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Abstract: The Conformer enhanced Transformer by using convolution serial connected to the multi-
head self-attention (MHSA). The method strengthened the local attention calculation and obtained a
better effect in auto speech recognition. This paper proposes a hybrid attention mechanism which
combines the dynamic convolution CNNs and multi-head self-attention. This study focuses on
generating local attention by embedding DY-CNNs in MHSA, followed by parallel computation of
the globe and local attention inside the attention layer. Finally, concatenate the result of global and
local attention to the output. In the experiments, we use the Aishell-1 (178 hours) Chinese database
for training. In the testing folder dev/test, 4.5%/4.8% CER was obtained. The proposed method
shows better performance in computation speed and the number of experimental parameters. The
results are extremely close to the best result (4.4%/4.7%) of the Conformer.

Keywords: speech recognition; attention; dynamic convolution; transformer

1. Introduction

With the transformer [1] proposed in the field of speech recognition, there are more
and more studies based on this model in the end-to-end continuous speech recognition task.
Conformer is a popular speech recognition model that is improved based on Transformer [2].
Transformer is more effective in extracting long sequence dependencies, while convolution
is good at extracting local features [3]. The main improvement in Conformer is that
convolution is applied to Transformer, improving the effect of the model on long-term
sequences and local features [4].

In particular, the Conformer enhances the local features of Transformer by convolution
obtaining better recognition results [5] than Transformer. Compared with RNN, Trans-
former shows the advantages of faster computing speed and better global information
representation in the fields of speech recognition, machine translation and natural language
processing [6–8]. In recent years regarding end-to-end continuous speech recognition, the
best results basically use the transformer structure.

Regarding continuous speech recognition tasks, excluding the speech feature itself,
there is a major problem in the correlation of time series and uncertainty of speech duration.
The Transformer model can effectively deal with both of these issues. The multi-head
attention structure can extract the dependencies between contexts in time series. The
model’s Encoder and Decoder length can also deal with the uncertain speech duration
problem for input and output length.

In the wide range of applications for sequence task processing, although the Trans-
former model has proved to be efficient, the model also bears certain problems, such as
global information redundancy. In continuous speech recognition, when facing a long
sequence problem, although context dependency is needed, the context does not require a
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very large range to know the global state when using the attention mechanism. In some
cases, the effect is better with only information of multiple time steps before and after,
rather than the global information. In the case of retaining global information, the key
problem to be solved by the model is in determining how to focus attention on the im-
portant information. Based on this idea, we proposed a new construction method of a
mixed attention model to obtain local attention while retaining global attention. Finally, we
proved the effectiveness of the model structure through experiments.

Regarding studies on the local and global attention of the Transformer model, many
researchers have offered different solutions. The Long Short Range Attention (LSRA) [9]
method uses a dual-branch structure to parallel calculate local attention and global attention.
First, it uses MHSA to calculate global attention. Then, it employs the combination module
including linear layer and CNN to calculate local attention. Finally, it integrates these in
the feed forward network module (FFN) layer, which obtains satisfactory results in many
sequence tasks. The recently proposed Conformer structure [10] adds a series of CNN
combination modules to extract local information from global attention after the completion
of MHSA calculation. This structure ensures the dependence between local information
when the global attention remains intact. The Conformer structure achieves optimal results
in speech recognition tasks on multiple datasets [11].

Under the condition of retaining MHSA, the current mainstream practice is to use
CNN to obtain local attention. CNN is proficient in extracting fine-grained information
from the feature matrix [12]. However, the method is not advantageous in extracting long
context-dependent information from the sequences. Therefore, combining MHSA and
CNN can not only retain context dependence, but also obtain local attention. They appear
to form a global and local complementary relationship. MHSA reflects the relationship
between a certain time step and the overall time step, but the MHSA mechanism focuses
excessively on the global information. This leads to each output vector carrying global
information. In order to ensure the effectiveness of the global information, the before
and after information of hundreds of frames are processed. The processing leads to poor
information conversion effect on fine-grained structures.

If we do not consider the role of grammar, the processing of over a dozen frames of
information is sufficient regarding continuous speech recognition sequences. Even with
consideration of the full context information, the left and right extension of dozens of
frames can ensure sufficient recognition. In addition, the scope of context information has
different effects on different text, thus the global information processing should not be
fixed. Excessive dependence on global relations to make the final result judgment will lead
to some important local information being diluted or even submerged by global relations.

The popular Conformer model is essentially based on the modified Transformer
model. The purpose of improvement is to solve the problem of mutual exclusion between
local information and global information. The core module of Conformer essentially uses
convolution after attention, and then uses attention to extract local features. It is a classic
‘sandwich’ structure, also known as the Macaron structure. The disadvantage of this
approach is the serial processing which reduces efficiency. The CNN module must wait
for one layer to finish before processing another layer. A total of three layers are needed to
complete the final feature extraction.

Focusing on the above problems, the main idea of the proposed method firstly uses
convolution within the MHSA in parallel, and then combines the convolution results with
the attention layer to obtain the new feature. The convolution process is directly embedded
into the attention layer, and then processed in parallel. The global attention and local
attention are processed by in only one step. The proposed method of parallel convolution
inside MHSA is better and more efficient than the end process operation in Conformer.

Dynamic convolution can adaptively fuse multiple convolution kernels according
to input [13]. The multiple convolution kernels make the convolution results adaptive.
Compared with static convolution, dynamic convolution can significantly improve the
expression ability and performance of the model. Dynamic convolution does not use one
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convolution kernel at each layer, but dynamically gathers together according to the attention
of multiple parallel convolution kernels. These convolution kernels are dependent on input,
and the kernel bears a small size and high computational efficiency. These dynamic
convolution kernels are aggregated in a nonlinear manner, that is, different attention
is given to obtain different information expression ability so as to better represent the
difference between local and global information.

Dynamic convolution aims to dynamically aggregate multiple parallel convolution
kernels, without increasing the depth and width of the network. It adaptively selects
different convolution parameters according to the different input characteristics. Finally,
it again convolutes the fused features. Figure 1 describes the calculation process of dy-
namic convolution. It is assumed that m convolution kernels, i.e., {convm}, are used for
convolution. The input features will extract the local features through the average pooling
layer and the linear layer. Then, the weight of m convolution kernels is computed (i.e.,
convolution kernel attention) πm, at the current time step is obtained. Its properties are
as follows.

0 ≤ πk ≤ 1,
m

∑
k=1

πk = 1 (1)
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The convolution Kernel Convn′ with new convolution input characteristics can be
obtained by combining the weight of m convolution kernel with m convolution kernels in
the convolution layer.

Conv′n =
m

∑
i=1

convi ∗ πi (2)

Figure 1 shows the weight of the convolution operation obtained by a series of opera-
tions. Next, is the convolution weight with its corresponding convolution kernel. Finally,
the final output feature is obtained by a batch normalization layer. The operation of con-
volution layer is to obtain different convolution kernels at different time steps. Then it
uses convolution layer to extract local features. The context information for the nth time
step cn = Conv′n(xn−d∼n+d) is obtained by the above operation. The convolution kernel
attention is calculated for each time step in the feature matrix X. The convolution kernel is
fused to obtain the convolution kernel Conv′1, Conv′2, . . . , Conv′n, . . . , Conv′t corresponding
to each time step. Using these convolution kernels to make convolution operations on each
time step corresponding the feature matrix X, the feature matrix C = {c1, c2, . . . , cn, . . . , cd}
containing all the context range d can be obtained.

The convolution kernel size and pooling kernel size in DY-CNNs are dynamically
determined by the context information length. For obtaining speech feature information
cn of the nth time step context d in matrix X = {x1, x2, . . . , xn, . . . , xt}. In the X ma-
trix, calculate the convolution of the internal characteristics whose range is xn−d∼n+d =
{xn−d, . . . xn, . . . xn+d}. The convolution kernel size is (2d + 1, 1). The convolution kernel
size is also the average pooling kernel size when obtaining the attention of the convolution
kernel. The path of the corresponding operation process should also be consistent in the
convolution and pooling. As shown in Figure 2, the process of pooling and convolution is
carried out when the context range d is 2 and the convolution kernel size is (2d + 1, 1).
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Figure 2. Pooling and convolution process of DY-CNNs.

In the diagram, the pooling kernel and convolution kernel are 5. It adds two time steps
to make up 0 in the up and down directions. Then, the process of pooling and convolution
is implemented. The purpose of this step is to make the size of the matrix after pooling and
convolution equal to that of the input matrix before padding. Each element of the output
matrix represents the integration result of the context information at the location of the
input matrix. The average pooling output reflects the overall performance of the feature for
a period of time. The convolution output represents the representation of the current time
step with context information.

Through the above analysis, it can be seen that the dynamic convolution process can
better extract the local attention information according to the context characteristics. The
proposed method is to use MHSA to generate global attention and DY-CNNs to generate
local attention inside the attention layer. Finally, the results of the two kinds of attention are
concatenated and output to the next layer, and the global and local attention mechanism
network structure based on dynamic convolution is obtained.

2. Materials and Methods
2.1. The Structure of Multi-Attention

When calculating global attention, we use the original structure of MHSA in Trans-
former, because it can effectively solve the problem of obtaining global information in the
sequence. Then, the sine position coding is used to obtain the absolute position information
of the sequence. Suppose a given input feature X ∈ RT×dk , where dk is the dimension of
feature vector and T is the total number of time steps. MHSA inputs feature X through
three linear layers and converts it into Q, K and V. Where Q, K ∈ RT×dk , V ∈ RT×dv . The dv
represents the dimension of the matrix V. Matrix Q represents the state of the global time
step. Matrix K represents the state of each time step to be matched. In addition, matrix V
represents the state of the current time step waiting for the given weight. The three can
calculate the attention of a moment by the following formula.

Attention(Q, K, V) = so f tmax

(
QKT
√

dk

)
V (3)

The score calculation of matrix Q and K is the weight matrix representing the rela-
tionship between each time step and the global time step. Matrix V needs to know the
relationship between the current time step and the global time step. The attention calculated
by this formula is the attention with global information [14].

In MHSA, the matrix Q, K and V are divided into h-orders. Some corresponding
matrices Q, K and V are obtained. Each group of corresponding Q, K and V is called the
head. The attention of each head is calculated, respectively. Finally, the final attention result
is obtained by concatenation.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (4)
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headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(5)

WQ
i ∈ Rdmodel×dk , Wk

i ∈ Rdmodel×dk , Wv
i ∈ Rdmodel×dv , WO ∈ Rhdv×dmodel , h is the head

number, dmodel is model dimension and dk is the dimension of matrix key.

2.2. Feed Forward Network Module

When connecting the attention block, two feed forward neural network modules
(FFN) [10,15] are used. Each FFN contributes half value and the model effect can be slightly
improved by experiments. A single FFN is composed of layer normalization, linear layer,
swish activation function and dropout. The normalization layer makes the input features
stable. The swish function enables FFN to fuse with the model faster. The results obtained
by the module will be output to the next layer in a semi-step residual method. Compared
with without semi-step residual method, this connection method has more advantages in
the training process. The given feature input xi ∈ Rd is passed through the feed forward
network. The result x̃i is calculated by the following formula.

x̃i = xi +
1
2

FFN(xi) (6)

The model uses two FNNs to clamp the proposed attention method in the middle.
The structure still belongs to the Macaron feedforward module. Each FFN is connected to
the next layer in a semi-step residual manner. The general design structure is shown in
Figure 3. Experiments show that the FFN structure will increase the parameters, but it can
improve the information transmission and learning efficiency of attention compared with
the single FFN structure.
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2.3. The Structure of Dynamic Convolution Attention

The multi-attention mechanism generates three matrices Q, K and V in calculation.
In the calculation of local attention, the matrix Q is used as the input πl to generate the
convolution kernel weight of DY-CNNs. Then this weight is assigned to DY-CNNs multiple
convolution kernels {convl}. The convolution kernel Conv′n corresponding to the context
information of step n is generated by fusion, to perform convolution operation on the
matrix K. The result assigns local weights to the matrix V, that is, the correlation of context
information cn. Then this score is assigned to the matrix V again by convolution. Finally,
the local attention corresponding to each time step in the matrix V is obtained.

Different from other studies, we improved the attention within the structure of multi-
head attention. First, we obtain local attention using dynamic convolution. Then, we
concatenate local attention and global attention from the proposed structure. Finally, we
explore the effect of attention. The matrices Q, K, and V are recalculated. The matrix S of
local attention with local information is generated. The matrices Q and K are obtained from
the linear layer of multiple attentions.

Assuming that the size of the feature matrix is (T, F), which is obtained from the
matrix Q, K and V. The hyper parameter d is defined, which represents the feature of
looking forward and backward at d time steps respectively from the current time step.
The information in 2d + 1 scope is aggregated (equivalent to the spelling frame operation).
Symbol m is the number of convolution kernels of DY-CNNs, that is, how many convolution
kernels are fused. The overall attention calculation process of DY-CNNs is shown in Figure 4.
When the matrix Q after padding is added into the average pooling layer, matrix Q ′ with
the same size as the matrix Q will be obtained. The size of the pooling kernel of the average
pooling layer is (2d + 1), which is the same as that of the convolution kernel. The input
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size is transformed into (T, F/4) through a linear layer. Finally, πm with dimension (T, l) is
obtained by linear layer and Softmax activation function. πm means that each time step
in T is obtained by m weights for the convolution kernel of the current time step. The
convolution kernel of DY-CNNs is obtained by fusing {πm} and {convm}. Finally, the weight
S of local attention is obtained by grouping convolution along the previous pooling path.
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Unlike dynamic convolution, the convolution object and the object that obtain the
convolution kernel weight are not from the same input feature. Here we use the matrix
Q to obtain the attention of the convolution kernel, and then make convolution with the
matrix K. The convolution kernel of matrix S and V is 1 × 1 × 2, and the local attention is
obtained with the size of (T, F). Local attention will concatenate with the global attention
obtained in MHSA, and the attention matrix with dimension (T, 2×F) is obtained. Finally, a
linear layer is passed to reduce the size of the feature to (T, F).

S = DyConv(Q, K) (7)

Local Attention = LConv(S, V) (8)

utput = Linear(Concat(Global Attention, LocalAttention)) (9)

In Algorithm 1, the pseudo code is used to illustrate how dynamic convolution is used
to realize the parallel calculation of attention.

Algorithm 1. Dynamic convolution attention

Input: A feature matrix X, the length of X is n
Output: Attention matrix S
Initialization: i = 0, m is the number of kernel for dynamic covolution, conv = {c1, c2, . . . , cm}
is the parameters of dynamic covolution

1 : Q = WqX, K = WkX, V = WvX; //Wq, Wk, Wv are the parameters of linear layers
2 : Compute the global attention G according to Equation (3);
3 : Pad 0 to the beginning and end of Q, K, then cut them into n parts
Q′ = {q1, q2 . . . , qn}, K′ = {k1, k2, . . . , kn};
// the length of qk is the scope of local attention
4: while i < n do
5 : pi = AveragePool(qi);
//Thewindowsizeo f AveragePoolisthescopeo f localattention
6 : hi = W2ReLu(W1 pi), len(hi) = m;
//W1, W2 are the parameters of linear layers, hi = {π1, π2, . . . , πm}
7 : Convi = hiconv =

m
∑

j=1
πjcj;

//Convi is the convolution kernel of current time step
i8 : Convolute pi to ziwith convolution kernel Convi;
9 : Z.append(zi);
10 : L = BatchNorm(Z) //L is the local attention;
11 : Concatenate G with L and convolute it to S; //The size of S is the same as X
12 : return S
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2.4. Parameter Reduction

Increasing the dynamic convolution attention within the multi-attention will increase
the parameters of the model, although the increase is not large. During the experiment,
we attempted to reduce the model parameters while keeping the final model accuracy
unchanged. When the input features are input into the linear layer to obtain the matrices Q,
K and V, the original dimension F is reduced to half, that is, the dimensions of dQ, dK and
dv are changed into F/2. When the head remains unchanged in the multi-head attention,
the global attention dimension is (T, F/2), and the local attention dimension after dynamic
convolution is (T, F/2). The size of the output obtained by concatenating the two is (T, F),
and it is finally mapped to the dimension of (T, F) through a linear layer. Experiments show
that the parameter reduction method can reduce the decoding parameters by 2.17M when
block = 12. The method can also achieve better in the same epoch of training time.

3. Experiment and Result Analysis
3.1. Data Introduction

Aishell-1 [16] Chinese 178-h open-source speech database is used to evaluate the
proposed model. The data are recorded by three different devices for 400 speakers from
different accent areas in China. We also use AIDATATANG and HKUST open-source dataset
to verify the effectiveness of proposed method on different condition. AIDATATANG is a
200-h open Chinese Mandarin telephone voice library provided by Beijing Data Technology
Co., Ltd. Bejing City, China. HKUST is a 200-h Chinese telephone data set. The dataset
uses ESPNet and Kaldi as open-source data.

The feature is obtained by 80-dimensional logarithmic Mel spectral coefficient, 25 ms
window size and 10 ms displacement. During the training process, the data were trans-
formed by velocity. The velocity variation [17] coefficients were operated according to 0.9,
1.0 and 1.1, and the spectral enhancement [18] was performed. The window size of time
warping was 5. The size of random shielding in frequency domain was 30. The size of
random shielding in time domain was 40. The data were normalized by global CMVN [19].
The Kaldi-like script is used for data processing in the data preparation phase.

3.2. Training and Results

The lightweight ESPNet [20,21] is used as the experimental platform. After feature
extraction, the convolution front-end module in ESPNet is used for downsampling to a
quarter of the original. The same structure and parameters as Transformer are adopted
at the encoder. The number of blocks is 12. The size of each output time step is 256. The
number of attention heads is 4. The number of hidden layer nodes of the neural network
in the attention layer is 2048 and the parameters are reduced in each layer. The Macaron
network is used to connect attention outside the attention layer, and the activation function
in the linear layer is the swish function. By parameter reduction, the 256-dimensional is
reduced to 128-dimensional and the attention is calculated. Four convolution kernels are
used to fuse the convolution kernels that generate dynamic convolutions. The convolution
kernel size is set to 15. Finally, the output of the multi-head attention is concatenated. The
output is carried out in a linear layer with 256 dimensions. A transformer decoder with
6 blocks, 2048 linear units and 4 attention heads is used at the decoder. During training
and decoding, [22] the CTC attention combination method was used [23]. Encoder and
decoder used cross entropy function and label smoothing with weight of 0.1. CTC loss
function is used at encoder side for auxiliary alignment to help the model learn more
alignment information.

The model is iteratively optimized through the connection layer in the training process.
In the training stage, the Adam optimizer is used to optimize the model. β1 is set to 0.9, β2
is set to 0.98 and ε = 10−9. The learning rate schedule of transformer is used to linearly
increase the learning rate in the training, and the initial learning rate is 5 × 10−4. The
inverse square root of the number of steps is reduced in proportion and 60 epochs are
trained in the state of warmup_steps = 30,000. The language model of transformer structure
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is trained by scripts in the training set, and words are used as the modeling unit. The
language model sets the feature embedding to 128 dimensions, layer to 8, Head to 8, linear
unit to 2048, attention output to 512, dropout of FFN to 0.1, and trains 15 periods. Finally,
the language model that performs best on the dev set is added to the decoding in a shallow
fusion manner.

Set ctc_weight = 0.6, lm_weight = 0.3 when reasoning. The model is decoded by beam
search with a width of 20, and the parameters of the 10 best models on the dev set are
averaged as the final model.

In the training process, firstly add the <sos> and <eos> symbols at the beginning and
end of the text information. Then the full sequence of feature matrix and text information is
fed to the encoder and decoder, respectively, and the loss between the output of the decoder
and the real label is continuously optimized through the back-propagation algorithm to
optimize the model. When decoding, the feature matrix is completely input into the encoder
and the attention matrix is output. The previous output character is continuously input
on the decoder side, and is then combined with the attention matrix to output the next
candidate character. If the decoder has not output any character, replace the input with
<sos>. The decoding of the model is an autoregressive process, and the loop stops until
<eos> is encountered.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.3. Comparison of Results

When the convolution kernel size is set to 15 inside the dynamic convolution, the
trained model obtains a very competitive result in the Aishell-1 dataset. Without using
the relative position coding, but using the language model, the result is 4.7/5.0 in the
dev/test directory. After downsampling, the word error rate was reduced to 4.5/4.8 by
using relative position coding, which was basically consistent with that of Conformer.
In the experiment, the trained model is also compared with other existing models from
multiple dimensions, including Hybrid Model, Transformer, LAS, Conformer results (CER)
as follows. In the existing models, the proposed model obtains more competitive results
without using relative position coding, and the number of parameters is also guaranteed.

In Table 1, we compared different models in multi-dimension on Aishell-1 dataset.
The baseline is the conventional Transformer method. Compared with this method, the
proposed method improved 1.3/1.7 in dev/test. If using relative position coding, the
results are very similar with Conformer. However, the parameter scale is about 4M smaller
than Conformer.

Table 1. Comparison of experiments for different models in multi-dimension on Aishell-1.

Method E2E LM Params Dev Test

Baseline [6] Y Y 17.62 6.0 6.7
TDNN-LFMMI [24] N Y - 6.44 7.62

LAS [25] Y Y - - 8.71
Conformer(M) [10] Y Y 33.47 4.4 4.7
Proposed method Y Y 29.66 4.7 5.0

Proposed method +
relative position coding Y Y 29.66 4.5 4.8

In order to verify the universality of the proposed model, a comparison of the experi-
ments was also performed on other Mandarin datasets named Aishell-1, AIDATATANG
and HKUST. The data time of the three datasets is about 200 h. As shown in Table 2, the
proposed method still exhibits the best results over the baseline system on these datasets.
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Table 2. Comparison of experiments on different datasets.

Dataset Test Sets Baseline Proposed Method

Aishell-1 dev/test 6.0 6.7 4.5 4.8
AIDATATANG dev/test 5.9 6.7 4.4 4.9

HKUST dev 23.5 22.4

Table 3 shows the comparison of experiments for training time. The proposed method
is tested on three training sets. Compared with Baseline, although the time increases, it can
be seen from Table 1 that the accuracy is improved by 1.3/1.7 on dev/test. Compared with
Conformer, the training time is reduced slightly while the accuracy is basically unchanged.
With the increase of training data, time will be further reduced.

Table 3. Comparison of experiments for training time.

DataSet Model Time

Aishell
(178 h)

Baseline 1 day 13 h
Conformer 2 day 8 h

Proposed method 2 day 5 h

AIDATATANG
(200 h)

Baseline 1 day 16 h
Conformer 2 day 14 h

Proposed method 2 day 8 h

HKUST
(200 h)

Baseline 1 day 15 h
Conformer 2 day 14 h

Proposed method 2 day 13 h

In order to explore whether dynamic convolution and parameter reduction have a
positive effect on the results, the ablation experiment is further carried out. Firstly, the
parameter reduction in the model is removed. It can be concluded from the experiment
that parameter reduction can reduce the parameters of the model and has little effect on
the model results.

We then remove the dynamic convolution combined with attention in the model
structure, and use MHSA to perform experiments. The results show that the word error
rate on the development set increases by 0.3, and the word error rate on the test set increases
by 0.4. The overall number of parameters increased by about 1.6M compared with the
traditional MHSA model. It can be seen that the results can be improved at a relatively
small cost by increasing the attention of the dynamic convolution combination. The results
shows that the local attention information extracted by the proposed method can effectively
help the model to learn some relatively fuzzy information under global attention.

To identify better attention results, we also tested different structure by placing CNN in
different positions. If the part of DY-CNN in Figure 5 is replaced by CNN, in Table 4, named
the replacement is the method with CNN. If we place CNN at the end of the structure as
with the Conformer, in Table 4, named the structure is the method with rear CNN. The
results show that the proposed method in Figure 5 has the best results.
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Table 4. Comparison of different model structure.

Model Structure Params Dev Test

Proposed method 31.83 4.7 5.0
Method with CNN 27.09 5.4 5.7
Method with rear

CNN 27.09 5.3 5.5

In order to verify the effectiveness of dynamic convolution in the model, we also
replaced the dynamic convolution in the model with a common convolution operator
for comparative experiments. The experimental results show that dynamic convolution
can significantly improve the ability of the model. Compared with the method without
DY-CNNs, the results improved 0.5/0.4 in dev/test. Compared with the method with
CNN, the results both improved 0.7 in dev/test. Figure 6 shows position of the parameter
reduction. Table 5 demonstrates the recognition accuracy with parameter reduction.
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Table 5. Experiment results of parameter reduction.

Model Structure Params Dev Test

Proposed method +
relative position

coding + Parameter
reduction

29.66 4.5 4.8

Proposed method +
relative position

coding + Parameter
reduction(without

DY-CNNs)

28.53 5.3 5.5

Proposed method +
Parameter reduction 29.66 4.7 5.0

Proposed method +
Parameter reduction
(without DY-CNNs)

28.53 5.3 5.5

Proposed method 31.83 4.7 5.0
Proposed

method(without
DY-CNNs)

30.24 5.2 5.4

Method with CNN 27.09 5.4 5.7

At the same time, we focus on the kernel size of convolution in dynamic convolution.
The size of the convolution kernel is a very important parameter. For the whole model, it
represents the size of the field of view to obtain context information, which will directly
affect half of the features in the attention module. The sounding time of a Mandarin
character is about 600 ms. The experiment selects 5 (200 ms), 15 (600 ms), and 25 (1000 ms)
for the convolution kernel size. A comparative experiment is conducted under the same
training environment.

The results are shown in Table 6. It can be seen when the convolution and kernel is 15
(look forward 7 time steps and look back 7 time steps), the model obtains a relatively low
word error rate. The word error rate increases when the convolution kernel size is 5 or 25.
Therefore, for the proposed model, it is more appropriate to set the convolution kernel size
to 15.

Table 6. Influence of different kernel size on experiment results.

Kernel Size Dev Test

5 4.8 5.1
15 4.5 4.8
25 4.8 5.1

4. Conclusions

This article is based on the AED (Attention-based Encoder–Decoder) model structure,
and improvement of the module of multi-head self-attention mechanism in Transformer.
We propose an end-to-end speech recognition model based on hybrid attention mechanism.
The dynamic convolution method is first introduced in the field of speech recognition, to
solve some problems of the Transformer model concerning recognition accuracy. At the
same time, the parameter reduction of the model is optimized to reduce the calculation
burden as much as possible caused by the increase of parameters.

We firstly discussed the application method of dynamic convolution combined with
original attention in continuous speech recognition. Then we proposed an optimized mixed
attention mechanism. Aiming at the problem of balanced distribution of local attention
and global attention in long sequences, the proposed method enhances the correlation
between local attention and global attention by introducing dynamic weighting, a change
from Serial Computing Structure to Parallel Computing Structure, increased efficiency of
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operations, and a reasonable reduction of the parameters of the model through experiments.
Finally, through multi-dimensional experiments, comparing the results of this new dynamic
convolution with that of traditional methods, the results prove its effectiveness in long
sequence tasks of continuous speech recognition. The proposed model obtains a more
competitive result at the cost of a relatively small parameter increase.

There are many unreasonable aspects of the currently used AED model. For example,
streaming speech recognition is not supported. The complexity of the auto-regression
process is high in the decoding part. The method is unable to use prior textual information,
etc. Although the FNN structure used in the article significantly improves the recognition
results, it also greatly increases the model parameters and computational overhead. The
next step is to further optimize the long-sequence speech modeling features from the
perspective of feature calculation.
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