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Abstract: To address the problem of strong uncertainty in the high proportion of new energy output,
an improved convolutional long- and short-term memory (CLSTM) hybrid neural network is pro-
posed for PV power combination prediction. Firstly, considering the large impact of weather changes
on PV power output, a fluctuation feature identification model is used to classify historical PV power
series samples into slow weather change type and severe weather change type. Secondly, taking
into account the multimodal characteristics of PV power output, an improved variational modal
decomposition technique is used to adaptively determine the number of modal components, K, and
decompose the two types of samples. Regarding the existence of the low-frequency steady state
component and the high-frequency fluctuation component of PV power output, the high-frequency
component is used to train the long- and short-term memory (LSTM) model and the low-frequency
component is used to train the convolutional neural network (CNN) model. The improved sparrow
search algorithm (SSA) is used to optimize the parameters of the LSTM and CNN models during
the training process. Finally, the predicted component values of each model are superimposed and
reconstructed to obtain PV power prediction values. The actual operation data of a PV plant in
northern China were used for comparison and validation, and the experiments showed that the
accuracy of the prediction results, based on the improved SSA to optimize the parameters of the
CLSTM hybrid neural network for predicting PV output, was significantly better than that of the
BP, CNN, LSTM single neural network prediction results, and of the prediction accuracy of the
unoptimized CLSTM hybrid neural network. At the same time, compared with the above single
neural network and unoptimized hybrid prediction model, the proposed method converged faster
and was more adaptable to weather changes.

Keywords: photovoltaic power combination prediction; fluctuation feature recognition model;
improved variational modal decomposition; CLSTM hybrid neural network

1. Introduction

The increasing depletion of fossil energy and serious environmental pollution have
resulted in an energy crisis, and environmental problems are increasingly prominent [1].
Power systems are the dominant resources to achieve low-carbon goals, and building
a new type of power system with a high proportion of renewable energy is the new
development direction of the power industry [2]. Photovoltaic power generation, as a
promising renewable energy, has the characteristics of cleanliness and sustainability, but it
is easily affected by the environment, giving rise to unstable characteristics in its output,
such as volatility, randomness, and intermittency [3,4]. As high penetration photovoltaic
power generation is connected to the power system, the safety and stability of the operation
of the power system becomes greatly challenged. The accurate prediction of photovoltaic
output would not only provide powerful data support for its suppression and consumption,
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but would also reduce its impact on the power grid, improve its market competitiveness
and promote transformation of the power system [5]. Additionally, it is essential for the
development of an economical and reliable power dispatch schedule [6,7]. Therefore, it is
an important foundation for the safety, stability, and economic operation of the new type of
power system that there is high penetration of renewable energy to improve the accuracy
of photovoltaic output prediction.

Some research has been carried out on the prediction of photovoltaic output, mainly
model and data driven. In terms of model driven research, multiscale analysis, a clustering
algorithm and a probability distribution model are used in [8] to realize the mining and
modeling of the rapid fluctuation and long-term scale changes of photovoltaic power.
A physical model of a photovoltaic power station is established in [9], based on basic infor-
mation, such as location and placement angle of the photovoltaic system, and combining
this with the conversion efficiency formula of photovoltaic modules. However, the photo-
voltaic power prediction model based on a model-driven method has the disadvantages
of modeling with complex and low calculation efficiency. With the integration of a high
proportion of photovoltaic power, it is difficult to meet the requirements of power grid
regulations on accuracy and rapidity of photovoltaic power predictions. In terms of the
data driven model, the emergence and development of artificial intelligence (Al) technology
has made photovoltaic power prediction, based on data-driven methods, become a research
hotspot; such as support vector machines [10], extreme learning machines [11], Markov
chains and other methods. Compared with model-driven methods, the above-mentioned
Al methods are more effective.

To further improve prediction accuracy, some researchers have proposed decomposing
the mode of the historical photovoltaic power sequence, and then predicting each com-
ponent, considering that photovoltaic output contains multiple modes. This method is
called combined prediction. Existing studies have shown that the accuracy of the combined
prediction model is generally superior to a single model. For example, in [12] the authors
used empirical mode decomposition to decompose photovoltaic output, but this method
has modal aliasing. In [13] the authors introduced variational modal decomposition, and
determined the number of modal components by the cumbersome center frequency method;
however, it could not adaptively determine the number of modal components. With the
continuous development of deep learning and the promotion of applications, deep neural
network models, such as CNN and LSTM, have become mainstream methods of photo-
voltaic power combination prediction. The combined prediction of photovoltaic power is
adapted in [14,15], which was based on a convolutional neural network model and long-
and short-term memory neural model, respectively. The convolutional long- and short-
term memory neural hybrid network model is applied in [16]. Compared with traditional
machine learning methods, deep neural network models have obtained more accurate
combined prediction results. Although the prediction accuracy of the above methods has
been improved, these models, especially deep neural network models, have problems, such
as overfitting, gradients exploding or disappearing during training, and slow convergence
speed, due to strong fitting ability.

In general, the existing models for photovoltaic output prediction, based on model-
driven methods, have problems of relatively low prediction accuracy and complex calcu-
lation burdens. The existing data-driven combined prediction models have problems of
overfitting and slow convergence, due to defects of the algorithm itself. It is difficult to
meet the requirements of high accuracy and rapidity of photovoltaic output forecasting for
the operation and control of the renewable power system.

This paper proposes an improved SSA to optimize the parameters of the CLSTM
hybrid neural network, which is called the SSA-CLSTM model, and then to establish a
photovoltaic power combined prediction model. The photovoltaic output prediction is
performed through the CLSTM hybrid neural network to improve prediction accuracy.
Meanwhile, the improved SSA is applied to optimize CLSTM parameters to eliminate
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over-fitting and improve the convergence speed of the algorithm. The main contributions
of this paper are:

(1) The fluctuation feature recognition model is applied to divide historical photo-
voltaic power sequence samples into slow weather changes and severe weather changes; on
this basis, an improved variational modal decomposition technique is used to adaptively
determine the number of variational modal components, K, then decompose the historical
photovoltaic power sequence.

(2) A combined prediction method is proposed, in which high and low frequency
components are separately trained and predicted, considering that it is difficult to match the
CNN model to the LSTM model. The training and prediction of high-frequency components
are implemented by the LSTM model, and the training and prediction of the low-frequency
components are carried out with the CNN model.

(3) An improved sparrow search algorithm is proposed to find the best parameters of
the CNN and LSTM models to increase convergence speed and improve prediction accuracy.

The rest of the paper is organized as follows. Section 2 introduces the improved
variational modal decomposition and fluctuation feature recognition model. Optimizing
the entire algorithm flow by improving the initial population method is described in
Section 3. The convolutional neural network model and the long and short-term memory
network model are introduced in Section 4. The model of the combination prediction model
is proposed creatively by using a hybrid neural network in Section 5, which describes in
detail the photovoltaic power prediction process using the method proposed in this paper.
Case studies and conclusions are presented in Sections 6 and 7, respectively.

2. Improved Variational Mode Decomposition and Fluctuation Feature
Recognition Model

2.1. Improved Variational Mode Decomposition

Considering the phenomenon of multimodal aliasing of photovoltaic output, the pho-
tovoltaic output modal is first decomposed. The photovoltaic output will show random
and periodic fluctuation, and has obvious non-stationary status, due to the influence of
the environment and the equipment. Variational mode decomposition (VMD) is a new
method, which is different from recursive modal decomposition. It can effectively deal
with nonlinear and non-stationary time series signals and has excellent frequency domain
decomposition characteristics. When decomposing a signal, the resolution accuracy de-
pends on the number of components parameter, K. Existing researchers set the number of
components, K, in advance, based on their experiences, but determining the number of com-
ponents based on subjective experiences can easily cause aliasing of modal components. To
solve this problem, singular value decomposition technology is introduced. Its clear signal-
to-noise resolution capability can automatically find the number of modal components
according to the best effective order of singular values, and then performs the variational
modal according to the determined number of modal components decomposed [17].

2.2. Fluctuation Feature Recognition Model

To accurately determine whether the weather has abrupt changes, the fluctuation
feature recognition model in [18] is introduced.

The following daily photovoltaic power sequence fluctuation characteristic parameters
are defined for improving the accuracy of fluctuation characteristics recognition.

(1) Peak value of daily photovoltaic power sequence fluctuation Mp:

M, = max( M/,H—M/r) r=12---,n—1 1)

where M, indicates the value of the daily photovoltaic power extreme point sequence at
time r, after normalization; r indicates the serial number of the normalized daily photo-
voltaic power extreme value point sequence; n indicates the number of extreme points of
the daily photovoltaic power sequence.
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(2) Daily photovoltaic power sequence fluctuation frequency f:

n
=— 2
(3) Daily fluctuation rate of photovoltaic power sequence #7,;:
o tr r = 1

lr_{ tr—t?’*l 7/':2/3/"'/’/1 (3)
m =maxl, 1,2,---,n 4)

where I, indicates the time interval between adjacent extreme points of the normalized
daily photovoltaic power sequence; ¢, indicates the time corresponding to the extreme
point of the normalized daily photovoltaic power sequence.

According to the defined fluctuation characteristic parameters of daily photovoltaic
power sequence, the characteristic vector of daily photovoltaic power sequence fluctuation
is recorded as W = [Mm, f, 17m]. The quartile method is used to determine the threshold of
characteristic parameters. The calculation steps are as follows:

(1) Calculate the second quartile Q5 g ; of the fluctuation characteristic parameters of
each day’s photovoltaic power sequence:

Q o w(H+1)/2,K,i/H:2h+l’h:0/1/2”' (5)
2,K,i (UH/Z,K,1+(§(H+2)/2,K,1', H=2hh=1,2,---

where w11/ ki Tepresents the (H + 1)/2-th value in the k-th day photovoltaic power
fluctuation characteristic parameter sequence wg ; under the i-th weather type, K =1, 2,3,
i=1,2

Calculate the first quartiles Q; x ; and the third quartiles Q3 x ; of the characteristic
parameters of photovoltaic power fluctuations on each day.

When the number of sample days is H = 2h(h = 1,2, - - - ), dividing the daily photo-
voltaic power fluctuation feature vector into two parts from Q  ;, the two parts do not
contain Q,  ;, and then calculate the median Q’,  ; and Q" g ; of the two parts respectively,
and the former is smaller than the latter, then Qq x; = Q"> ki, Q3 ki = Q" 2.k -

When the number of sample daysis H =4h+3(h =0,1,- - ), then:

{ Q1,x,i = 0.75Wp 41,k + 0.25wH 12 ki ©)
Q3.k,i = 0.25w3y,42 ki + 0.75wW3 13 ki
When the number of sample daysis H =4h+1(h =0,1,- - - ), then:
{ Quki = 025wy ki + 0.75wp 11,k i %
Q3.kx,i = 0.75ws3y,41, ki +0.25wW3p12 ki

Calculate the interquartile moment, and determine the threshold of each parameter of
the daily photovoltaic power fluctuation feature vector.

The expression of the interquartile moments for calculating the fluctuation characteris-
tic parameters of the two weather types is:

Ior ki = Q3 — Quk,i 8)

The expression for determining the fluctuation characteristic parameter sequence of
the two weather types is:

(Fik i Fuki) = [Quii — 1.5I0r ki Q3 ki + 1.5I0R k] )
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where F g ; represents the lower threshold of the fluctuation characteristic parameter of
the k-th daily power sequence under the i-th weather type; F, g ; represents the higher
threshold of the fluctuation characteristic parameter of the k-th daily power sequence under
the i-th weather type, the sample data outside the interval [F, g ;, F, k ;] are all outliers.

The improved variational modal decomposition technique is used to decompose
the historical photovoltaic power sequence and several modal components are obtained.
Among them, high-frequency components are considered to be the sequence with more
complex fluctuation characteristics. However, it is difficult to directly distinguish high and
low frequency components in practice.

3. Improved Sparrow Search Algorithm Theory
3.1. Improved Tent Chaotic Map

Many swarm intelligence optimization algorithms, such as PS0, determine the initial
position of the individual through random initialization. Although the randomness of
the initial position of the individual can be guaranteed, it may make the initial position
of the individual farther from the optimal position, resulting in low solution accuracy
and slow convergence. The chaotic mapping sequence has ergodicity, randomness, and
sensitivity to initial values, which can effectively make up for the shortcomings of the
random initialization method. The expression of Tent chaotic map is as follows:

< < 0.
Zey1 = 22k 0<z <05 k=012, (10)

2(1 —Zk),0.5 S ZJ S 1

where k indicates the number of mappings; z; represents the k-th mapping value.

It can be seen from the (10) that the chaotic map belongs to the distribution of [0, 1],
but existing studies have shown that its actual distribution is mainly concentrated between
[0.2, 0.8], so the Tent chaotic map is improved, and the improved function expression is
as follows:

2(z; + 0.1 x rand(0,1)),0 < z, < 0.5
Zkp1 = 2(1 =z —0.1 xrand(0,1)),05 <z, <1 (11)
k=0,1,2---

In (11), when z;,1 > 1, its return value is 1; when z;,1 <0, its return value is 0.

The ergodicity of the improved Tent chaotic map between [0, 1] is significantly im-
proved, and the distribution is more uniform. Therefore, this paper uses the improved Tent
chaotic map to initialize the population.

The inverse mapping of chaotic variables into population solution space variables is
as follows:

xe =L+ (e — ) 21, k=10,1,2,- - (12)

where [ and u; represent the minimum and maximum values of the optimized variable
interval, respectively.

Population initialization process:

Stepl: Set the number of optimization variables to N, and randomly assign N initial
values z; of z; in (10);

Step2: Use (11) to generate chaotic variables {zy,i=1, 2, ..., n};

Step3: Use (12) to inversely map the chaotic variable z; to the population solution
space to complete the population initialization.

3.2. Sparrow Search Algorithm

SSA is mainly inspired by the foraging behavior and antipredation behavior of spar-
rows. It is a novel algorithm, with the advantages of strong optimization ability and
fast convergence speed. In SSA, all individuals are divided into discoverers, joiners and
guarders. The discoverer mainly provides foraging directions for the population, the joiner
follows the discoverer for food, and the guarder is responsible for supervising the foraging
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area. If danger is detected, the entire population will be notified to flee immediately. During
the foraging process, the three individuals constantly update their current positions to
find the optimal position. The proportion of guarders in the population is 15~20%, and
the discoverers and joiners are dynamically changing. When an individual becomes a
discoverer, another individual must become a follower.

Suppose there are N sparrows in the population, the population composed of all
individuals can be expressed as X = [x1, X, ... , xn], and the fitness function corresponding
to each individual is F = [f(x1), f(x2), - .. , f(xn)]T, where the discoverer location update rule
is as follows:

,l — { ]exP(m) Ry < ST W)

ij l]—f—QXL,RzZST

where t represents the current iteration number; xf,j represents the position of the i-th

sparrow in the j dimension in the ¢-th generation; a € (0, 1]; itermax is the maximum number

of iterations, Rj is the alarm value, ST is the safety threshold, Q is a random number that

obeys a normal distribution; L is a 1 X d matrix, and d represents an individual dimension.
The follower’s location update rules are as follows:

t t

Xpp— i i

1 _ QxeXp( )i> 5

g Uxatxri<y

X; (14)
_ xp

where x!, represents the position of the individual with the worst fitness in the ¢-th gen-

eration; X’”rl represents the position of the individual with the best fitness in the ¢ + 1

generatlon Aisal x d matrix, where each element is randomly set to +1, A* = AT(AAT) L,
The location update rules of the guarder are as follows:

t
Xp

Ji# fy

t-‘rl
t —xf
o+ k(e fU|+e)fl fs

xt (15)

where x! is the global optimal position in the t-th iteration; B controls the step size and obeys
the normal distribution of (0,1); k € [-1, 1]; € is set as a constant to avoid the denominator
being zero; f; is the current individual fitness value, fg and f,, are the current global optimal
and worst individual fitness values respectively.

3.3. Improved Sparrow Search Algorithm Optimization Process

In order to improve the prediction accuracy of the CLSTM hybrid network model
proposed in the article, an improved SSA is used to optimize the CLSTM hybrid network
model. The optimization process is shown in Figure 1.
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Figure 1. Flow chart of improved sparrow search optimization algorithm.

4. CNN/LSTM Hybrid Network Model

The accuracy of CNN and LSTM in photovoltaic power prediction is acceptable, but
when dealing with more complex problems, the accuracy of CNN is relatively slow com-
pared with LSTM. Considering that the low-frequency components have more regular
fluctuation forms and the model parameters are relatively less, choosing CNN to build a
prediction model can not only meet prediction accuracy but also reduce computational
complexity of the model; and the prediction of the high-frequency photovoltaic compo-
nents can be considered a more complicated problem. At this time, CNN cannot meet
its prediction accuracy, and more accurate prediction results can be obtained by using
the LSTM network. Therefore, the combined prediction model proposed in this paper is
that the low-frequency component prediction model is established by the CNN, and the
high-frequency fluctuation component prediction model is established by the LSTM.

4.1. Long and Short-Term Memory Neural Network

LSTM is a special neural network model improved on the basis of RNN. The difference
is that forget gates, input gates, update gates, and output gates are added to each hidden
layer in RNN. In this way, the current information can be compared with historical infor-
mation, and learning can be carried out through the mechanism of choosing, forgetting and
self-decision, which can alleviate the problem of gradient explosion or disappearance in
RNN training. The unit structure diagram is shown in Figure 2.
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Figure 2. LSTM network model structure diagram.

The model has three inputs, including C;_1, h;_1 and x;, which represent the long-term
memory information of the previous moment, the short-term memory information of the
previous moment, and the current input, respectively. There are three gates inside the
model to control whether the information is discarded or not: input gate, output gate, and
forget gate. The update formula is as follows:

fr=oc(wg - [h—1,x:] + by)

ir = o(w; - [hy—1, x¢] + b;)

Qt = U(wo : [htfll xt] + bo)

C = tanh(wc . [htfl,Xt} + bc) (16)
Ci = fr*Cr1 +irxCy

ht = Ot * tanh(Ct)

Yyr = wyht + by

where w and b respectively represent the weight matrix and bias vector of the control gate;
o is the activation function; y; is the final output result; * is the Hadamard product.

4.2. Convolutional Neural Network

Convolutional neural networks have many applications in image recognition, classifi-
cation and prediction. The model structure is mainly composed of a convolutional layer
and a pooling layer. It uses the characteristics of local connection and weight sharing to
speed up training and improve generalization performance. Its typical structure diagram is
shown as in Figure 3.

R [
el 2

.

Input Convolutional ~ Pooling  output
layer layer

Figure 3. Typical structure diagram of convolutional neural network.
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The convolutional layer is composed of multiple feature surfaces, and each feature
surface is composed of multiple neural nodes (cells). Each neuron is associated with the
corresponding local feature area of the previous layer through the convolution kernel. The
feature is extracted through the convolution operation of the convolution kernel. Following
the convolutional layer is the pooling layer. Similar to the convolutional layer, the pooling
layer is also composed of multiple feature surfaces, each of which corresponds to the feature
surface of the previous layer, so the number of feature surfaces is the same as that of the
convolutional layer. Meanwhile, the function of the pooling layer is to extract data features
twice, and the purpose is to reduce the dimensionality of the data. The commonly used
pooling methods are the average pooling method and the maximum pooling method.

CNN is a neural network specially used to process data with a known grid-like
topology. In the application scenario of this paper, one-dimensional time series data needs
to be processed. One-dimensional time series data can be regarded as a one-dimensional
grid sampled at a certain time interval. Therefore, this paper uses a one-dimensional
convolutional neural network. The one-dimensional convolution calculation expression is:

N

X = fOL x T wy +by) (17)
i=1

where xll( represents the k-th convolution of the layer i; f is the activation function; N
represents the number of convolutional mappings of the input data; * is the convolution
operation; wfk is the weight of the i-th operation for the k-th convolution kernel of the layer
i b,l( is the offset of the k-th convolution kernel corresponding to the layer i.

This paper adopts the maximum pooling method, the expression is fllc = max(xf{ : xf( 1)
which means to take the maximum value from vector x]lc to vector xf( 4,1~ For the sequence x,
the maximum pooling operation is repeated for each continuous vector whose window is r, and
the maximum feature sequence can be obtained.

5. The Prediction Process of PV Power Based on SSA—CLSTM

The photovoltaic power prediction process proposed in this paper, as shown in
Figure 4, is mainly divided into the following steps:

(1) Using the fluctuation feature recognition model, the historical photovoltaic power se-
quence samples are divided into two types, slow weather changes and severe weather changes.

(2) Using singular value decomposition technology, historical photovoltaic power
sequence is decomposed to determine the optimal component parameter, K.

(3) Carrying out variational modal decomposition for the two types of weather respec-
tively, the modal components are obtained. Assume that there are K modal components
corresponding to the slow weather type.

(4) The K modal components obtained in 3) can be divided into high-frequency com-
ponents and low-frequency components through direct observation through experiences.

(5) A CNN prediction model for low-frequency components and a LSTM prediction
model for high-frequency components are built. Specifically, component M; to component
My are used as the training output of CNN; to CNNy models, and component My _1 to
component My are used as the training output of LSTMy_; to LSTMg models. All models
use the same historical environment data as the corresponding training input. In the
process of training the model, the improved sparrow search algorithm is used to optimize
the model parameters, so as to establish the corresponding prediction model.

(6) Inputting the environmental data of the current period into the trained prediction
model, and superimposing and reconstructing the prediction results of the high and low
frequency components the predicted value of photovoltaic power is obtained.
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Figure 4. PV power prediction process.

6. Case Studies and Discussion

The following computer configuration is applied in case studies. The processor is
Intel(R) Core (TM) i5-4200UCPU@1.60 GHz 2.3 GHz, 64-bit operating system, X64-based
processor, and the simulation software is MATLABR2019b. The predictions of the improved
CLSTM model proposed in the paper, the improved SSA optimization algorithm model,
the two single neural network models of CNN and LSTM, the unoptimized CLSTM model
are compared.

Due to the large scale and dimension of the data set provided in the studies, the training
time of each model is long, so the performance indicators of various model prediction
errors are mainly considered.

6.1. Data Set

The data set in case studies comes from competition data from a Chinese company.
The size of the data set is 3671 x 19. The first 18 dimensions are the environmental factors
that affect photovoltaic output and the operating parameters of photovoltaic equipment,
and the last dimension is the corresponding historical photovoltaic power value. In order
to verify the prediction performance of the model proposed in the paper, 3500 samples of
the experimental data set, prepared in the previous stage, are used as the training set, and
171 samples are used as the test set.

6.2. Error Measure

When evaluating the accuracy of the prediction model, the average square error (MSE),
average absolute error (MAE), average square root error (RMSE) and average absolute
error rate (MAPE) are generally selected as the error evaluation indicators. The calculation
expressions are as follows:

MSE = li(x‘ —%)? (18)
N‘ 1 1
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1 N
MAE = NDxi—m (19)
i=1
N 2
(xi — %) (20)
i=1
100% & ¢

X — X
Xi

MAPE =

)3

i=1

(21)

N

In (18)—(21), indicates the predicted value and actual value of photovoltaic power after
pretreatment; N is the number of the data in the test set.

6.3. Improved Variational Modal Decomposition Results

The 3500 historical photovoltaic output power sequence samples are selected from
the test set, as shown in Figure 5. It can be concluded from Figure 5 that the photovoltaic
output power sequence has obvious characteristics of volatility, randomness, and non-
stationarity. If the fluctuation feature recognition model is not used to distinguish the types,
and all historical photovoltaic power sequences are directly decomposed into samples,
the decomposed modal component diagrams are shown in Figure 6. Obviously, it can be
observed that there are many modal components and complex fluctuation forms, so the
training is difficult, which will eventually affect prediction accuracy.

6000

50000

I
o
o
o

30001

N
o
o
o
T
I

Photovoltaic power/kW

1000 T

0 | I | I I
0 5 10 15 20 25 30 35

Timels

Figure 5. PV historical power time series.

The fluctuation feature recognition model is used to divide the selected samples
into two types, slow weather changes and severe weather changes; then, the improved
variational modal decomposition technology is applied to decompose the two types of
data. The samples of slow weather changes and severe weather changes are decomposed
separately, as shown in Figures 7 and 8. Compared with Figure 6, it can be seen that the
modal components in Figures 7 and 8 are less and the fluctuation form is regular, which is
convenient for subsequent training and prediction.
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Figure 6. Improved VMD decomposition results of all samples.
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Figure 7. Exploded view of samples with slow weather changes.
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In addition, improved variational modal decomposition technology can adaptively
decompose the sample sequence, which can avoid the cumbersome center frequency
method used in ref. [13] to find the appropriate number of modes.

6.4. Comparative Studies

Through the processing in Section 6.3, it can be seen from Figure 7 that component one
is a more complex signal, components two and three are stationary signals; so, component
one is used to train the LSTM model, and components two and three are used to train
the CNN model. It can be obtained from Figure 8 that components one and two are more
complex signals, components three, four, five, and six are stationary signals; so, components
one and two are used to train the LSTM model, and components three, four, five, and six

are used to train the CNN model.
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Figure 8. Types of samples with severe weather changes exploded view.

In order to verify the superiority of the models used in the paper, five types of test sets,
namely, BP model, CNN model, LSTM model, unoptimized CLSTM model, and optimized
CLSTM model are used to test the weather changes slowly and severely. The comparison
of the prediction result curves of different models under the two weather types is shown
in Figure 9. The error comparison of the different models under the two weather types is
shown in Table 1.

In terms of prediction accuracy, from the comparison of the predicted power curve of
various network models in the two categories (a) and (b) with the real power curve, the
prediction effect of the BP network model is the worst, the prediction accuracy of the CNN
and LSTM network are significantly better than that of the BP network model, the LSTM
network model is better than the CNN network model; the unoptimized CLSTM hybrid
network model is better than the LSTM network model; and the method proposed by this
paper obtains the best effect, especially when the weather changes drastically.

Through further specific analysis of the prediction error indicators, it is found that,
regardless of the weather type, the BP network model has the worst prediction effect
under various error indicators. This is mainly due to the fact that the BP network model’s
fitting ability is poor and is especially evident under the MSE indicator, on the basis that
the indicator error is already very small. The SSA-CLSTM hybrid network model of the
two weather types reduces the error by 50% and 82% respectively compared with the single
network model. The errors are reduced by 5% and 9% to the unoptimized CLSTM hybrid
network model. This further shows that the SSA-CLSTM model proposed in this paper has
not only higher photovoltaic prediction accuracy, but also has outstanding adaptability to
the impact of weather.

Compared with a single network model, the prediction accuracy of the hybrid network
model is significantly improved, which fully shows that the hybrid network model has the
same ability as LSTM when dealing with sequences with obvious rules; and when dealing
with complex tasks, the learning ability of LSTM is better. Compared with the unoptimized
hybrid network model, it reflects the powerful ability of SSA training parameters, which
not only avoid over-fitting of the model training, but also prevent the gradient disappearing
or exploding during the training, thereby improving prediction accuracy. Therefore, the
SSA-CLSTM hybrid network model performs best in the analysis of various error indicators.
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Figure 9. The prediction results of different prediction methods under the two weather types.

(a) Forecast results of slow weather changes; (b) Forecast results of severe weather changes.

Table 1. Errors of different prediction models under two weather types.

o MAE/% MAPE/% MSE/% RMSE/%
Predictive Model a b a b a b a b
BP 12.33 18.56 10.91 17.16 1.34 3.05 16.34 19.24
CNN 7.68 15.37 7.59 14.92 0.98 1.97 12.11 15.03
LSTM 6.08 9.16 4.20 8.52 0.84 1.76 9.18 14.32
CLSTM 3.28 6.43 1.36 2.84 0.39 1.03 6.26 10.28
SSA-CLSTM 2.92 4.29 1.02 2.19 0.34 0.94 1.36 4.71
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In terms of convergence speed, it needs to be particularly pointed out that, due to the
improvement of the Tent chaotic map, the population initialization is more reasonable and
the accuracy of the approximate solution is improved. At the same time, according to the
SSA, the iterative process can be updated to the location of the optimal solution faster, and
the convergence speed is very fast, as shown in Figure 10. The optimized hybrid network
model not only converges faster, but also slightly improves prediction accuracy. Even if
the convergence speed is faster, it is not easy to fall into the local optimal situation under
the action of the improved chaotic mapping. It is precisely because the improved SSA has
the above advantages that it will show excellent performance in the prediction results of
several comparison models.

0014
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Figure 10. Convergence curve of the hybrid network model.

6.5. Discussion

When designing the method, this paper mainly considered the improvement of predic-
tion accuracy of the CLSTM hybrid neural network model and the performance of weather
adaptability. However, there are some parameters, which result in calculation burden
in training the model, that need to be optimized. Additionally, although the improved
variational modal decomposition can be used to adaptively determine the number of modal
components, the residual amount after decomposition is still ignored and original informa-
tion is partially lost, which will inevitably cause error to be difficult to reduce from the root
cause. Therefore, it is the focus of our future work to reduce the time consumed in model
training and the degree of loss of original information.

7. Conclusions

Under the development trend of a new-type power system with a high proportion of
renewable energy, existing research methods cannot meet the requirements of power system
operation and regulation for high accuracy and speed of high proportion photovoltaic
output prediction. A combined prediction model of photovoltaic output that optimizes the
parameters of the CLSTM hybrid neural network by sparrow search algorithm is proposed.
Accurate prediction of photovoltaic output can provide powerful data support for its
smoothing and consumption and reduction of its impact on the grid, which is essential
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for formulating economic and reliable power dispatch plans. Through simulation and
comparative analysis, the following conclusions can be drawn:

(1) The improved variational modal decomposition can adaptively determine the
modal quantity parameter, K, which can avoid using the cumbersome center frequency
domain method to determine K.

(2) The proposed fluctuation feature recognition model can divide historical photo-
voltaic power sequence samples into two types, slow weather changes and severe weather
changes. After improved variational modal decomposition technology is used to decom-
pose different types of weather changes, the modal component fluctuation forms have fewer
components and the regularity of fluctuations is also improved, compared with the compo-
nent fluctuation forms obtained by the model without the fluctuation feature recognition.

(3) Since LSTM is better than CNN in dealing with more complex problems, the
combination of CNN and LSTM methods, in which the high-frequency component is
trained with LSTM, and the low-frequency component is trained with CNN, retains the
advantage of CNN with fewer parameters to be determined, while still giving full play to
the advantages of LSTM in handling complex problems.

(4) The hybrid neural network model optimized by SSA improves the gradient dis-
appearance or explosion problem in the training process of the traditional optimization
algorithms. The advantages of the SSA can also avoid falling into the local optimum, slow
iteration speed, initial population random and other issues.

(5) The prediction effect of the model proposed in this paper is significantly better than
the BP, CNN, and LSTM single network models, and is also better than the unoptimized
CLSTM hybrid model.

When designing the method, this paper mainly considered improvement in the predic-
tion accuracy of the CLSTM hybrid neural network model and the performance of weather
adaptability. However, there are some parameters that need to be optimized, which result in
calculation burden for training the model. Additionally, although the improved variational
modal decomposition can be used to adaptively determine the number of modal compo-
nents, the residual amount after decomposition is still ignored and original information is
partially lost, which will inevitably cause error to be difficult to reduce from the root cause.
Therefore, it is the focus of our future work to reduce the time consumed in model training
and the degree of loss of original information.
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