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Abstract: Radar target characteristics need to be accurately extracted to enhance the role of high-
frequency (HF) radar target recognition technology in modern radar, sea and air monitoring, and
other applications. The pole characteristics of radar targets have become a mainstream research
focus because of their inherent advantages for target recognition. However, existing pole extraction
methods for complex targets generally have problems in early- and late-time responses aliasing and
target information loss. To avoid this problem, this study proposes a new method to extract radar
target poles based on the special particle swarm optimization algorithm (SPSO) and an autoregressive
moving average (ARMA) model. This method, which does not involve the distinction between
early-and late-time responses, is used to estimate an approximation of the entire scattering echo of the
target. Then the parameters of the model are precisely optimized with the help of a particle swarm
optimization algorithm combined with opposition-based learning and inertia weight decreasing.
Strategy. Owing to the characteristics of the azimuth consistency of the target poles, a sliding window
is used to calibrate the positions of multi-azimuth poles in the complex plane. The method was
demonstrated to be feasible with good performance when it was applied to extract the pole features
of ships at different azimuths in the high-frequency band.

Keywords: HF; complex radar target; pole features; ARMA model; PSO

1. Introduction

Pole features mainly represent the global electromagnetic resonance characteristics
of the targets, they have become the most important basis for radar target recognition in
resonance research areas [1]. The late-time response of a radar can be expanded in a series of
attenuation exponents and forms so that it can be transformed into a linear system problem
to analyze radar targets [2,3]. The description method of linear systems mainly includes a
polynomial model and a state-space model [4]. The effective polynomial methods for pole
extraction are the Prony and back-propagation linear prediction (KT) methods [5,6]. The
earliest Prony method ignored the early responses and has poor robustness [7]. Further-
more, the derived KT method only extracts the amplitude data [8]. Among the state-space
methods of pole extraction, the representative methods with improved research results are
the functional beam and iterative methods [9,10]. The matrix beam prediction method uses
the singular value decomposition method to process the data of the equivalent first-order
approximation to the original data. It is a stable state-space algorithm, but it still lacks
a theoretical analysis of the parameter selection method [11]. The subsequent iterative
algorithm is a linear least-squares algorithm based on continuous modes [12,13].

The verification process of the aforementioned methods is mostly conducted with a
simple geometric object, and the extraction and verification of poles for complex targets lack
in-depth research studies. Many studies have estimated pole parameters. However, the
poles extracted based on these traditional methods inevitably induce large errors caused
by interception and aliasing. Aiming at the problem of early- and late-time responses
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aliasing in traditional methods, we propose to use the ARMA model to approximate
the whole echo scattering. Because the model algorithm will inevitably introduce the
new challenge of parameter dependence, and the common ARMA modelling methods
such as the moment estimation method and least square method have the disadvantages
of cumbersome calculation process and too many constraints, we propose the particle
swarm optimization algorithm (PSO), which is applied to optimize the estimation of
model parameters [14]. At the same time, the more advanced opposition-based learning
and inertia weight decreasing strategy is used to strengthen the convergence speed and
global optimization ability of the standard PSO algorithm. At this point, the initial pole
distribution extracted from the model may have azimuth inconsistency, which needs
further correction, and the sliding window multi-directional correction method is proposed.
In summary, the core contributions of this study are to establish a set of processes that
can accurately extract the pole features of complex radar targets in the HF band. The
proposed ARMA model algorithm, the special PSO combined with opposition-based
learning and inertia weight decreasing and the sliding window multi-directional correction
method, not only overcomes the problem of early- and late-time responses aliasing, but
also solves the problems of parameter dependence and direction inconsistency in the actual
extraction process.

The remainder of this study is divided into four parts. Section 2 describes the new
process of the extraction algorithm, including the following algorithms: the ARMA model
approximation algorithm, the PSO combined with opposition-based learning and inertia
weight decreasing strategy, and the algorithm for correcting multi-azimuth poles with
sliding windows. In Section 3, the analysis process proposed in this study was used to
extract the pole features of ships. The extraction results are then compared with the matrix
beam prediction method. Conclusions and future developments are provided in Section 4.

2. Methods

In this section, we focus on the pole feature extraction process of model approximation,
and we then accurately analyze the optimization of the model parameters and the correction
method of the initial poles.

2.1. Preprocessing of the ARMA Model Algorithm

The discrete scattered field of a static conductor target illuminated by transient electro-
magnetic waves can usually be expressed as [15],

Es(m∆t) = Es
po(m∆t) +

∞

∑
n=−∞

Es
n(m∆t)esnm∆t; m = 0, 1, 2, · · ·M, (1)

where ∆t is the sampling interval, and Es
po(∆t) is the forced physical optical scattering

field of the conductor related to the incident field. After the incident field has completely
passed through the target, the physical optical field disappears, the time-varying field Es

n(t)
becomes a constant independent of time, and the late response of the target commences.
Additionally, sn = σn + jwn is the complex frequency of the target representing the overall
attribute of the target, which is independent of the incident waveform, polarization, and
target attitude angle [15]. According to the time limitation of the early response and the
causality of the late response, the discrete sequence in Equation (1) can be expressed as

Es(m) = Es
po(m)[u(m)− u(m−ML)] + u(m−ML)

∞

∑
n=−∞

Es
nZm

n , (2)

where u(m) is the unit step function, Zn = esn∆t represents the coordinates of the poles on
the complex plane, and ML is the starting- time of the late response of the target.

It can be observed in Equation (2) that the start time of the late response mainly
depends on two factors: the projection distance of the target in the electromagnetic propa-
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gation direction and the pulse width of the incident excitation wave. However, owing to
the shape of the target, the projection distance along the direction of the electromagnetic
propagation changes with the attitude angle. At the same time, the filtering of the incident
excitation pulse by the transmission antenna will make the forced physical optical scatter-
ing field and the late resonance overlap with each other, which inevitably leads to an error
in the late response of the target. To solve the adverse effect of this error on pole extraction,
this study used the ARMA model to approximate the entire scattering field of the target
according to the viewpoint that the static or slow-moving conducting target in a transient
electromagnetic field can be regarded as a linear time-invariant system with input. Because
the actual excitation incident field is a short pulse signal with limited bandwidth and time
width, it can only excite a finite number of main poles; thus, it can be described by the
finite-order ARMA difference equation as follows,

Es(m) =
N

∑
i=1

biEs(m− i) +
L

∑
j=0

ajEi(m− j), (3)

where N and L are the orders of the AR and MA parts of the ARMA model, Es(m) is
the sampling value of the target scattering field echo, Ei(m) is the sampling value of the
incident field, and ai and bi are the recursive coefficients of the ARMA model. The target
transfer function corresponding to Equation (3) is

H =
a0 + a1z−1 + · · ·+ aLz−L

1− b1z−1 − · · · − bNz−N . (4)

Thus, the poles of the target si, i = 1, 2, · · ·N; can be obtained from the zeros of the
denominator polynomial in Equation (4), and the error in intercepting the late response
of the target can be avoided by directly using the entire scattering echo response of the
target. Among them, the accurate solution of model parameters about AR oder and MA
oder is indispensable.

2.2. The Special Particle Swarm Optimization Algorithm (SPSO)

Most pole extraction algorithms based on the model have a significant dependence on
the parameters. To reduce this parameter dependence and improve the estimation accuracy
of the ARMA model, and overcome the shortcomings of the cumbersome calculation
process and many restrictions of common ARMA modelling methods such as the moment
estimation method and least square method, we use a special particle swarm optimization
to optimize and estimate the model parameters, and the best parameters of the model
are obtained through global search, based on this, the data model of echo scattering is
established, and finally, the pole extraction of com-plex targets is completed.

First, the initial principle of the basic particle swarm optimization algorithm needs
to be introduced. Particle swarm optimization is a parallel and efficient optimization
algorithm based on swarm intelligence [16]. Because of its memory characteristics, the
particle swarm optimization algorithm enables particles to dynamically track the current
search situation and adjust the search direction without operations such as crossover
and mutation. It has the virtues of high precision, simple process and fast convergence
in parameter optimization, and is very suitable for model optimization. The individual
position of the particle in the solution space is updated by the particle by tracking the
individual best position Pbest and the group best position Gbest, to realize the evolution
of the candidate solution. The velocity of the ith particle is Vi = (Xi1, Vi2, · · · , ViD)

T . Its
individual best position Pbest is

Pi = (Pi1, Pi2, · · · , PiD)
T , the group’s best position Gbest is Pi = (Pg1, Pg2, · · · , PgD)

T .
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In the next iteration, the particle updates its speed and position through Pbest and
Gbest, and the update formula is as follows:

Vk+1
id = ωVk

id + c1r1(Pk
id − Xk

id) + c2r2(Pk
gd − Xk

id), (5)

Xk+1
id = Xk

id + Vk+1
id . (6)

where, d = 1, 2, · · · ,D; i = 1, 2, · · · , n; k is the current number of iterations; Vid is the current
particle velocity in the d-th dimension space; c1 and c2 are called learning factors, they are
usually set to c1 = c2 = 2. which are Non-negative constant; r1 and r2 are uniform random
numbers in the interval [0, 1]; ω is the inertia weight.

The basic concept of opposition-based learning needs to be clearly understood. When
the particle swarm optimization algorithm is initialized, the closer the randomly generated
particles are to the optimal solution, the better the convergence of the algorithm. Due to
the randomness of the initial particle population, it is impossible to predict the distance
between the initial particle and the optimal solution, which often leads to an invalid search
of the algorithm. The basic idea of opposition-based learning is that for a feasible solution
of a particle, its inverse solution can be generated [17]. Since the probability that the inverse
solution approaches the global optimum is 50% more than the probability of a feasible
solution. Therefore, if the solution spaces constructed by the feasible solution and the
inverse solution are combined, the ability of particles to obtain the global optimal solution
will be greatly improved when searching in the constructed solution space.

The inverse solution of each particle xi(t) = (xi1, xi2, · · · xiD) is x̃j = (x̃1, x̃2, · · · , x̃D),
xj ∈ [aj, bj], where

x̃j = aj + bj − xj, (7)

The individual extreme value corresponding to an ordinary particle xi(t) in the D-
dimensional space is the elite particle, and the inverse solution of the elite particle is
set as

x̃ij = k(aj + bj)− xij. (8)

where xij ∈ [aj, bj]; k ∈ [0, 1] is the generalization coefficient, so that the particle can obtain
a better inverse solution.

Combining SPSO with ARMA model: To improve the convergence speed of standard
PSO algorithm and avoid falling into local optimization, the inertia weight decreasing
strategy is introduced into opposition-based learning of PSO, and this special particle
swarm optimization algorithm is applied to the parameter’s optimization of AR order and
MA order.

The inertia weight ω represents the degree to which the current velocity of the particle
is affected by the historical velocity. The formula for calculating ω of a linear inertia weight
decreasing strategy is as follows:

ω = ωmax − (ωmax −ωmin)(
iter

itermax
). (9)

where ωmax is the maximum value of inertia weight, ωmin is the minimum value of inertia
weight, iter is the current number of iterations, and itermax is the maximum number of
iterations. Under the influence of the change of the inertia weight ω, the speed and
searchability of the particle also change correspondingly: when the inertia weight ω is
large, the flying speed of the particle is also large, and the global search ability of the
particle is better; When the inertia weight ω decreases with the increase of the number of
iterations, the flight speed of the particles also decreases accordingly, which is convenient
for the rapid aggregation of the particle swarm, then, the local search ability of the particles
is better.
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In the ARMA model, the order of ARMA is determined by AIC (Akaike Information
Criterion) The root mean square error Rmse is selected as the fitness function of the SPSO-
ARMA model, as shown in formula (10)

Rmse =

√√√√ 1
n

n

∑
k−1

(xk − xp)
2

. (10)

where, xk is the actual value of the k-th sample, xp is the predicted value of the k-th sample,
n is the number of samples.

2.3. Calibrating Multidirectional Pole Positions

In the actual extraction process, it was found that the experimental extraction results
of the poles at different azimuths had good consistency, but they were not identical. There
is a significant difference, especially in the attenuation factors of some poles. To obtain
poles with exactly the same azimuth, the extraction results need to be processed, and a
set of poles is used to replace the pole results of all azimuths to ensure that the poles
are completely independent of the azimuth. In this way, a multidirectional pole position
adjustment method based on the sliding window function is proposed, which is used
for transformation into a set of identical poles. At the same time, sporadic false poles
distributed on the complex plane can be removed.

In the pole adjustment method, the poles of all azimuths distributed together in the
complex plane can be assumed to be a single pole. Thus, a two-dimensional window
function is constructed on the complex plane. When the counted poles falling in this
window exceed a certain threshold, it is considered that real poles are falling in the window,
and the position of the new pole is calculated. The window function is slid across the entire
complex plane until it covers the region where poles may exist.

Considering the distribution characteristics of the poles at different azimuths in the
second quadrant of the complex plane, a two-dimensional window function can be selected.
The window length (lw) is represented as the attenuation factor, and the width (hw) is
represented as the attenuation frequency. Because the maximum attenuation frequency
cannot exceed the maximum frequency ( fmax) that is achieved when calculating the scat-
tering data, the minimum frequency is set to fmin = 0. For the poles of the real target, the
absolute value of the maximum attenuation factor does not typically exceed the maximum
attenuation frequency [18]. The minimum attenuation factor σmin = − fmax was chosen,
and the maximum attenuation factor σmax was zero. The values of hw, lw, and step length
of the window movement must be designed according to the distribution of the poles.
Because of the pole distribution characteristics of the ship targets, some empirical values
can be obtained [19]. lw = σmax/3, hw = fmin/30, and the sliding step length was set as
∆σ = lw/2 and ∆ f = hw/2. After setting all the parameters, the sliding window was
used to search the complex plane. The search was conducted first along the direction of
f , and then along the direction of σ. If the number of poles in the window I exceeds the
threshold Ith, the window function value g(si) corresponding to the position of the poles in
the window needs to be calculated.

snew
i =

I
∑

i=1
sig(si)

I
∑

i=1
g(si)

, (11)

Snew
i is calculated as the new pole position, where I is the pole number in the window.

The above process was repeated until the entire complex plane area with possible poles
was searched.

The main steps of the whole extraction process are shown in Figure 1.
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Figure 1. Main experimental process of poles extraction.

3. Results and Analysis

A large complex ship was selected as the object of the radar target, and the main
size was 153 m × 15 m. The experimental process is divided into three modules: the first
involves creating an accurate model of the ship based on computer simulation technology
microwave studio (CST MWS), as shown in Figure 2, the hexahedral meshing model of
the destroyer is given. Second, the target echo data were obtained, and the calculation
range of the frequency response ranged from 0.15 MHz to 30 MHz, 200 samples with a
frequency step of 0.15 MHz. Accordingly, the radar echo scattering data were calculated in
ten directions from 0◦ to 90◦ at 10◦ intervals. Figure 3 shows the scattering data of the ship
in different azimuths. Third, this method was used to extract the pole features of the ship,
and the extracted target poles were all normalized by πc/Ls (Ls is the length of the ship).
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Figure 4 shows the pole results based on the matrix beam method. Figure 5 shows
the extracted poles distribution of the ship in ten directions using the method described in
this study. Compared with Figures 4 and 5, it is obvious that the method presented herein
has two advantages. In Figure 5, the pole locations extracted from different directions are
more tightly grouped, which shows that the poles extracted by this method are true poles
and exhibit a more distinct aggregation pattern than the poles in Figure 4. This indicates
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that the poles extraction method in this study has been greatly improved in precision.
This is because the matrix beam method only intercepts the late response of the echo
data for processing. It can neither avoid the aliasing influence of the early-and late-time
responses, nor eliminate the truncation error caused by the late response, thus resulting
in large deviations of the poles in different azimuths. Conversely, the poles extraction
method proposed in this study was combined with the early-and late-time responses for
approximation purposes. Thus, these two defects were overcome, and more efficient and
accurate results can be obtained. Moreover, as shown in Figure 5, there are two more
poles (poles 1 and 2) compared with those in Figure 4, which demonstrates that the poles
extracted by this method are more comprehensive. The omission of true poles in the
literature largely lies in the fact that the selected value of the parameters of poles in the
matrix beam method is not accurate enough. The method in this study combines the model
orders of the system with the specific particle swarm optimization algorithm, and the
parameters are greatly optimized, which solves the error problem caused by parameter
dependence and avoids the omission of true poles.
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4. Conclusions

Feature extraction of complex radar targets plays an important role in applications
such as sea and air detection, early warning and modern radar systems. In this study, a set
of procedures was designed to accurately extract the pole feature distribution of complex
radar targets in the HF band. First, the ARMA model is used to reasonably approximate the
entire scattered echo of a complex radar target, it solves the problem of early-and late-time
responses aliasing and eliminates the ambiguities generated in traditional late-time meth-
ods, to ensure that the possible pole feature information can be extracted effectively. The
second, the special particle swarm optimization algorithm combining opposition-based
learning and decreasing inertial weights is used to optimize the estimation of model param-
eters, it effectively solves the problem of parameter dependence in the model algorithm
and greatly improves the accuracy of pole extraction. Finally, the sliding window multidi-
rectional correction method is applied to process the initial pole distribution of the complex
plane, which makes the corrected multi-directional pole distribution show more distinct
aggregation characteristics and better comprehensiveness. This method was tested on the
HF radar target of the large complex ship. After a lot of repeated qualitative research, our
experiments confirm that the pole features extracted from the targets’ scattering echoes
obtain absolute advantages in accuracy, effectiveness and integrity over the reference matrix
beam method. It demonstrates the successful performance of the pole feature extraction



Electronics 2022, 11, 1644 10 of 11

technology and provides a theoretical basis for complex radar target recognition methods
based on pole features in engineering practice.

To maximize the accuracy of pole extraction, the method in this paper selects as many
transmission frequencies as possible. However, in the actual pole feature extraction process,
the more frequencies are selected, it will take longer time to detect the targets. Therefore,
the frequency of this pole extraction method should be optimized to improve its real-time
efficiency in the following research.
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