), semi-supervised anomaly detection (SSAD), and unsupervised anomaly detection
(UAD). First, the SAD scheme uses supervised learning to train the detection model with
labeled samples (marked with normal or abnormal flow). Typical examples of SAD mech-
anisms include common convolutional neural networks (CNN) [3,4], recurrent neural net-
works (RNN) [5], LSTM [6], decision trees, random forests, Bayesian classifiers, etc. The
learning effect of SAD is very good, but due to the limited number of labeled samples,
usually only limited abnormal states can be learned. Next, the SSAD scheme is only
trained with samples of normal behavior. By learning the behavior patterns of samples
with normal flow, it is highly sensitive to unknown abnormal flow. Typical examples of
SSAD mechanisms include Auto-Encoder (AE) [7,8], One Class-SVM [9], and Denoising
Auto-Encoder (DAE) [10]. Finally, the UAD mechanism directly trains using unlabeled
flow samples. This method must assume that the number of normal flow samples in all
flow samples is much larger than abnormal flow samples, and the behavior patterns of
abnormal flow samples cannot be too similar to normal flow samples. Without the above
premise, the model trained by this method will result in a higher misjudging rate.

As mentioned above, current research tends to use SSAD schemes as the detection
model of NIDS. For those SSAD schemes, we perform an experiment and find that the

Figure 1. The typical example of deploying the NIDS.

The detection scheme of the NIDS can be divided into signature-based intrusion detec-
tion and anomaly-based intrusion detection. The former is currently the main detection
scheme of commercial NIDS, such as Snort and Suricata. This scheme analyzes the patterns
or behaviors of past attack flow samples by experts, writes the analysis results into the
flow judging rules, and compares the incoming flow with features to determine whether
it conforms to the attack behavior or not. With this scheme, the rate of misjudgment is
low, but it is difficult to detect unknown network attacks. The latter uses machine learning
or deep learning methods to train a classifier model through a mixture of abnormal and
normal flows. This method is easier to detect unknown attacks, but the accuracy is low.
On a real network, it is very difficult and time-consuming to label the flow types one by
one. Under normal circumstances, most of the available flow samples belong to normal
flow. To train the classifier from a small number of abnormal flow samples may cause poor
classification results and a high misjudging rate. Unknown attacks easily evade the use of
signature-based intrusion detection systems, causing harm to users. Based on the above
situations, most researchers use anomaly-based intrusion detection as the detection scheme
of NIDS.

V. Chandola et al. [2] pointed out that according to different learning methods, anomaly
detection schemes are divided into three categories, supervised anomaly detection (SAD),
semi-supervised anomaly detection (SSAD), and unsupervised anomaly detection (UAD).
First, the SAD scheme uses supervised learning to train the detection model with labeled
samples (marked with normal or abnormal flow). Typical examples of SAD mechanisms
include common convolutional neural networks (CNN) [3,4], recurrent neural networks
(RNN) [5], LSTM [6], decision trees, random forests, Bayesian classifiers, etc. The learning
effect of SAD is very good, but due to the limited number of labeled samples, usually only
limited abnormal states can be learned. Next, the SSAD scheme is only trained with samples
of normal behavior. By learning the behavior patterns of samples with normal flow, it is
highly sensitive to unknown abnormal flow. Typical examples of SSAD mechanisms include
Auto-Encoder (AE) [7,8], One Class-SVM [9], and Denoising Auto-Encoder (DAE) [10].
Finally, the UAD mechanism directly trains using unlabeled flow samples. This method
must assume that the number of normal flow samples in all flow samples is much larger
than abnormal flow samples, and the behavior patterns of abnormal flow samples cannot
be too similar to normal flow samples. Without the above premise, the model trained by
this method will result in a higher misjudging rate.

As mentioned above, current research tends to use SSAD schemes as the detection
model of NIDS. For those SSAD schemes, we perform an experiment and find that the over-
all accuracy of the DAE model is better than other approaches. We also find that although
the overall accuracy of the DAE model is very high, the probability of judging normal

Electronics 2022, 11, 1531 3 of 18

flow as abnormal is also higher than that of the supervised model; that is, the precision
of the DAE model is lower. To improve the overall accuracy and precision, this paper
proposes a two-stage anomaly detection and judging structure by combining SAD and
SSAD schemes. To pick our first-stage detection model, we first select two SAD schemes,
Gate Recurrent Unit (GRU) [11] and One-Dimensional Convolutional Neural Network
(1DCNN) [12], together with the DAE model to form a two-stage model and compare them
in terms of accuracy. The experimental results show the overall accuracy of the GRU model
is better. Therefore, we pick up the GRU model as our first-stage detection model.

In the proposed structure, we first use the GRU model to analyze the network flow
and then take the outcome from the Softmax function as a confidence score. When the score
is more than or equal to the predefined confidence threshold, the GRU model outputs the
flow as a positive result, no matter whether the flow is classified as normal or abnormal.
When the score is less than the confidence threshold, the GRU model outputs the flow
as a negative result and passes the flow to the DAE model for flow classification. DAE
then determines a reconstruction error threshold by learning the pattern of normal flows.
Accordingly, the flow is normal or abnormal depending on whether it is under or over
the reconstruction error threshold. We train and test the proposed system by using the
benchmark dataset NSL-KDD [13]. In NSL-KDD dataset, the flow is divided into normal
flow and abnormal flow, and 41 features are used for training. On the other hand, due
to the rapid development of Software Defined Network (SDN) in recent years, we also
apply the proposed structure in the SDN network and compare it with other IDS systems
applied to SDN [14] by using the NSL-KDD dataset as the benchmark. Note that because
of the characteristics of SDN environment, only nine features of the NSL-KDD dataset are
selected to form the benchmark dataset.

The rest of this paper is organized as follows. Dataset used in this paper and related
studies are given in Section 2. In Section 3, the proposed scheme is presented. Simulation
and performance evaluation are given in Section 4. Finally, we give a conclusion.

2. Datasets and Related Studies
2.1. Datasets for NIDS

One of the more famous datasets in the field of NIDS is KDD 99 [15], which was used
when the KDD Cup was held in 1999. In 2009, the NSL-KDD dataset was published by
M. Tavallaee et al. [13], which improved the shortcoming of the KDD 99 dataset, which
contains too many duplicate samples and removes the samples that are too easy to identify.
It is currently one of the main datasets for evaluating the performance of NIDS. Its feature
is that the test dataset contains attack flow that has not appeared in the training dataset. Ac-
cording to A. Aldweesh et al. [16], as shown in Figure 2, most current research uses KDD99
and NSL-KDD as a dataset for evaluating performance. Among them, NSL-KDD accounted
for the majority. Therefore, this paper uses the NSL-KDD as the benchmark dataset.

In the NSL-KDD dataset, each sample is a flow sample collected through flow analysis.
Like the KDD 99 dataset, it contains 41 features and 1 flow type name. In addition to normal
flow, there are 39 types of attack flow. These attack types are divided into four classes:
Denial of Service (DoS); Remote to Local (R2L); User to Root (U2R); and Probe. In the
DoS class, the attacker forces the target machine to suspend the service in some way, such
as occupying network bandwidth or consuming memory resources; thus that legitimate
users cannot use the service and access resources. In the R2L class, the attacker steals the
user’s password and personal information remotely against the target user’s own system
vulnerabilities, or the password strength is too low. In U2R class, an attacker who has
obtained a general user account has unauthorized access to root privileges. In the Probe
class, the attacker monitors the network packets passing by the target machine to find
information and vulnerabilities that are beneficial to the attack. The attack types of the
NSL-KDD dataset are shown in Table 1.

Electronics 2022, 11, 1531 4 of 18
Electronics 2022, 11, x FOR PEER REVIEW 4 of 18

Figure 2. Common dataset of the network intrusion detection system [16].

In the NSL-KDD dataset, each sample is a flow sample collected through flow anal-
ysis. Like the KDD 99 dataset, it contains 41 features and 1 flow type name. In addition to
normal flow, there are 39 types of attack flow. These attack types are divided into four
classes: Denial of Service (DoS); Remote to Local (R2L); User to Root (U2R); and Probe. In
the DoS class, the attacker forces the target machine to suspend the service in some way,
such as occupying network bandwidth or consuming memory resources; thus that legiti-
mate users cannot use the service and access resources. In the R2L class, the attacker steals
the user’s password and personal information remotely against the target user’s own sys-
tem vulnerabilities, or the password strength is too low. In U2R class, an attacker who has
obtained a general user account has unauthorized access to root privileges. In the Probe
class, the attacker monitors the network packets passing by the target machine to find
information and vulnerabilities that are beneficial to the attack. The attack types of the
NSL-KDD dataset are shown in Table 1.

Table 1. The attack types of the NSL-KDD dataset.

Types Attack Name
DoS back, land, neptune, pod, sumrf, teardrop, apache2, mailbomb, processtable, udpstorm

R2L ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient, warezmaster, named, sendmail,
snmpgetattack, snmpguess, worm, xlock, xsnoop

U2R buffer_overflow, loadmodule, perl, rootkit, httptunnel, ps, sqlattack, xterm
Probe ipsweep, nmap, portsweep, satan. mscan, saint

The features of the NSL-KDD dataset can be divided into three classes: Basic Features;
Content Features; and Flow Features. The features and flow name of NSL-KDD dataset
are sorted in order. Numbers 1 to 9 are the basic features, which are indicating the basic
information of the packet header when connecting. For example, protocol_type is the net-
work protocol used by the connection. Numbers 10 to 22 are content features, which are
commonly used features in the field of NIDS. For example, num_failed_logins is the num-
ber of system connection login failures. The flow features are divided into time-based sta-
tistical features (No. 23 to No. 31) and host connection statistics-based features (No. 32 to
No. 41). The last one, number 42, is the name of the flow type.

Figure 2. Common dataset of the network intrusion detection system [16].

Table 1. The attack types of the NSL-KDD dataset.

Types Attack Name

DoS back, land, neptune, pod, sumrf, teardrop, apache2,
mailbomb, processtable, udpstorm

R2L
ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient,

warezmaster, named, sendmail, snmpgetattack,
snmpguess, worm, xlock, xsnoop

U2R buffer_overflow, loadmodule, perl, rootkit, httptunnel,
ps, sqlattack, xterm

Probe ipsweep, nmap, portsweep, satan. mscan, saint

The features of the NSL-KDD dataset can be divided into three classes: Basic Features;
Content Features; and Flow Features. The features and flow name of NSL-KDD dataset
are sorted in order. Numbers 1 to 9 are the basic features, which are indicating the basic
information of the packet header when connecting. For example, protocol_type is the
network protocol used by the connection. Numbers 10 to 22 are content features, which are
commonly used features in the field of NIDS. For example, num_failed_logins is the number
of system connection login failures. The flow features are divided into time-based statistical
features (No. 23 to No. 31) and host connection statistics-based features (No. 32 to No. 41).
The last one, number 42, is the name of the flow type.

2.2. Related Studies

We mentioned in the introduction that an anomaly-based intrusion detection system
can be divided into SAD, SSAD, and UAD. Due to the numerous research on NIDS, it is very
difficult to find datasets and evaluation indicators that can compare all methods. Therefore,
this paper collects multiple articles that use the NSL-KDD dataset as a benchmark with the
accuracy results. These relevant pieces of research are included in the comparison in terms
of accuracy.

Table 2 summarizes the accuracy results of different methods using the NSL-KDD
dataset as a benchmark. The accuracy of traditional machine learning, such as decision
tree (J48) [10], Naive Bayes classifier [13], and Random Forest [13] are 81.07%, 75.56%,
and 80.67%, respectively. The accuracy of supervised deep learning 1DCNN [17] and
RNN [5] are 83.28% and 84.29%, respectively. Q. Niyaz et al. [18] and M. Al-Qatf et al. [19]

Electronics 2022, 11, 1531 5 of 18

used Sparse Auto-Encoder (SAE) [20] to learn deep features and then trained with a
supervised learning method; the results were 88.39% and 84.96 %, both using autoencoders
for feature extraction. R.C.Aygun et al. [7] used Denoising Auto-Encoder (DAE) with
an accuracy of 88.65%, which was the single semi-supervised anomaly detection model
with the best accuracy found in the NSL-KDD test set for this study. M. Gharib et al. [21]
proposed the two-stage auto-encoder architecture as the current best overall accuracy. This
method uses the auto-encoder to learn the normal flow and evaluates the abnormal flow by
calculating reconstruction errors. Some methods use more than two learning methods, such
as M.Al-Qatf et al. [19] using unsupervised SAE with supervised Support Vector Machine
(SVM). This paper also uses supervised GAU models with semi-supervised DAE. In order
to facilitate the interpretation, the learning type was marked as a hybrid.

Table 2. A variety of methods used the accuracy of the NSL-KDD test dataset.

Method Type of Learning Accuracy (%)

Decision Tree [13] Supervised 81.07
Naïve Bayes [13] Supervised 75.56

Random Forest [13] Supervised 80.67
RNN [5] Supervised 83.28

1DCNN [17] Supervised 84.29
SAE + SMR [18] Hybrid 88.39
SAE + SVM [19] Hybrid 84.96

AE [7] Semi-Supervised 88.28
DAE [7] Semi-Supervised 88.65

SAE-AE [21] Semi-Supervised 90.17

Moreover, D. Santhadevi and B. Janet [22] proposed an EIDIMA framework, which
used machine learning techniques, an input vector databank, a decision-making module,
and a subsample module for traffic categorization at edge devices. EIDIMA’s classification
performance was assessed using the F1-Score, accuracy, recall, and precision. Devarakonda
et al. [23] outlined and compared four AI methods to train two benchmark datasets—the
KDD′99 and the NSL-KDD. Deswal et al. [24] provided a hybrid intrusion detection system
that combined distinguished machine learning models such as convolution neural network
(CNN), residual network, and multilayer perceptron. Their results revealed that deep
CNN with higher accuracy of 0.93 on the NSL-KDD dataset. Sun et al. [25] proposed a
deep convolutional neural network model based on Resnet (Residual Network) to solve
the problem of insufficient detection ability of massive network intrusion data and a
few attack samples for intrusion detection. They also used the NSL-KDD dataset as a
benchmark dataset.

3. Two-Stage Deep Learning Structure for Network Flow Anomaly Detection

In order to improve the accuracy and precision of the DAE model, this paper uses a
SAD model to assist the DAE model. Among several SAD models, the accuracy of GRU and
1DCNN models performed better than other approaches. For both models, we performed
an experiment on them and found that the GRU model could improve the accuracy and
precision simultaneously; thus, we chose the GRU model and DAE to form a two-stage deep
learning anomaly detection structure. In the proposed structure, we first used the GRU
model to analyze the network flow and then took the outcome from the Softmax function
as a confidence score. When the score is more than or equal to the predefined confidence
threshold, the GRU model outputs the flow as a positive result, no matter whether the flow
is classified as normal or abnormal. When the score is less than the confidence threshold,
the GRU model outputs the flow as a negative result and passes the flow to the DAE model
for flow classification. DAE then determines a reconstruction error threshold by learning
the pattern of normal flows. Accordingly, the flow was normal or abnormal depending on
whether it was under or over the reconstruction error threshold. The two models add a

Electronics 2022, 11, 1531 6 of 18

hidden layer of two neurons when designing the neural network architecture to facilitate
subsequent data visualization actions and facilitate the interpretation of researchers.

3.1. Data Preprocessing

Data preprocessing is a very important stage in machine learning. There are different
data preprocessing schemes for the features of different data types. Usually, continuous
features use feature scaling to scale different features into the same comparison interval,
and discrete features use coding methods to classify different types of data. This paper
applies Min-Max normalization for continuous features. It is assumed that a sample
contains multiple continuous features, and different features have different numerical
ranges. By scaling each feature to a fixed size, the training will not be biased for some
features. The equation of Min-Max normalization is shown in Equation (1), where x is the
actual value of a sample in the feature to be calculated; min(x) and max(x) are the minimum
and maximum values of the features in the overall sample, respectively. The normalized
value x′ is calculated by the Equation (1), which can compress the features of different sizes
in the range of 0 to 1. With the Min-Max normalization, the data consistency is improved.

x′ =
x−min(x)

max(x)−min(x)
(1)

Commonly used encoding methods include label encoding and one hot encoding.
The label encoding will sequentially encode the newly emerging categories as integers
from small to large. This method is fast and does not increase the number of features,
but the labeled types are all in the same feature and presented as integers. The one-hot
encoding separates each category in the feature into individual features. The disadvantage
of one-hot encoding is that the number of features increases according to the number of
types in the original feature, but it is easier to learn the content of the feature compared
to label encoding. If the added feature is still within the normal range, it is still the most
current machine learning mainstream method used in the research. Therefore, in this paper,
one-hot encoding scheme is used for discrete features.

3.2. Operational Process of Training and Judging Mode

Two modes, training mode and judging mode, are included in the proposed structure.
Each mode consists of two modules, the GRU module, and the DAE module. The detailed
operational processes are presented in the following subsections.

3.2.1. Operational Process of Training Mode

Figure 3 presents the operational process of the training mode. Train_Set denote
the complete training set flow sample. The data will be preprocessed and converted the
features into a format suitable for deep learning. We classified those data into two sets of
training samples, Train_Setall and Train_Setnormal , where the set of Train_Setall included all
labeled normal and abnormal flow samples and the set of Train_Setnormal included labeled
normal flow samples. The set of Train_Setall will be inputted to the GRU_train module
as the initialized training sample of GRU model. After the training being completed, the
GRU model has learned normal and abnormal flow samples. The set of Train_Setnormal
will be inputted to the DAE_train module as the initialized training sample of DAE model.
After the training is completed, the DAE model has learned normal flow samples. The
reconstruction error of the last training epoch will be taken as the DAE reconstruction error
threshold Value (DAEthr).

Electronics 2022, 11, 1531 7 of 18

Electronics 2022, 11, x FOR PEER REVIEW 7 of 18

3.2.1. Operational Process of Training Mode
Figure 3 presents the operational process of the training mode. 𝑇𝑟𝑎𝑖n_𝑆𝑒𝑡 denote the

complete training set flow sample. The data will be preprocessed and converted the fea-
tures into a format suitable for deep learning. We classified those data into two sets of
training samples, 𝑇𝑟𝑎𝑖𝑛_𝑆𝑒𝑡 and 𝑇𝑟𝑎𝑖𝑛_𝑆𝑒𝑡 , where the set of 𝑇𝑟𝑎𝑖𝑛_𝑆𝑒𝑡 in-
cluded all labeled normal and abnormal flow samples and the set of 𝑇𝑟𝑎𝑖𝑛_𝑆𝑒𝑡 in-
cluded labeled normal flow samples. The set of 𝑇𝑟𝑎𝑖𝑛_𝑆𝑒𝑡 will be inputted to the
GRU_train module as the initialized training sample of GRU model. After the training
being completed, the GRU model has learned normal and abnormal flow samples. The set
of 𝑇𝑟𝑎𝑖𝑛_𝑆𝑒𝑡 will be inputted to the DAE_train module as the initialized training
sample of DAE model. After the training is completed, the DAE model has learned normal
flow samples. The reconstruction error of the last training epoch will be taken as the DAE
reconstruction error threshold Value (𝐷𝐴𝐸).

Figure 3. Operational process of the training mode.

3.2.2. Operational Process of Judging Mode
The operational process of the judging mode is shown in Figure 4. At the beginning

of the process, we first have to set the GRU confidence threshold (𝐺𝑅𝑈) and DAE re-
construction error threshold (𝐷𝐴𝐸). 𝐺𝑅𝑈 can be set by experience, and 𝐷𝐴𝐸 is
automatically learned by the DAE_train module during training mode. When the judging
mode operates, the new flow (New_Flow) will be allowed to enter, and after data is pre-
processed, a flow sample (NF) suitable for deep learning is generated. In the first stage,
GRU_judging module, the GRU model will calculate the Softmax score for the NF as the
confidence score 𝑁𝐹 , and then compare it with the previously set 𝐺𝑅𝑈 . If the
value of 𝑁𝐹 is greater than or equal to the value of 𝐺𝑅𝑈 , it means that the
GRU module has sufficient confidence this time. The GRU_judging module will output
the result, 𝐺𝑅𝑈 , and then end the judgment. If the value of 𝑁𝐹 is lower than
value of 𝐺𝑅𝑈 , the NF will be passed to the second stage, DAE_judging module, for
making a judgment. The DAE_judging module calculates the reconstruction error 𝑁𝐹
for the NF using the DAE model and compares it with 𝐷𝐴𝐸 . If the value of 𝑁𝐹 is
higher than 𝐷𝐴𝐸 , the NF is judged as abnormal flow; otherwise the NF is judged as
normal flow.

Figure 3. Operational process of the training mode.

3.2.2. Operational Process of Judging Mode

The operational process of the judging mode is shown in Figure 4. At the beginning
of the process, we first have to set the GRU confidence threshold (GRUthr) and DAE
reconstruction error threshold (DAEthr). GRUthr can be set by experience, and DAEthr is
automatically learned by the DAE_train module during training mode. When the judging
mode operates, the new flow (New_Flow) will be allowed to enter, and after data is
preprocessed, a flow sample (NF) suitable for deep learning is generated. In the first stage,
GRU_judging module, the GRU model will calculate the Softmax score for the NF as the
confidence score NFcon f idence, and then compare it with the previously set GRUthr. If the
value of NFcon f idence is greater than or equal to the value of GRUthr, it means that the GRU
module has sufficient confidence this time. The GRU_judging module will output the
result, GRUresult, and then end the judgment. If the value of NFcon f idence is lower than value
of GRUthr, the NF will be passed to the second stage, DAE_judging module, for making a
judgment. The DAE_judging module calculates the reconstruction error NFRE for the NF
using the DAE model and compares it with DAEthr. If the value of NFRE is higher than
DAEthr, the NF is judged as abnormal flow; otherwise the NF is judged as normal flow.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 18

Figure 4. Operational process of the judging mode

3.3. Threshold Value Setup and Input Method of GRU
In the GRU model, we used the Softmax score as the confidence score. Softmax is

often used in the final output of the classifier model. The Softmax score can be obtained
from Equation (2), where exp is the exponential function with Euler numbers e as the base, 𝒳 is the output of the 𝑖th category, and 𝒳 is divided by all j-types after exponential
function calculation. The sum of the exponential function is to calculate the probability
value of the 𝑖th category, and the total probability value of all types j is equal to 1. Softmax(𝒳) = exp (𝒳)∑ exp (𝒳) (2)

Figure 5 is an example of the GRU model outputting the Softmax score. Because the
goal is to separate abnormal flow and normal flow, the GRU model will output a set of
two-dimensional vectors, as shown in Figure 5. In Figure 5, the values of 0.9 and 0.1 rep-
resent that the GRU model believes that the flow is attack flow with a probability of 0.9
and is normal flow with the probability of 0.1. The larger the probability value, the more
confident the model is in the judgment. Therefore, when the confidence threshold is not
set, the GRU model will directly output the judging result as abnormal flow. In this paper,
once a Softmax score is generated, it has to be compared with the confidence threshold.
When the confidence score is greater than or equal to the confidence threshold, the GRU
model outputs the result; otherwise, it will be handed over to the next stage of the DAE
model for judgment.

Figure 5. The Softmax score of output in the GRU mode.

Due to the Softmax score outputted by the model will have different output results
according to different training cycles, model parameters, and other variables, it is difficult
to directly set a fixed confidence threshold. In this paper, the confidence threshold setting

Figure 4. Operational process of the judging mode.

Electronics 2022, 11, 1531 8 of 18

3.3. Threshold Value Setup and Input Method of GRU

In the GRU model, we used the Softmax score as the confidence score. Softmax is often
used in the final output of the classifier model. The Softmax score can be obtained from
Equation (2), where exp is the exponential function with Euler numbers e as the base, Xi is
the output of the ith category, and Xi is divided by all j-types after exponential function
calculation. The sum of the exponential function is to calculate the probability value of the
ith category, and the total probability value of all types j is equal to 1.

Softmax(Xi) =
exp(Xi)

∑
j
i=1 exp(Xi)

(2)

Figure 5 is an example of the GRU model outputting the Softmax score. Because
the goal is to separate abnormal flow and normal flow, the GRU model will output a set
of two-dimensional vectors, as shown in Figure 5. In Figure 5, the values of 0.9 and 0.1
represent that the GRU model believes that the flow is attack flow with a probability of 0.9
and is normal flow with the probability of 0.1. The larger the probability value, the more
confident the model is in the judgment. Therefore, when the confidence threshold is not set,
the GRU model will directly output the judging result as abnormal flow. In this paper, once
a Softmax score is generated, it has to be compared with the confidence threshold. When
the confidence score is greater than or equal to the confidence threshold, the GRU model
outputs the result; otherwise, it will be handed over to the next stage of the DAE model
for judgment.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 18

Figure 4. Operational process of the judging mode

3.3. Threshold Value Setup and Input Method of GRU
In the GRU model, we used the Softmax score as the confidence score. Softmax is

often used in the final output of the classifier model. The Softmax score can be obtained
from Equation (2), where exp is the exponential function with Euler numbers e as the base, 𝒳 is the output of the 𝑖th category, and 𝒳 is divided by all j-types after exponential
function calculation. The sum of the exponential function is to calculate the probability
value of the 𝑖th category, and the total probability value of all types j is equal to 1. Softmax(𝒳) = exp (𝒳)∑ exp (𝒳) (2)

Figure 5 is an example of the GRU model outputting the Softmax score. Because the
goal is to separate abnormal flow and normal flow, the GRU model will output a set of
two-dimensional vectors, as shown in Figure 5. In Figure 5, the values of 0.9 and 0.1 rep-
resent that the GRU model believes that the flow is attack flow with a probability of 0.9
and is normal flow with the probability of 0.1. The larger the probability value, the more
confident the model is in the judgment. Therefore, when the confidence threshold is not
set, the GRU model will directly output the judging result as abnormal flow. In this paper,
once a Softmax score is generated, it has to be compared with the confidence threshold.
When the confidence score is greater than or equal to the confidence threshold, the GRU
model outputs the result; otherwise, it will be handed over to the next stage of the DAE
model for judgment.

Figure 5. The Softmax score of output in the GRU mode.

Due to the Softmax score outputted by the model will have different output results
according to different training cycles, model parameters, and other variables, it is difficult
to directly set a fixed confidence threshold. In this paper, the confidence threshold setting

Figure 5. The Softmax score of output in the GRU mode.

Due to the Softmax score outputted by the model will have different output results
according to different training cycles, model parameters, and other variables, it is difficult
to directly set a fixed confidence threshold. In this paper, the confidence threshold setting is
adjusted artificially. We actually test the confidence threshold ranging between 0.99900 and
0.99999 on the NSL-KDD data set. It was found that the confidence threshold of the GRU
module in this study was between 0.99984 and 0.99996, which has a good performance on
the overall structure. Therefore, we set the confidence threshold as 0.99990.

3.4. Threshold Value Setup of DAE

This paper uses the DAE model as the second-stage detection model. DAE creates
the effect of missing values by adding noise to the input data. Let the DAE model learn to
restore the original data without missing values from the input data with missing values;
thus that the trained model is less likely to overfit. This allows the DAE model to learn the
really important features from the data, thereby improving generalization capabilities.

In this paper, we use only one hidden layer in the DAE model, which can also be
called the bottleneck layer of the autoencoder. In addition, as shown in Figure 6, we add
Dropout [26] between the input layer and the hidden layer. Through Dropout, different
input features can be randomly discarded in each batch of training instead of adding
noise to the input. The advantage is that it can achieve the effect of training DAE without
changing the original data.

Electronics 2022, 11, 1531 9 of 18

Electronics 2022, 11, x FOR PEER REVIEW 9 of 18

is adjusted artificially. We actually test the confidence threshold ranging between 0.99900
and 0.99999 on the NSL-KDD data set. It was found that the confidence threshold of the
GRU module in this study was between 0.99984 and 0.99996, which has a good perfor-
mance on the overall structure. Therefore, we set the confidence threshold as 0.99990.

3.4. Threshold Value Setup of DAE
This paper uses the DAE model as the second-stage detection model. DAE creates

the effect of missing values by adding noise to the input data. Let the DAE model learn to
restore the original data without missing values from the input data with missing values;
thus that the trained model is less likely to overfit. This allows the DAE model to learn the
really important features from the data, thereby improving generalization capabilities.

In this paper, we use only one hidden layer in the DAE model, which can also be
called the bottleneck layer of the autoencoder. In addition, as shown in Figure 6, we add
Dropout [26] between the input layer and the hidden layer. Through Dropout, different
input features can be randomly discarded in each batch of training instead of adding noise
to the input. The advantage is that it can achieve the effect of training DAE without chang-
ing the original data.

Figure 6. Insert Dropout layer for DAE.

The DAE model uses the Mean-Square Error (MSE) loss function to calculate the re-
construction error, as shown in Equation (3). After training, DAE has learned the normal
flow behavior pattern and reconstruction error. We use the MSE of the last training period
as the reconstruction error threshold. If the calculated MSE of the new flow is higher than
the threshold, this new flow will be judged as abnormal.

MSE = 1𝑛 (𝑦 − 𝑦) (3)

3.5. Data Visualization for Softmax Score Selection
Because the network flow data are usually a combination of numerical values and

discrete features, observers cannot intuitively understand the results of the model. There-
fore, to help observers select and adjust the model, this paper uses the data visualization
method to present the neural network model in two-dimensional or even three-dimen-
sional graphics. To conduct that, the bottleneck layer in DAE is set to two neurons. During
the prediction, the values of the two neurons in the bottleneck layer of each sample are
recorded, and the reconstruction error forms a set of three-dimensional vectors, which are
projected on the 3D graphics.

In addition, we also see the last hidden layer of two neurons in the GRU model. The
two-dimensional output values of the Softmax score are the probabilities 𝑃 and

Figure 6. Insert Dropout layer for DAE.

The DAE model uses the Mean-Square Error (MSE) loss function to calculate the
reconstruction error, as shown in Equation (3). After training, DAE has learned the normal
flow behavior pattern and reconstruction error. We use the MSE of the last training period
as the reconstruction error threshold. If the calculated MSE of the new flow is higher than
the threshold, this new flow will be judged as abnormal.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

3.5. Data Visualization for Softmax Score Selection

Because the network flow data are usually a combination of numerical values and
discrete features, observers cannot intuitively understand the results of the model. There-
fore, to help observers select and adjust the model, this paper uses the data visualization
method to present the neural network model in two-dimensional or even three-dimensional
graphics. To conduct that, the bottleneck layer in DAE is set to two neurons. During the pre-
diction, the values of the two neurons in the bottleneck layer of each sample are recorded,
and the reconstruction error forms a set of three-dimensional vectors, which are projected
on the 3D graphics.

In addition, we also see the last hidden layer of two neurons in the GRU model.
The two-dimensional output values of the Softmax score are the probabilities Pnormal and
Panomaly, where Pnormal represents that the probability of the GRU model considers the flow
is normal and Panomaly represents that the probability of GRU model considers the flow
is abnormal. We convert the two-dimensional output values of the Softmax score into a
one-dimensional output value P1d. When the value of Pnormal is greater than the value
of Panomaly, the value of P1d is equal to the value of Pnormal ; otherwise, the value of P1d is
equal to the value of −Panomaly. Through the process of data visualization, the original
two-dimensional outputs are converted into one-dimensional outputs, and finally form
a three-dimensional vector with the hidden layer of two neurons and project it on the
3D graphics. The process of data visualization for Softmax score selection is shown is
Algorithm 1.

Algorithm 1 Softmax score selection

Inputs: Pnormal , Panomaly
Output: P1d

1: if Pnormal > Panomaly then
2: P1d = Pnormal
3: else P1d = −Panomaly
4: return P1d

Electronics 2022, 11, 1531 10 of 18

4. Simulation and Performance Evaluation

To verify the feasibility of the proposed scheme, several experiments are carried out on
the Google Colab online platform. The Colab development environment and kits are shown
in Table 3. We first performed 10 times of training experiments on each of the DAE model
and the GRU model using the NSL-KDD dataset and calculated the average accuracy. For
those 10 DAE models, we selected the DAE model, in which the accuracy was closed to the
average accuracy, to be an exemplary model for presenting data visualization, confusion
matrix, and the threshold value. One of the GRU models was selected using a similar way.
Finally, we made a comparison between the proposed structure and other approaches in
terms of accuracy and precision.

Table 3. The Colab development environment and kits.

The Colab Development Environment and Kits

OS Ubuntu 18.04.3 LTS
CPU Intel Xeon 2.3GHz
GPU Tesla K80
RAM 13GB

Language Python3.6
Kits Tensorflow 2.2.0, Scikit-learn, NumPy, pandas

The data distribution of NSL-KDD dataset is shown in Table 4. All four attack types of
NSL-KDD dataset were classified as anomalies. The NSL-KDD dataset consists of training
set and test set. The total number of samples in the training set was 125,973, in which the
number of normal flow samples was 67,343, and the number of abnormal flow samples
was 58,630. The total number of samples in the test set was 22,544, in which the number
of normal flow samples was 9711, and the number of abnormal flow samples was 12,833.
Only normal flow sample in the dataset was used for DAE training and the entire training
set was used for GRU training. The discrete data in the NSL-KDD dataset was encoded by
one-hot encoding method. After encoding, the total number of features increased from 41
to 126 features.

Table 4. Distribution of NSL-KDD dataset.

Types
Number of Samples

Training Dataset Test Dataset

Normal 67,343 (53.5%) 9711 (43.1%)
Anomaly 58,630 (46.5%) 12,833 (56.9%)

Total 125,973 22,544

4.1. Experimental Parameters Setting of DAE Model and GRU Model

Both DAE and GRU models are shown in Figures 7 and 8, respectively. Note that in
both figures, the numbers at the bottom of the layer are the number of neurons used in this
layer. In Figure 7, the DAE′s dropout rate is 0.5, which means that half of the features of
each batch of input data will be randomly discarded during training. In addition, L2 regu-
larization was added to the bottleneck layer to avoid overfitting. In Figure 8, 126 features
were cut into 14-time steps and input in batches, and 9 features were inputted into each time
step. This is because, under the input shape of GRU set to (14, 9), the performance of the
GRU model was better. The parameters used are shown in Table 5. In order to improve the
fairness of this research, except for the training period, which is a better value selected after
testing, the other parameters were commonly used in the two models. Two models were
trained 10 times using the NSL-KDD dataset and numbered 1 to 10. In order to facilitate
the presentation of experimental results, we calculated the average accuracy of each model
and picked the model in which the accuracy was closest to the average accuracy.

Electronics 2022, 11, 1531 11 of 18

Electronics 2022, 11, x FOR PEER REVIEW 11 of 18

by one-hot encoding method. After encoding, the total number of features increased from
41 to 126 features.

Table 4. Distribution of NSL-KDD dataset.

Types
Number of Samples

Training Dataset Test Dataset
Normal 67,343(53.5%) 9711(43.1%)

Anomaly 58,630(46.5%) 12,833(56.9%)
Total 125,973 22,544

4.1. Experimental Parameters Setting of DAE Model and GRU Model
Both DAE and GRU models are shown in Figures 7 and 8, respectively. Note that in

both figures, the numbers at the bottom of the layer are the number of neurons used in
this layer. In Figure 7, the DAE′s dropout rate is 0.5, which means that half of the features
of each batch of input data will be randomly discarded during training. In addition, L2
regularization was added to the bottleneck layer to avoid overfitting. In Figure 8, 126 fea-
tures were cut into 14-time steps and input in batches, and 9 features were inputted into
each time step. This is because, under the input shape of GRU set to (14, 9), the perfor-
mance of the GRU model was better. The parameters used are shown in Table 5. In order
to improve the fairness of this research, except for the training period, which is a better
value selected after testing, the other parameters were commonly used in the two models.
Two models were trained 10 times using the NSL-KDD dataset and numbered 1 to 10. In
order to facilitate the presentation of experimental results, we calculated the average ac-
curacy of each model and picked the model in which the accuracy was closest to the av-
erage accuracy.

Figure 7. The DAE model of our approach.

Figure 8. The GRU model of our approach.

Figure 7. The DAE model of our approach.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 18

by one-hot encoding method. After encoding, the total number of features increased from
41 to 126 features.

Table 4. Distribution of NSL-KDD dataset.

Types
Number of Samples

Training Dataset Test Dataset
Normal 67,343(53.5%) 9711(43.1%)

Anomaly 58,630(46.5%) 12,833(56.9%)
Total 125,973 22,544

4.1. Experimental Parameters Setting of DAE Model and GRU Model
Both DAE and GRU models are shown in Figures 7 and 8, respectively. Note that in

both figures, the numbers at the bottom of the layer are the number of neurons used in
this layer. In Figure 7, the DAE′s dropout rate is 0.5, which means that half of the features
of each batch of input data will be randomly discarded during training. In addition, L2
regularization was added to the bottleneck layer to avoid overfitting. In Figure 8, 126 fea-
tures were cut into 14-time steps and input in batches, and 9 features were inputted into
each time step. This is because, under the input shape of GRU set to (14, 9), the perfor-
mance of the GRU model was better. The parameters used are shown in Table 5. In order
to improve the fairness of this research, except for the training period, which is a better
value selected after testing, the other parameters were commonly used in the two models.
Two models were trained 10 times using the NSL-KDD dataset and numbered 1 to 10. In
order to facilitate the presentation of experimental results, we calculated the average ac-
curacy of each model and picked the model in which the accuracy was closest to the av-
erage accuracy.

Figure 7. The DAE model of our approach.

Figure 8. The GRU model of our approach.

Figure 8. The GRU model of our approach.

Table 5. The parameters of both models.

DAE GRU

Batch Size 256 256
Epochs 100 30

Hidden layer Activation Sigmoid Tanh/ReLU
Output layer Activation Sigmoid Softmax

Weight Initialization Glorot uniform Orthogonal/He normal
Optimizer Adam Adam

Loss Function MSE Categorical cross-entropy

4.2. Experimental Results

The experimental results of deep learning usually have a certain degree of randomness,
and most studies use accuracy, recall, precision, and F-measure to compare performance.
However, few studies show that the final experimental result is obtained after how many
experiments or the overall average. In this paper, the final results are obtained based on the
average results of 10 experiments.

4.2.1. GRU and DAE Models Training Results

We first performed 10 times of training experiments on each of the GRU model and
the DAE model using the NSL-KDD dataset as a benchmark and calculated the average
accuracy, the average recall, the average precision, and the average F-measure. The results
are shown in Tables 6 and 7, respectively. From both tables, one can see that the accuracy
of GRU_3 model and DAE_1 model was closest to the average accuracy. Therefore, both
models were selected as exemplary models for presenting data visualization, confusion
matrix, and the threshold value.

Electronics 2022, 11, 1531 12 of 18

Table 6. Experimental results of the GRU model using the NSL-KDD test dataset as a benchmark.

Model Accuracy (%) Precision (%) Recall (%) F-Measure (%)

GRU_1 78.49 96.02 64.9 77.45
GRU_2 80.81 95.92 69.24 80.42
GRU_3 78.85 94.05 67.09 78.32
GRU_4 78.38 92.33 67.64 78.08
GRU_5 79.24 92.04 69.55 79.23
GRU_6 77.99 92.28 66.94 77.59
GRU_7 81.12 96.85 69.08 80.64
GRU_8 76.80 92.30 64.63 76.03
GRU_9 78.87 92.32 68.59 78.71
GRU_10 77.57 91.84 66.51 77.15

Average 78.81 93.60 67.42 78.36

Table 7. Experimental results of the DAE using the NSL-KDD test dataset as a benchmark.

Model Accuracy (%) Precision (%) Recall (%) F-Measure (%)

DAE_1 89.70 86.71 96.74 91.45
DAE_2 89.72 86.71 96.77 91.46
DAE_3 88.67 85.46 96.52 90.65
DAE_4 90.02 86.48 97.74 91.77
DAE_5 89.73 86.70 96.81 91.48
DAE_6 89.74 86.69 96.85 91.49
DAE_7 89.91 86.75 97.10 91.64
DAE_8 89.71 86.71 96.75 91.46
DAE_9 89.74 86.72 96.81 91.49
DAE_10 89.72 86.72 96.76 91.47

Average 89.67 86.56 96.89 91.43

4.2.2. Data Visualization Results

Both the GRU_3 model and the DAE_1 model are visualized with 22544 samples
using the complete NSL-KDD test dataset. Figure 9 is the visualization result of the
DAE_1 model’s reconstruction error. The red sample is the actual abnormal flow, and the
blue sample is the actual normal flow. The x and y axes are the output of two neurons
in the bottleneck layer in the DAE, and the z-axis is the reconstruction error of each
sample. The DAE_1 model was trained, and then the reconstruction error threshold value
was obtained, as shown in the blue frame of Figure 9. Above this threshold, it was
judged as abnormal flow, and below the threshold value was judged as normal flow. As
seen in Figure 9, the reconstruction error of most abnormal flow will be very high. The
reconstruction error of normal flow was relatively low, and we could obtain good results
from a pure DAE model. However, in the lower-left corner of Figure 9, there are still
a small number of abnormal flow reconstruction errors that are almost the same as the
normal samples. Moreover, it is difficult to judge the normal flow and abnormal flow at
the junction of the reconstruction error threshold, which leads to the misjudgment of the
model. Therefore, we need to use other models to assist the judgment of the DAE model.

Electronics 2022, 11, 1531 13 of 18

Electronics 2022, 11, x FOR PEER REVIEW 13 of 18

Table 7. Experimental results of the DAE using the NSL-KDD test dataset as a benchmark.

Model Accuracy (%) Precision (%) Recall (%) F-Measure (%)
DAE_1 89.70 86.71 96.74 91.45
DAE_2 89.72 86.71 96.77 91.46
DAE_3 88.67 85.46 96.52 90.65
DAE_4 90.02 86.48 97.74 91.77
DAE_5 89.73 86.70 96.81 91.48
DAE_6 89.74 86.69 96.85 91.49
DAE_7 89.91 86.75 97.10 91.64
DAE_8 89.71 86.71 96.75 91.46
DAE_9 89.74 86.72 96.81 91.49
DAE_10 89.72 86.72 96.76 91.47
Average 89.67 86.56 96.89 91.43

4.2.2. Data Visualization Results
Both the GRU_3 model and the DAE_1 model are visualized with 22544 samples us-

ing the complete NSL-KDD test dataset. Figure 9 is the visualization result of the DAE_1
model’s reconstruction error. The red sample is the actual abnormal flow, and the blue
sample is the actual normal flow. The x and y axes are the output of two neurons in the
bottleneck layer in the DAE, and the z-axis is the reconstruction error of each sample. The
DAE_1 model was trained, and then the reconstruction error threshold value was ob-
tained, as shown in the blue frame of Figure 9. Above this threshold, it was judged as
abnormal flow, and below the threshold value was judged as normal flow. As seen in
Figure 9, the reconstruction error of most abnormal flow will be very high. The recon-
struction error of normal flow was relatively low, and we could obtain good results from
a pure DAE model. However, in the lower-left corner of Figure 9, there are still a small
number of abnormal flow reconstruction errors that are almost the same as the normal
samples. Moreover, it is difficult to judge the normal flow and abnormal flow at the junc-
tion of the reconstruction error threshold, which leads to the misjudgment of the model.
Therefore, we need to use other models to assist the judgment of the DAE model.

Figure 9. The visualization of the DAE_1 model’s reconstruction error.

Figure 10 shows the visualization result of the GRU_3 model’s confidence judgment.
The red samples and the blue samples are the actual attacks and the actual normal sample,
respectively. The x and y axes are the output of two hidden layer neurons, and the z-axis
is the Softmax confidence score, in which the value is between 1 and −1. The Softmax

Re
co

ns
tru

ct
io

n
Er

ro
r

Normal Flow

Abnormal Flow

Bottleneck Layer Neuron 1 Bottleneck Layer Neuron 2

Figure 9. The visualization of the DAE_1 model’s reconstruction error.

Figure 10 shows the visualization result of the GRU_3 model’s confidence judgment.
The red samples and the blue samples are the actual attacks and the actual normal sample,
respectively. The x and y axes are the output of two hidden layer neurons, and the z-axis
is the Softmax confidence score, in which the value is between 1 and −1. The Softmax
confidence score greater than 0 means that the original GRU_3 model’s judgment is normal,
and the Softmax confidence score less than 0 means the judgment is abnormal. It can be
found that there are many judging errors (gray blocks) in the GRU as a whole. The overall
accuracy of the GRU_3 model is 78.85%, but when the confidence score is close to 1 and −1
(blue block and red block), the judging result is obviously much better. Therefore, according
to the confidence threshold we set, GRU will output the samples with high confidence
score, and the remaining samples with insufficient confidence will be handed over to DAE
for processing. Through the data visualization in Figure 10, it can be understood that the
overall under-performing model may still perform well in the judging accuracy of the high
confidence interval.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 18

confidence score greater than 0 means that the original GRU_3 model’s judgment is nor-
mal, and the Softmax confidence score less than 0 means the judgment is abnormal. It can
be found that there are many judging errors (gray blocks) in the GRU as a whole. The
overall accuracy of the GRU_3 model is 78.85%, but when the confidence score is close to
1 and −1 (blue block and red block), the judging result is obviously much better. Therefore,
according to the confidence threshold we set, GRU will output the samples with high con-
fidence score, and the remaining samples with insufficient confidence will be handed over
to DAE for processing. Through the data visualization in Figure 10, it can be understood
that the overall under-performing model may still perform well in the judging accuracy
of the high confidence interval.

Figure 10. The visualization of the GRU_3 model’s confidence judgment.

4.2.3. GRU Model’s Confidence Threshold Setup
This paper tested different thresholds for the GRU model’s confidence threshold set-

ting. We intend to observe how the adjustment of the GRU model’s confidence threshold
affects the number of flows passing thresholds and how much accuracy can be improved
by comparing the results of only the DAE model used. The results are shown in Figure 11.
From Figure 11, we can find that when the confidence threshold is from 0.99984 to 0.99996,
the accuracy of the overall structure is improved by at least 0.3%, of which 0.99990 has the
best effect. The level of the threshold also directly affects the number of flows passing
through the confidence threshold. The higher the threshold, the less the number of flows
passes, resulting in the accuracy increasing. However, if the threshold is set too high, the
number of flows passing will be reduced, and the effect of improving the accuracy will be
reduced. The other extreme is that the threshold is too low. For the above reasons, we
believe that the confidence threshold must be adjusted slowly from high to low in order
to find an appropriate threshold.

Fully Connected Layer Neuron 1 Fully Connected Layer Neuron 2

The original judgment
of the GRU is normal.

The original judgment of
the GRU is anomaly.

Lack of confidence
and non-judgment

High-confidence judgment is normal

High-confidence judgment
is anomaly

Figure 10. The visualization of the GRU_3 model’s confidence judgment.

4.2.3. GRU Model’s Confidence Threshold Setup

This paper tested different thresholds for the GRU model’s confidence threshold
setting. We intend to observe how the adjustment of the GRU model’s confidence threshold
affects the number of flows passing thresholds and how much accuracy can be improved
by comparing the results of only the DAE model used. The results are shown in Figure 11.
From Figure 11, we can find that when the confidence threshold is from 0.99984 to 0.99996,

Electronics 2022, 11, 1531 14 of 18

the accuracy of the overall structure is improved by at least 0.3%, of which 0.99990 has
the best effect. The level of the threshold also directly affects the number of flows passing
through the confidence threshold. The higher the threshold, the less the number of flows
passes, resulting in the accuracy increasing. However, if the threshold is set too high, the
number of flows passing will be reduced, and the effect of improving the accuracy will
be reduced. The other extreme is that the threshold is too low. For the above reasons, we
believe that the confidence threshold must be adjusted slowly from high to low in order to
find an appropriate threshold.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 18

Figure 11. The performance of different GRU model’s confidence thresholds.

The performance result of the GRU model with and without the confidence threshold
is shown in Table 8, where the confidence threshold of the GRU model is 0.99990. From
the table, one can see that the accuracy of the GRU model with confidence threshold
screening (GRU-CT) is better than the accuracy of the GRU model without confidence
threshold screening.

Table 8. The performance of GRU model with and without confidence threshold.

Model Accuracy (%) Precision (%) Recall (%) F-Measure (%)
GRU 78.85 94.05 67.09 78.32

GRU_CT 98.87 98.45 99.59 99.02

4.2.4. Comparisons
Table 9 shows the comparison between the GRU-DAE model and other approaches

in terms of accuracy. The accuracy of our proposed structure is 90.21%, which is better
than most current methods. In addition, the best-performing of GRU-DAE model (GRU-
DAE (best)) in 10 experiments can achieve 90.56% accuracy.

Table 9. Comparison between GRU-DAE model and other approaches.

Method Type of Learning Accuracy (%)
RNN [5] Supervised 83.28

1DCNN [17] Supervised 84.29
SAE + SMR [18] Hybrid 88.39
SAE + SVM [19] Hybrid 84.96

AE [7] Semi-Supervised 88.28
DAE [7] Semi-Supervised 88.65

SAE-AE [21] Semi-Supervised 90.17
1DCNN-DAE Hybrid 89.95

GRU-DAE Hybrid 90.21
GRU-DAE (best) Hybrid 90.56

Figure 11. The performance of different GRU model’s confidence thresholds.

The performance result of the GRU model with and without the confidence threshold
is shown in Table 8, where the confidence threshold of the GRU model is 0.99990. From the
table, one can see that the accuracy of the GRU model with confidence threshold screening
(GRU-CT) is better than the accuracy of the GRU model without confidence threshold
screening.

Table 8. The performance of GRU model with and without confidence threshold.

Model Accuracy (%) Precision (%) Recall (%) F-Measure (%)

GRU 78.85 94.05 67.09 78.32
GRU_CT 98.87 98.45 99.59 99.02

4.2.4. Comparisons

Table 9 shows the comparison between the GRU-DAE model and other approaches in
terms of accuracy. The accuracy of our proposed structure is 90.21%, which is better than
most current methods. In addition, the best-performing of GRU-DAE model (GRU-DAE
(best)) in 10 experiments can achieve 90.56% accuracy.

Electronics 2022, 11, 1531 15 of 18

Table 9. Comparison between GRU-DAE model and other approaches.

Method Type of Learning Accuracy (%)

RNN [5] Supervised 83.28
1DCNN [17] Supervised 84.29

SAE + SMR [18] Hybrid 88.39
SAE + SVM [19] Hybrid 84.96

AE [7] Semi-Supervised 88.28
DAE [7] Semi-Supervised 88.65

SAE-AE [21] Semi-Supervised 90.17
1DCNN-DAE Hybrid 89.95

GRU-DAE Hybrid 90.21
GRU-DAE (best) Hybrid 90.56

5. Application to SDN-Based Network Flow Anomaly Detection

Software Defined Network (SDN) is a new form of network architecture to improve
the shortcomings of traditional networks, such as low scalability. The main difference
between the SDN network and the traditional network is the separation of the control plane
(Control Plane) and the data plane (Data Plane) of the network. The SDN controller (Con-
troller) uses the OpenFlow protocol [27] and the OpenFlow switch (OpenFlow Switch) to
communicate to manage the entire SDN network. Because the SDN network is centralized
management, it is easy to collect overall network information, and it has better security than
traditional networks. TATang et al. [28] proposed a NIDS based on the SDN architecture
as shown in Figure 12. The network intrusion detection system module is installed on
the controller side, and the SDN controller sends the ofp_flow_stats_request command to
the SDN at a fixed time. All OpenFlow switches in the network request statistics about
network flow characteristics. After receiving the request, the OpenFlow switch will send
the ofp_flow_stats_reply command containing statistical flow characteristics information to
the SDN controller for unified processing. In order to avoid the SDN controller consuming
a lot of computing resources to count the characteristics of network flow, M. Latah et al. [14]
selected the most suitable features for SDN by applying principal component analysis
(PCA) to the NSL-KDD dataset. The selected features are shown in Table 10.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 18

5. Application to SDN-Based Network Flow Anomaly Detection
Software Defined Network (SDN) is a new form of network architecture to improve

the shortcomings of traditional networks, such as low scalability. The main difference be-
tween the SDN network and the traditional network is the separation of the control plane
(Control Plane) and the data plane (Data Plane) of the network. The SDN controller (Con-
troller) uses the OpenFlow protocol [27] and the OpenFlow switch (OpenFlow Switch) to
communicate to manage the entire SDN network. Because the SDN network is centralized
management, it is easy to collect overall network information, and it has better security
than traditional networks. TATang et al. [28] proposed a NIDS based on the SDN archi-
tecture as shown in Figure 12. The network intrusion detection system module is installed
on the controller side, and the SDN controller sends the ofp_flow_stats_request command
to the SDN at a fixed time. All OpenFlow switches in the network request statistics about
network flow characteristics. After receiving the request, the OpenFlow switch will send
the ofp_flow_stats_reply command containing statistical flow characteristics information
to the SDN controller for unified processing. In order to avoid the SDN controller con-
suming a lot of computing resources to count the characteristics of network flow, M. Latah
et al. [14] selected the most suitable features for SDN by applying principal component
analysis (PCA) to the NSL-KDD dataset. The selected features are shown in Table 10.

Figure 12. An SDN-based network intrusion detection system [23].

Table 10. SDN-related Features on the NSL-KDD dataset after feature selection.

Feature Type Feature Name
Basic connection features duration, protocol_type, service, src_bytes, wrong_fragment

Flow features depending on the time connection count, rerror_rate, diff_srv_rate
Flow features depending on the host connection dst_host_srv_serror_rate

By using SDN-related features on the NSL-KDD dataset as a benchmark, we com-
pared the experimental result of our approach applied to SDN network with several
schemes experimented by M. Latah et al. [14]. The result is shown in Table 11. Although
the accuracy of GRU-DAE was slightly lower than the decision tree scheme, our approach
performed better than the decision tree on precision and F-measure. In particular, the pre-
cision was far ahead of other approaches.

Figure 12. An SDN-based network intrusion detection system [23].

Electronics 2022, 11, 1531 16 of 18

Table 10. SDN-related Features on the NSL-KDD dataset after feature selection.

Feature Type Feature Name

Basic connection features duration, protocol_type, service,
src_bytes, wrong_fragment

Flow features depending on the time connection count, rerror_rate, diff_srv_rate
Flow features depending on the host connection dst_host_srv_serror_rate

By using SDN-related features on the NSL-KDD dataset as a benchmark, we compared
the experimental result of our approach applied to SDN network with several schemes
experimented by M. Latah et al. [14]. The result is shown in Table 11. Although the accuracy
of GRU-DAE was slightly lower than the decision tree scheme, our approach performed
better than the decision tree on precision and F-measure. In particular, the precision was
far ahead of other approaches.

Table 11. Comparison between our approach and other approaches using SDN-related features of
the NSL-KDD dataset as a benchmark.

Method Accuracy (%) Precision (%) Recall (%) F-Measure (%)

SVM 81.40 71.81 94.13 81.47
KNN 82.31 71.59 96.41 82.17

Random Forest 80.13 67.73 96.25 80.13
Neural Networks 74.23 59.56 92.50 72.46

AdaBoost 87.16 80.23 96.65 87.67
Decision Tree 88.74 83.24 96.50 89.38

GRU-DAE 88.33 88.80 90.97 89.87

6. Conclusions

We propose a two-stage deep learning anomaly detection structure by combining
the schemes of the GRU model and DAE model. By using supervised anomaly detection
with a selection mechanism to assist semi-supervised anomaly detection, the precision
and accuracy of the anomaly detection system are improved. We also used the method
of data visualization to understand the reasons for the insufficient accuracy of the GRU
model. Moreover, we used the confidence threshold screening method to make better flow
judgments. With the proposed structure, we improved the accuracy of 0.54% and precision
of 0.83% of the DAE model using the NSL-KDD dataset as a benchmark, reaching an
overall accuracy of 90.21%. We also applied the proposed system in the SDN environment
and compared it with other IDS systems applied to the SDN environment. The results
revealed that the proposed method could achieve precision of 88.8% and F-measure of
89.87%, which is better than Support Vector Machine, K-Nearest Neighbors algorithm,
Decision Tree, etc. At present, this research is only tested using the NSL-KDD dataset as a
benchmark. Additionally, we also found that recently several papers used UNSW-NB15 as
the benchmark dataset. In the future, we will use UNSW-NB15 dataset as the benchmark
dataset in our proposed structure or use the data of real network environments and make a
comparison between them.

Author Contributions: M.-T.K., D.-Y.S., S.-J.K. and F.-M.C. contributed equally to this work. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 1531 17 of 18

References
1. World Economic Forum (WEF). The Global Risks Report 2019; World Economic Forum (WEF): Geneva, Switzerland, 2019.
2. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58. [CrossRef]
3. Naseer, S.; Saleem, Y.; Khalid, S.; Bashir, M.K.; Han, J.; Iqbal, M.M.; Han, K. Enhanced network anomaly detection based on deep

neural networks. IEEE Access 2018, 6, 48231–48246. [CrossRef]
4. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2323. [CrossRef]
5. Yin, C.; Zhu, Y.; Fei, J.; He, X. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access

2017, 5, 21954–21961. [CrossRef]
6. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
7. Aygun, R.C.; Yavuz, A.G. Network Anomaly Detection with Stochastically Improved Autoencoder Based Models. In Proceedings

of the IEEE 4th International Conference on Cyber Security and Cloud Computing, New York, NY, USA, 26–28 June 2017;
pp. 193–198.

8. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
[CrossRef] [PubMed]

9. Bao, C.M. Intrusion detection based on one-class SVM and SNMP MIB data. In Proceedings of the 5th International Conference
on Information Assurance and Security, Xi’an, China, 18–20 August 2009; Volume 2, pp. 346–349.

10. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders.
In Proceedings of the 25th International Conference on Machine Learning, Online, 5 July 2008; pp. 1096–1103.

11. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

12. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1746–1751.

13. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the IEEE
Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6.

14. Latah, M.; Toker, L. Towards an efficient anomaly-based intrusion detection for software-defined networks. IET Netw. 2018, 7,
453–459. [CrossRef]

15. KDD Cup 1999 Dataset. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on
29 October 2021).

16. Aldweesh, A.; Derhab, A.; Emam, A.Z. Deep learning approaches for anomaly-based intrusion detection systems: A survey,
taxonomy, and open issues. Knowl. Based Syst. 2020, 189, 105124. [CrossRef]

17. Verma, K.; Kaushik, P.; Shrivastava, G. A Network Intrusion Detection Approach Using Variant of Convolution Neural Network.
In Proceedings of the International Conference on Communication and Electronics Systems, Coimbatore, India, 17–19 July 2019;
pp. 409–416.

18. Niyaz, Q.; Sun, W.; Javaid, A.Y.; Alam, M. A Deep Learning Approach for Network Intrusion Detection System. In Proceedings
of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies, New York, NY, USA,
3–5 December 2015; pp. 21–26.

19. Al-Qatf, M.; Lasheng, Y.; Al-Habib, M.; Al-Sabahi, K. Deep Learning Approach Combining Sparse Autoencoder with SVM for
Network Intrusion Detection. IEEE Access 2018, 6, 52843–52856. [CrossRef]

20. Ranzato, M.A.; Poultney, C.; Chopra, S.; LeCun, Y. Efficient learning of sparse representations with an energy-based model. In
Proceedings of the Advances in Neural Information Processing Systems, Hyatt Regency Vancouver, Vancouver, BC, Canada,
4–7 December 2006; pp. 1137–1144.

21. Gharib, M.; Mohammadi, B.; Dastgerdi, S.H.; Sabokrou, M. AutoIDS: Auto-encoder Based Method for Intrusion Detection System.
arXiv 2019, arXiv:1911.03306.

22. Santhadevi, D.; Janet, B. EIDIMA: Edge-based Intrusion Detection of IoT Malware Attacks using Decision Tree-based Boosting
Algorithms. In High Performance Computing and Networking; Springer: Singapore, 2022.

23. Devarakonda, A.; Sharma, N.; Saha, P.; Ramya, S. Network intrusion detection: A comparative study of four classifiers using the
NSL-KDD and KDD’99 datasets. J. Phys. Conf. Ser. 2022, 2161, 012043. [CrossRef]

24. Deswal, P.; Shefali, R.; Neha, C. Anomaly Detection in IoT Network using Deep Learning Algorithms. Harbin Gongye Daxue
Xuebao J. Harbin Inst. Technol. 2022, 54, 255–262.

25. Sun, M.; Liu, N.; Gao, M. Research on Intrusion Detection Method Based on Deep Convolutional Neural Network. In Artificial
Intelligence in China; Springer: Singapore, 2022; pp. 537–544.

http://doi.org/10.1145/1541880.1541882
http://doi.org/10.1109/ACCESS.2018.2863036
http://doi.org/10.1109/5.726791
http://doi.org/10.1109/ACCESS.2017.2762418
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://doi.org/10.1049/iet-net.2018.5080
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://doi.org/10.1016/j.knosys.2019.105124
http://doi.org/10.1109/ACCESS.2018.2869577
http://doi.org/10.1088/1742-6596/2161/1/012043

Electronics 2022, 11, 1531 18 of 18

26. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

27. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]

28. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep learning approach for Network Intrusion Detection in
Software Defined Networking. In Proceedings of the International Conference on Wireless Networks and Mobile Communications,
Fez, Morocco, 26–29 October 2016; pp. 258–263.

http://doi.org/10.1145/1355734.1355746

	Introduction
	Datasets and Related Studies
	Datasets for NIDS
	Related Studies

	Two-Stage Deep Learning Structure for Network Flow Anomaly Detection
	Data Preprocessing
	Operational Process of Training and Judging Mode
	Operational Process of Training Mode
	Operational Process of Judging Mode

	Threshold Value Setup and Input Method of GRU
	Threshold Value Setup of DAE
	Data Visualization for Softmax Score Selection

	Simulation and Performance Evaluation
	Experimental Parameters Setting of DAE Model and GRU Model
	Experimental Results
	GRU and DAE Models Training Results
	Data Visualization Results
	GRU Model’s Confidence Threshold Setup
	Comparisons

	Application to SDN-Based Network Flow Anomaly Detection
	Conclusions
	References

