
Citation: Shen, L.; Wu, M.; Zhao, M.

Secure Virtual Network Embedding

Algorithms for a Software-Defined

Network Considering Differences in

Resource Value. Electronics 2022, 11,

1662. https://doi.org/10.3390/

electronics11101662

Academic Editor: Kenji Suzuki

Received: 25 April 2022

Accepted: 21 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Secure Virtual Network Embedding Algorithms for a
Software-Defined Network Considering Differences in
Resource Value
Ling Shen * , Muqing Wu and Min Zhao

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications,
Beijing 100876, China; wumuqing@bupt.edu.cn (M.W.); zhaomin@bupt.edu.cn (M.Z.)
* Correspondence: lingshen@bupt.edu.cn

Abstract: Software-defined networking (SDN) and network virtualization (NV) are key technologies
for future networks, which allow telecommunication service providers (TSPs) to share network
resources with users in a flexible manner. Since TSPs have limited virtualized network resources, it is
critical to develop effective virtual network embedding (VNE) algorithms for an SDN network to
improve resource utilization. However, most existing VNE algorithms ignore the security issues of
SDN networks, which may be subject to malicious attacks due to their openness feature. Therefore,
it is necessary to develop secure VNE (SVNE) for SDN networks. In this paper, we researched the
relationship between resource value and node security-level, and we found that there are differences
in the resource value of different nodes. Based on this analysis, we define the evaluation indicators
considering differences in resource value for the SVNE problem. Then, we present a mixed-integer
linear program (MILP) model to minimize the cost of SVNE. As the formulated optimization prob-
lem cannot be solved conveniently, we design two node-ranking approaches to rank physical and
virtual nodes, respectively, and we propose two novel SVNE algorithms based on the node rank-
ing approaches. Finally, simulation results reveal that our proposed algorithm is superior to other
typical algorithms.

Keywords: network virtualization; software-defined networking; secure virtual network embedding;
security cost; security level

1. Introduction

Network virtualization (NV) is a key technology for future networks, which allows
telecommunication service providers (TSPs) to share their virtualized network resources
with their users in a flexible manner [1]. It is difficult for traditional network architectures
to deploy NV technology due to their rigid structures and complicated service management
mechanisms. Software-defined network (SDN) is a new network architecture, which
separates the control plane and the data plane of network elements. NV decouples software-
based virtual networks from hardware-based physical networks, so it is much easier to be
implemented in SDN [2]. The combination of SDN and NV technology is considered as
an effective way to overcome current network ossification and to promote future network
innovation. Therefore, SDN-based network virtualization architecture has become a new
research topic for scholars. Figure 1 shows an SDN-based NV architecture, which is
proposed by Chai et al. [2].

The VN enables multiple tenants to share the same physical network that can create
security vulnerabilities. NV has a positive effect on availability, but it has threatening
security challenges related to confidentiality, integrity, and authenticity. Virtual networks
can be created, deleted, and moved around a network easily, hence, tracking a malicious
virtual network would be much more complex [3]. For example, a hypervisor may be
hijacked; the SDN network hypervisors TeaVisor, DFVisor, Vertigo, TALON, and Sincon, fail
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in terms of security. In addition, there are security problems in virtual resource allocation.
Generally speaking, the security issue in virtual resource allocation can be classified into
four types of security attacks: a physical element attacking a virtual element, a virtual
element attacking a physical element, attacks among virtual elements, and attacks in the
physical elements type [4,5].
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Figure 1. Virtualization-enabled SDN architecture. 
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Virtual resource allocation is also known as virtual network embedding (VNE), which
is the key technology of NFV. An effective VNE algorithm can improve network resource
utilization and accommodate more virtual network services. However, due to the compli-
cated characteristics of the SDN substrate network, designing a VNE algorithm is difficult
and challenging. Most of the existing VNE algorithms are researched and based on a
traditional network, and they do not take into account the features of openness and pro-
grammability. Therefore, it is of great significance to research secure VNE (SVNE) in
SDN-enabled networks. The core of the SVNE problem is to allocate network resources
that meet the conditional restrictions to users according to business requirements. For
example, the security requirements of online payment services are relatively high, and
TSPs need to allocate the resources with higher security-levels to ensure the privacy of
services. In general, the cost of the network resources is related to its security-level: the
higher the security-level of the network resource, the higher its cost. In addition, the re-
source security-level determines the business scope of resource applications, which affects
revenue. Resources with a high security-level are abstracted from high-security physical
networks, and they are suitable for more business types than resources with lower security
levels. Hence, there are differences in the value of resources at different security-levels.
The resources with a high security-level have a higher value than a resource with a low
security-level.
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In this paper, we focus on the security issue in virtual resource allocation, and we
research the relationship between the resource value and the security-level and then define
the evaluation indicators that take into account the difference in the resource value. Then,
we present a mixed-integer linear program (MILP) model with the goal of minimizing
the SVNE cost since the formulated optimization problem is a complicated optimization
problem, which cannot be solved conveniently. Therefore, we design two node-ranking
SVNE algorithms, which is a two-stage algorithm called the T-SVNE algorithm and the
node-link hybrid embedding algorithm, which is called H-SVNE algorithm. Overall, the
major contributions of this paper are summarized as follows:

(1) We research the relationship between the resource value and its security-level, and we
present a MILP formulation that takes into account differences in the resource value
to minimize the embedding cost for the SVNE problem.

(2) Two SVNE algorithms are proposed based on node-ranking approaches to reduce the
costs of VNE. The node-ranking approaches comprehensively considers the network
topology, resources, and security-level attributes.

(3) Extensive simulation experiments are implemented to validate the performance of
the proposed algorithms. Simulation results show that our proposed algorithms
outperform selected typical algorithms.

The reminder of this paper is organized as follows. Section 2 summarizes the related
work. Section 3 presents the network model, evaluation indicators, and the problem
statement of SVNE. Section 4 introduces our proposed algorithms. Section 5 implements
simulation work. Finally, we conclude this paper.

2. Related Work
2.1. SVNE Algorithms

Zhiming et al. [4] believe that network virtualization may cause information leakage
via covert channels between virtual nodes coexisting on the same substrate node. This
paper is the first to consider risk-tolerant coexistence in VNE. They propose a SVNE scheme
to mitigate the risk of covert channel attacks. Boutigny et al. [6] ease the emergence of
trusted brokers in between tenants and InPs for network virtualization. In addition, they
present a VNE solution in a multi-provider context, as well as a use case demonstrating its
feasibility. Zhang et al. [7] propose a security-aware VNE algorithm based on reinforcement
learning. They add security requirement level constraints for each virtual node and a
security level constraint for each substrate node. Virtual nodes can only be embedded
on substrate nodes that are not lower than the level of security requirements. In [8], they
propose a VNE algorithm with computing, storage resources, and security constraints to
ensure the rationality and the security of resource allocation in ICPSs.

Cao et al. [5] attempt to tackle the security issues in 5G HetNets virtual resource
allocation. The article starts from modeling the major security attacks for virtual resource
allocation through comprehensive discussion of the typical types of security attacks. Fol-
lowing the attack model, a novel secure framework based on the emerging reinforcement
learning approach is presented. Cao et al. [9] discuss the typical security risks in NFV-
enabled networks. Then, they propose a secure framework. The goal of the framework is
to ensure a secure network function deployment and resource allocation in NFV-enabled
networks. In the framework, virtual network functions (VNFs), having high security
probabilities, are usually preferred.

Chai et al. [2] research the VNE problem in SDN, where the substrate SDN switches and
links may be subject to malicious attacks. They first propose a hierarchical virtualization-
enabled SDN architecture and then formulate the VNE problem of SDN as a multi-objective
optimization problem, which jointly minimizes network load and maximizes embedding
reliability. In addition, the authors propose a virtual node embedding sub-algorithm and a
virtual link embedding sub-algorithm to determine the locally optimal solution to the two
sub-problems. Cao et al. [10] research the VNE for secure SDN-enabled networks. They
first present a hierarchical virtualization architecture for SDN-enabled networks. Then,
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the security model for different malicious attacks is presented. Finally, a novel SVNE
framework is proposed for supporting SDN-enabled networks. In [11], they research the
SVNE for SDN network, using blockchain technology. It is the first time that the SVNE
algorithm is proposed for an SDN network. This paper focuses on considering the virtual
network request (VNR) having the line topology, which is adopted to transmit data and
directly share information.

2.2. Brief Summary

Most SVNE algorithms are developed for traditional network architectures, and they
are not suitable for the SDN network environment. There are only a few articles that
study the VNE problem in the SDN environment, where the substrate SDN switches may
be maliciously attacked. In [2], they first propose a hierarchical virtualization-enabled
SDN architecture based on which the VNE strategy can be designed; then, they formulate
the VNE problem as a multi-objective optimization problem which jointly minimizes
network load and maximizes embedding reliability. In [10], authors propose a hierarchical
virtualization architecture for SDN networks; then they present the security model for
different malicious attacks; finally, they propose a novel secure SVNE framework. In [11],
authors research the SVNE for an SDN network, using blockchain technology. However, no
scholars consider differences in the resource value. Therefore, we research the relationship
between security and resource value, and define the evaluation metric of SVNE.

3. System Model and Evaluation Indicators
3.1. Network Model

We model the substrate node as a weighted undirected graph Gs = (Ns, Ls, Cn, Cl) [12–15],
where Ns denotes the set of physical nodes and Ls denotes the set of physical links. Cn and
Cl denote the attributes of the underlying nodes and the physical links, respectively. For
the nodes, the attributes include the CPU, ternary content addressable memory (TCAM)
capacity, and security-level. The security-level is determined by the possibility of being
attacked, which originates from historical records of these SDN network elements [8–11]
that refer to the security model of virtual resource allocation in reference [5]. The higher the
security-level of the node, the lower the probability of the node being attacked. For physical
links, we only consider the bandwidth attribute, and we do not consider the possibility of
the substrate link being attacked in this paper. It is owing to the fact that two end nodes
of the attacked link can be regarded as two attacked nodes [11]. Therefore, the link attack
can easily be transformed into a node attack. A node attack is a fundamental attack [11].
The lower part of Figure 2 shows an SDN-enabled substrate network. The numbers next
to the nodes represent available CPU resources, TCAM resources, and the security-level
capability, respectively.
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We also model the virtual network as a weighted undirected graph
Gv = (Nv, Lv, Rn, Rl); where Nv denotes the set of virtual nodes; Lv denotes the set of
virtual links; and Rn denotes the resource constraints of the virtual node, the virtual
node computing capability requirement CPU (nv), the TCAM requirement TCAM (nv), the
security-level requirement SL (nv); and Rl denotes the virtual link bandwidth requirements
BW (lv). A VNR can be expressed as a triad VNR (Gv, ta, td), where ta represents the arrival
time of the VNR, and td represents the time when the virtual network leaves. The top of
Figure 2 denotes a VNR, the numbers on the links denote the bandwidth requirements
of links, and the three-dimensional arrays next to nodes represent the CPU, TCAM, and
security-level requirements of the virtual nodes, respectively.

In order to facilitate the solution, a VNE problem can be abstracted into two parts,
namely the node embedding and the link embedding parts. We express the VNE model as
GV = (NV, LV)→GS = (NS, LS). As shown in Figure 2, the virtual node embedding result is:
{a→E, b→C, c→B}; and, the virtual link embedding result is: {(a,b)→(E, D, C), (b,c)→(C,B),
(c,a)→(B,E)}.

3.2. Evaluation Indicators

The main goal of VNE is to embed as many VNRs as possible to substrate networks. It
is beneficial to increase the utilization of network resources and the revenue of TSPs. Most
works use three metrics, i.e., average revenue, average revenue to cost ratio, and average
acceptance ratio to measure the utilization efficiency of substrate network resources.

The value of network resources is related to the security-level; the higher the security-
level of the network resources, the greater the cost. In addition, the resource security-level
determines the type of service, which affects revenue. Therefore, we define the revenue of
a VNR as follow:

R(Gv) = ∑
nv∈Nv

{α · SL(nv) · (CPU(nv) + TCAM(nv))}+ ∑
lv∈Lv

BW(lv) (1)

where α represents the coefficient of the resource value.
The cost of a VNR represents the consumption of accepting a VNR that reflects the

efficiency of the SVNE algorithm. Generally speaking, the lower the cost, the greater the
economic benefit. The cost of a VNR can be calculated as follows:

C(Gv) = ∑
nv∈Nv ,M(nv)=ns

{α · SL(ns)(CPU(nv) + TCAM(nv))}+ ∑
lv∈Lv

BW(lv)× hops(lv)

(2)
We present the average revenue between ta and tb as follows:

R(Gv, ta, tb) =
R(Gv, ta, tb)

tb − ta
(3)

We present the average revenue to cost ratio between ta and tb as follows:

R/C =
R(Gv, ta, tb)

C(Gv, ta, tb)
(4)

The VNR acceptance ratio (AR) is an important metric in SVNE research, and it can be
defined by:

AR(Gv, ta, tb) =
VNRaccept

VNRtotal
(5)

where VNaccept represents the number of already accepted VNRs and VNrequest represents
the number of arrived VNRs.
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In addition, the average execution time for a VNR directly reflects the time complexity
of the algorithm, which is also an important metric reflecting the efficiency of the VNE
algorithms. We present the average execution time for a VNR between ta and tb as follows:

AET(Gv, ta, tb) =
ta − tb

VNRtotal
(6)

3.3. Problem Formulation of SVNE

In this subsection, we formulate the MILP model to solve the SVNE problem with
the aim of minimizing the cost for accommodating the VNR. The main index notations
throughout this paper are listed in Table 1.

Table 1. Notations.

Gs = (Ns, Ls) Substrate network.
Gv = (Nv, Lv) Virtual network.

i, j Substrate nodes.
u, v Virtual nodes.

SL(i) The security-level of the physical node i.
SL(u) The security-level of the virtual node u.

lij Virtual link.
luv Virtual links.

CPU(i) Calculate ability of the node i.
TCAM(i) TCAM capacity of the node i.
BW(ls) Link bandwidth of substrate link ls.

TCAM(u) TCAM requirement.
CPU(u) Node calculate requirement of virtual node u.
BW(luv) Link bandwidth requirement of the link luv.

Pst The physical path from node s to t.
α The coefficient of resource value.
β The weight coefficient.

Variables:

f uv
ij : a binary variable, its value is 1 if the substrate path lij accommodates the virtual link

luv; otherwise, the value is 0.
xu

s : a binary variable, its value is 1 if the virtual node u is embedded onto the substrate
node s; otherwise, the value is 0.

The objectives of the optimization algorithm can be defined as follows:

Min

 ∑
(i,j)∈Gs

∑
(u,v)∈Gv

f uv
ij · BW(luv) + ∑

nv∈Nv ,M(nv)=ns

{α · SL(ns) · (CPU(ns) + TCAM(ns))}

 (7)

Capacity constraints:

∀u ∈ Nv, ∀i ∈ Ns, xu
i · CPU(u) ≤ CPU(i) (8)

∀u ∈ Nv, ∀i ∈ Ns, xu
i · TCAM(u) ≤ TCAM(i) (9)

∀lij ∈ Ls, ∀(u, v) ∈ Lv, f uv
ij · BW(luv) ≤ BW(lij) (10)

Security-level constraints:

∀u ∈ Nv, ∀i ∈ Ns, xu
i · SL(u) ≤ SL(i) (11)

Connectivity constraints:

∀i ∈ Ns, ∀luv ∈ Lv, ∑
(i,j)∈Ls

f uv
ij − ∑

(j,i)∈Ls

f uv
ji =


1 i f xu

i = 1
−1 i f xv

i = 1
0 otherwise

(12)
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Variable constraints:
∀i ∈ Ns, ∑

u∈Nv

xu
i ≤ 1 (13)

∀u ∈ Nv, ∑
i∈Ns

xu
i = 1 (14)

∀i ∈ Ns, ∀u ∈ Nv, xu
i ∈ {0, 1} (15)

∀lij ∈ Ls, ∀luv ∈ Lv, f uv
ij ∈ {0, 1} (16)

Constraint (8) guarantees that the CPU capacity of substrate node i can satisfy the
CPU requirements of virtual node u. Constraint (9) guarantees that the TCAM capability
of substrate node i can satisfy the TCAM requirements of virtual node u. Constraint (10)
guarantees that the bandwidth capacity of substrate link lij can satisfy the bandwidth
requirement of virtual link luv. Constraint (11) guarantees that the security of substrate
node i can satisfy the security requirements of virtual node u. The connectivity constraint in
Constraint (12) is a flow conservation constraint. Constraint (13) guarantees that a substrate
node can host at most one virtual node from the same VNR. Constraint (14) guarantees a
virtual node can only be embedded onto one substrate node.

4. Proposed Solution

As we all know, the SVNE problem is a complex optimization problem, and the
computation time cannot satisfy actual needs when the network size is large. Therefore,
we propose two novel heuristic algorithms for the SVNE problem. In this section, we
first introduce proposed node-ranking approaches, and then we propose two SVNE al-
gorithms based on the node-ranking approaches. Finally, we analyze the complexity of
the algorithms.

4.1. Node-Ranking Approach

(1) Virtual Node-Ranking Approach: The virtual nodes of the Connection-Bandwidth
are defined according to Formula (17). The role of Formula (18) is to reorder virtual nodes
with equal Connection-Bandwidths according to security-level. We select the node with
the largest NRV as the first embedded node. The remaining virtual nodes are ranked
according to Formulas (19) and (20). The Nr represents the set of virtual nodes, which have
been ranked.

CB(u) = ∑
lu∈nbr(u)

BW(lu) (17)

NRV(u) = β · sl(u) + CB(u) (18)

CB′(u) = ∑
v∈Nr

BW(luv) (19)

NRV′(u) = β · sl(u) + CB′(u) (20)

where β represent the weight coefficient, and its value makes β · sl(u) less than 1. Its role is
to reorder virtual nodes with equal Connection-Bandwidths according to security-level.

For ease of understanding, we take an example to illustrate virtual node-ranking
process. We set the values of the parameter β to 0.1. The VN in Figure 3 has four virtual
nodes, their Connection-Bandwidth are 23, 30, 11, and 24, respectively, and their security-
level are 1, 1, 3, and 2, respectively. Hence, we can obtain their node-ranking values NRV as:
23.1, 30.1, 11.3, and 24.2, respectively. Thus, virtual node b is selected as the first embedding
node, and it is put into Nr. We can calculate Connection-Bandwidth of a, c, and d, which are
15, 0, and 15 based on Formula 18; and, they obtain their node-ranking values NRV′ as: 15.1,
0.3, and 15.2. Thus, virtual node d is selected as the second embedding node, and it is put
into Nr. At this time, Nr includes nodes b and d. We can get the Connection-Bandwidths of
a and c to be 18 and 6, and the node-ranking values NRV as: 18.1 and 6.3. Therefore, virtual
node a is selected as the third embedding node, and d is the last mapping node.
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(2) Physical Node-Ranking Approach: Physical nodes are ranked according to the
value of Bandwidth-Distance, which is our proposed node-ranking approach in [16]. When
we embed the virtual node u, we can get the Bandwidth-Distance of the physical node n
according to Formula (21).

BDn = ∑
v∈Nv

Dhop(n, m) ∗ BW(luv), M(v) = m (21)

where Dhop(n, m) denotes the hops of the shortest path, BW(luv) denotes the connection
bandwidth of virtual link luv, v denotes the other nodes belong to the same VN as u, and m
denotes the physical node, which hosts virtual node v. The smaller the value of BDn, the
more bandwidth resources may be saved in the virtual link embedding phase.

In order to reduce cost, virtual nodes should be embedded to physical nodes that meet
the conditions with lower security-levels. Therefore, physical nodes are sorted according to
Formula (22).

NRP(n) = BD(n) + β · SL(n) (22)

We also take an example to illustrate the physical node-ranking approach. We assume
that there are four physical nodes A, B, C, and D, and their security-levels are 4, 3, 2, and
3, respectively. When we embed virtual node u, the BDs values are 30, 20, 20, and 30,
respectively. Hence, the value of NRP can be obtained as 30.4, 20.3, 20.2, and 30.3 according
to Formula (21). They are sorted in ascending order according to the value of NRP, and
they obtain the sequence C, B, D, and A.

4.2. SVNE Algorithms

Algorithm 1 presents T-SVNE, which includes the node and the link embedding stages.
We find the Dhops between all physical nodes in advance to reduce the running time. Virtual
nodes are sorted according to the virtual node-ranking approach. To embed virtual node u,
physical nodes are ranked according to physical node-ranking approach. If the physical
node i can meet the requirements of the virtual node u, we embed the virtual node u onto
the physical node i. The algorithm performs link embedding when all virtual nodes are
successfully embedded. The VNR is embedded successfully if all virtual nodes and links
are successfully embedded.
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Algorithm 1: T-SVNE Algorithm

Input: Gs, Gv, Dhop.
Output: embedding solution.
1: Sort the virtual nodes based on the ranking approach;
2: for all virtual node u do
3: Sort physical nodes based on physical node-ranking approach;
4: for all physical node n do
5: if CPU(u) ≤ CPU(n), TCAM (u) ≤ TCAM(n) and SL(u) ≤ SL(n) then
6: Embed virtual node u to physical node n, M(u) = n;
7: break
8: end if
9: end for
10: end for
11: Sort the virtual links based on the bandwidth requirements in descending order;
12: for all virtual links do
13: Use Dijkstra algorithm [1,17,18] to find the shortest path;
14: end for

4.3. H-SVNE Algorithm

To improve the efficiency of link embedding, we propose the H-SVNE algorithm. The
core idea of H-SVNE is to pre-map virtual node u to each physical node, and select the
physical node with the least bandwidth consumption as the destination node. In order to
reduce the execution time, the physical nodes and links that do not meet resource conditions
are deleted. The algorithm is presented in Algorithm 2, which is also designed based on
the above node-ranking approaches. Lines 3–13 are for constructing the BD matrix, and
we can get the BD of the physical node n based on the BD matrix. We can get the NRP of
physical nodes based on Formula (21), and then sort the physical nodes in ascending order
based on the value of NRP.

Algorithm 2: H-SVNE Algorithm

Input: Gs, Gv.
Output: embedding solution.
1: Sort virtual nodes based on the ranking approach;
2: for all virtual node u do
3: Delete physical nodes do not meet resource and SL requirements;
4: for all physical node n that meet requirements do
5: Initialize BW’(ls)←BW(ls);
6: for all physical node m hosts v that has a link with u do
7: Delete the physical links (BW(luv) > BW’(ls));
8: Use Dijkstra algorithm to find the shortest path;
9: if there is the shortest path then
10: Calculate BDmn, record information and update BW’(ls);
11 end if
12: end for
13: end for
14: BD matrix element column addition;
15: Sort physical nodes based on NRP;
16: if u is embedded successfully then
17: Update BW(ls) if u is embedded successfully;
18: else
19: break
20: end if
21: end for
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4.4. Time Complexity Analysis

The time complexity of virtual node-ranking is O(|Nv|), physical node-ranking is
O(|Ns|3|Nv|), and the Dijkstra algorithm is O(|Ns|2). The T-SVNE algorithm consists
of two sections: the time complexity of node-embedding stage is O(|Ns|2|Nv|), and
the time complexity of link-embedding stage is O(|Ns|2|Lv||). Therefore, the time
complexities of T-SVNE is O(|Ns|2|Lv|| + |Ns|2|Lv|) and the time complexities of H-
SVNE is O(|Ns|3|Lv||Nv|). It is easy to observe that the time complexity of the H-SVNE
algorithm is much higher than the time complexity of the T-SVNE algorithm.

5. Performance Evaluation

This section first describes the simulation parameter settings and the compared algo-
rithms. Then, we present the experimental results in the form of graphs, and we analyze
the experimental results in detail.

5.1. Simulation Settings and Compared Algorithms

The substrate network topology and the virtual network topology used in the simula-
tion are generated by the improved Salam network topology random generation algorithm.
We refer to the parameter setting in reference [19] (slightly modify); the substrate net-
work (single domain) parameters are summarized in Table 2, and the VN parameters
are summarized in Table 3, respectively. In addition, parameter α is set to 1, and param-
eter β is set to 0.1. We use MATLAB R2021b as the simulation software to implement
simulation experiments.

Table 2. Substrate Parameters.

Physical Network Generation Approach Salam Method, BorderLenght = 1000, Alpha = 1010, Beta = 0.25

Node Capacity [80, 100], uniform distributed
TCAM [80, 100], uniform distributed

Link Bandwidth [50, 80], uniform distributed
Number of nodes 100

Security level [0, 4], uniform distributed

Table 3. Virtual Parameters.

Virtual Network Generation Approach Salam method, BorderLenght = 1000, Alpha = 1010, Beta = 20

VNR Arrival Rate 4 VNRs per 100 time units
Number of virtual nodes An integer, distributed [2, 10]
Node Capacity Demand [25, 30], uniform distributed

TCAM Demand [25, 30], uniform distributed
Link Bandwidth Demand [25, 30], uniform distributed

Security level Demand [1, 3], uniform distributed

Four algorithms make up the simulation part in total. Besides our proposed T-SVNE
and H-SVNE algorithms, the remaining algorithms are RCR-VNE [20] and NRM-VNE [20].
These algorithms are typical VNE algorithms, and they are slightly modified to suit the
experimental scenarios.

5.2. Simulation Results

The main simulation results are presented in this subsection. Algorithms are tested
based on the above simulation environment. Figure 4 presents the average acceptance ratio
as a function of time. Observed from Figure 4, the curves of all algorithms decay with the
variation of time. This decay shows that there are no infinite substrate resources to receive
more and more VNRs. Our proposed algorithms perform better than other algorithms; it is
owing to the fact that our algorithms embed virtual nodes to the physical nodes with smaller
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Bandwidth-Distance, which is beneficial for saving bandwidth resources. In addition, H-
SVNE has a higher acceptance rate than T-SVNE; it is owing to that H-SVNE adopts the
traversal strategy to find the physical nodes with the least bandwidth consumption as the
destination nodes, while the T-SVNE algorithm adopts the Dhop calculated in advance to
replace the number of hops in the shortest path. Therefore, the accuracy of Dhop is not high,
which affects the quality of the VNE solution.
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Figure 5 plots the average embedding revenues of all selected algorithms. As ob-
served in Figure 5, we can see that the overall trend of these algorithms is decreased
with the running time, it is owing to the fact that the acceptance rate of all algorithms de-
creases over time. Our proposed algorithms earn more embedding revenues than the com-
pared algorithms. This is due to two reasons: (1) our proposed algorithms accommodate
more VNRs in the long run; (2) our proposed algorithms embed virtual nodes to physical
nodes with a lower security-level. Moreover, the HSVNE algorithm is more profitable
than the TSVNE algorithm, this is due to the fact that H-SVNE accepts more VNRs than
T-SVNE algorithm.

Figure 6 illustrates the average revenue to cost ratio as a function of time. As observed
in Figure 6, the average revenue to cost ratio of all algorithms decreases over time. It is
owing to the fact that the bandwidth resources of the links are fragmented as the VNE
progresses; and virtual nodes are embedded onto physical nodes with larger Bandwidth-
Distance. Our proposed algorithms perform better than other algorithms. This is due to
two reasons: (1) our algorithms embed virtual nodes to the physical nodes with smaller
Bandwidth-Distance; (2) our proposed algorithms embed virtual nodes to physical nodes
with lower security-level, which are beneficial for reducing embedding costs.
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Figure 7 shows the average execution time to process a VNR. From Figure 7, we can
observe that the average execution time of the H-SVNE algorithm is much longer than
the execution time of the T-SVNE algorithm. It is owing to the fact that the H-SVNE
algorithm takes longer to traverse the shortest path of all physical nodes. Compared with
T-SVNE, H-SVNE performs better in terms of average acceptance ratio, average revenue,
and average revenue to cost ratio; however, H-SVNE takes more execution time to process
a VNR. Hence, both algorithms have their own advantages and disadvantages.
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6. Conclusions

In this paper, we research the relationship between resource value and security-level;
and, we believe that the higher the security-level of the resource, the greater the value of
the resource. Hence, we first define the evaluation indicators that take into account the
difference in resource value and then present a MILP model with the goal of minimizing
the SVNE cost. The MILP cannot be solved conveniently since the formulated optimization
problem is a complicated optimization problem. Therefore, we propose two node-ranking
strategies for sorting physical nodes and virtual nodes, respectively. Based on the node-
ranking strategies, two novel SVNE algorithms are proposed: they are two-stage algorithms
called the T-SVNE algorithm and the node-link hybrid embedding algorithm called the
H-SVNE algorithm, respectively. Simulation results validate the effectiveness of our pro-
posed algorithms. Moreover, the quick advances in artificial intelligence (AI) applications
in social computing have led to an emerging and a promising study field known as artificial
social intelligence (ASI) [21]. The virtualization of the intelligent network is the focus of
future research.
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