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Abstract: Automatic text summarization is a method used to compress documents while preserving
the main idea of the original text, including extractive summarization and abstractive summarization.
Extractive text summarization extracts important sentences from the original document to serve
as the summary. The document representation method is crucial for the quality of the generated
summarization. To effectively represent the document, we propose a hierarchical document represen-
tation model Long-Trans-Extr for Extractive Summarization, which uses Longformer as the sentence
encoder and Transformer as the document encoder. The advantage of Longformer as sentence
encoder is that the model can input long document up to 4096 tokens with adding relative a little
calculation. The proposed model Long-Trans-Extr is evaluated on three benchmark datasets: CNN
(Cable News Network), DailyMail, and the combined CNN/DailyMail. It achieves 43.78 (Rouge-1)
and 39.71 (Rouge-L) on CNN/DailyMail and 33.75 (Rouge-1), 13.11 (Rouge-2), and 30.44 (Rouge-L)
on the CNN datasets. They are very competitive results, and furthermore, they show that our model
has better performance on long documents, such as the CNN corpus.

Keywords: extractive summarization; transformer; longformer; deep learning

1. Introduction

Since Luhn [1] started automatic summarization research in 1958, great achievements
have been made in this field. Text summarization can be divided into two categories:
namely, abstractive and extractive summarization. Abstractive summarization [2] refines
its ideas and concepts on the basis of understanding the semantic meaning of the original
text to realize semantic reconstruction. Although more similar to the logic of human beings,
abstractive summarization still faces a great challenge to produce a coherent, grammatical,
and general summary of the original text, due to the limitations of natural language
generation technology. The extractive summarization method extracts key sentences from
a document to generate a summary. The input document is initially encoded, and then, the
scores of sentences in the document are calculated. The sentences are sorted according to
the scores, and those with high scores are selected to form a summary.

This study focuses on extractive summarization, since it not only generates semanti-
cally and grammatically correct sentences in news articles but also computes faster than
abstractive summarization. At present, both generative and extractive summarization
methods have some difficulties in processing long text, which is caused by the computa-
tional complexity of the encoder network. Recent studies have shown that Transformer [3]
outperforms LSTM [4] in the area of natural language processing, both in terms of ex-
perimental results and computational complexity. However, even Transformer, which is
capable of parallel computation, is unable to handle long text, resulting in the text summa-
rization method being limited to short text. For a long text, there are usually two processing
methods: (1) Discard the exceeding part directly. This method is simple to implement,
but it has a great impact on the quality of the final summary. (2) Divide the long text into
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several shorter text spans and process them one by one. As a result of this processing,
different text spans cannot interact with each other, and therefore, a lot of information is
inevitably lost. Of course, there are other mechanisms that can be added to enhance the
interaction between text spans, but these new mechanisms are complex to implement, often
task-specific, and not universal.

The main contributions of this paper are summarized as follows:

(1) This study proposes the hierarchical document representation method, which employs
Longformer as the sentence encoder and Transformer as the document encoder to
encode input text. Different from CNN (Convolutional Neural Network) or LSTM
(Long and Short-Term Memory) as encoders [5–7], the model can deal with a long
document, up to 4096 tokens, due to adopting Longformer as a sentence encoder, and
makes it possible to directly encode long text.

(2) Both global attention and local attention [8] are adopted by encoders, which not only
ensures that key tokens do not lose global information but also reduces computa-
tional complexity.

(3) The proposed hierarchical model achieves the best Rouge-1 and Rouge-L [9] on
CNN/DailyMail datasets [10], and it achieves the state-of-the-art Rouge-1, Rouge-
2, and Rouge-L on the long text dataset CNN. The best Rouge-1 and Rouge-L are
achieved on the short text dataset DailyMail. Experimental results show that Long-
former, as a sentence encoder, has good performance on long documents.

2. Related Work

Automatic text summarization includes abstractive and extractive summarization. In
recent years, deep learning technology has provided a novel idea for research on summa-
rization. Among the related literature, Cho et al. [11] and Sutskever et al. [12] proposed
the widely studied sequence-to-sequence (seq2seq) model, which consists of an encoder
and a decoder. Its basic idea is to use the global information of the input sequence to infer
the corresponding output sequence. Rush et al. [13] first applied the above model to text
summarization task.

In extractive summarization, an important issue is how to extract important sentences
from the original document. Some studies are based on statistical methods [14,15]. With the
success of deep neural networks in natural language processing, extractive summarization
has achieved better results than traditional machine learning. The core of the extractive
summarization model, based on a neural network, is the encoder-decoder structure. For the
encoder, CNN, RNN (Recurrent Neural Network), and LSTM were adopted to capture the
context information of the document [16–18]. However, with the above models, it is usually
hard to capture long-distance dependency, especially in the case of a long document. With
the success of BERT, the transformer is found to effectively capture sequence information
of the input. Liu and Lapata [19] proposed a sentence-level encoder based on BERT, which
is able to encode a document and obtain representations of its sentences. Then, they
used Transformer to encode these sentence representations. Zhang et al. [20] proposed
HIerachical BERT (HIBERT) for document encoding and pre-trained it with unlabeled
data. First, they applied HIBERT, with unlabeled data, to the Sentence Prediction task and,
then, to classify sentences. Wang et al. [21] presented HSG based on GNN (Graph Neural
Network), adding fine-grained semantic nodes to assist in sentence extraction. For the
decoder, Multilayer Perceptron (MLP) or LSTM are commonly used to output the score
of sentences.

Due to the complexity of neural networks, the above methods have difficulty pro-
cessing long documents. In order to reduce complexity, researchers proposed different
methods: Wu and Hu [22] and Al-Sabahi et al. [16] limited the maximum sentence length
and sentence number of documents; Zhong et al. [23] and Narayan et al. [17], respectively,
intercepted the first 512 and 600 words of the document as input. Zhang et al. [20] limited
the length of sentences and split long documents into short ones. The most direct and
effective way to enable models to have longer input sequences is to reduce the complexity
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of the network. Some studies have been performed by researchers [24,25]. Beltagy et al. [8]
proposed the Longformer network. Longformer has three improved attention modes, from
Transformer’s attention mechanism, to reduce the complexity of the network: (1) sliding
window attention; (2) dilated window attention; (3) sliding window attention + global
attention. The author’s experiments, on tasks such as question answering system and
coreference analysis, show that the “local attention + global attention” model can achieve
good performance under the premise of reducing computational complexity. Compared
with Transformer, the computational complexity of Longformer is reduced from O(n2) to
O(n), where n is the length of the input sequence. Inspired by the above work, this paper
adopts Longformer to encode text in an extractive summarization model to accept longer
text input.

3. Proposed Model

In this section, summarization is modeled as a sequence labeling problem. Figure 1
shows the proposed extractive summarization model, Long-Trans-Extr, which is divided
into three components: the sentence encoder, document encoder, and the classifier.
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Figure 1. Long-Trans-Extr model structure.

3.1. Sentence Encoder

As described in Section 2, some previous models cannot directly input long documents.
The original Transformer model has a global-attention mechanism with O(n2) time and
memory complexity, where n is the input sequence length. With the increase in the input
length, the computational complexity is unacceptable. Therefore, in order to encode long
input text and, at the same time, reduce the computational complexity from O(n2) to O(n),
we introduce Longformer [8] as the sentence encoder. In addition, Longformer adopts the
global attention + local attention mechanism. Local attention is a sliding window attention
pattern. Each token only attends to its nearby w tokens. Attention calculation complexity
has a linear relationship with the text sequence length n, and it is O(w∗n), where w is the
size of the attention window. Global attention is a full length attention pattern. The token
with global attention attends to all input tokens.

In this study, pre-trained language model Longformer is used as an encoder to output
the representation vector of each sentence. We add [CLS] as the first token of each sentence
to obtain its feature representation vector. It is worthwhile to note that [CLS] is a key token
because its feature vector represents the feature vector of the current sentence. Therefore,
we hope that [CLS] can capture more semantic information. In order to make Longformer
serve the extractive summarization task, global attention is used for [CLS] tokens of the
input sequence to capture more semantic information, and local attention is used for other
tokens of the sentence to reduce computational complexity. The global attention + local



Electronics 2022, 11, 1706 4 of 10

attention mechanism is shown in Figure 2. In this way, the model can capture long distance
dependencies by adding a little computation.
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As shown in Figure 1, the vector for each word in the document is obtained as:

wi
j = ei

j + pj (1)

where wi
j denotes the j-th word of the i-th sentence, ei

j is the word embedding, pj is position

embedding [26], and W =
[
w1

1, w1
2 . . . , w2

1, w2
2 . . . , . . . , wm

1 , wm
2 , . . .

]
. Next, Longformer is

used to encode all the words as:

T = Long f ormer(W) (2)

where T = [T1, T2, . . . Tm], m is the number of sentences in the document, Ti is output of
the corresponding position of the ith [CLS], and it can be regarded as the representation
vector of the ith sentence.

3.2. Document Encoder

To make sentence representation vectors interact in higher dimensions, we design
a document encoder based on Transformer. The document encoder is shown in Figure 3.
First, the initial input of the document encoder is computed by adding the position embed-
ding pi to each sentence vector Ti.

h0
i = Ti + pi (3)

where h0 =
[
h0

1, h0
2, . . . , h0

m
]

is the initial input of the document encoder and is input into
the document encoder composed of the L-layer transformer.

h̃l = LN
(

hl−1 + MHAtt
(

hl−1
))

(4)

hl = LN
(

h̃l + FFN
(

h̃l
))

(5)

where LN() is Layer Normalization [27], MHAtt() is Multi Head Attention, and FFN is
FeedForward Network. Equations (4) and (5) are the internal Transformer calculations in
one layer of the document encoder, and they are executed L times, in turn, to obtain the
sentence vectors using the L-layer transformer document encoder. The output of the last
layer in the Transformer is hL =

[
hL

1 , hL
2 , . . . , hL

m
]
, which will be input to the decoder.
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3.3. Decoder

In extractive summarization, the decoder is, commonly, a binary classifier that sequen-
tially predicts whether each sentence in the document should be extracted. Specifically,
the model predicts a ‘0′ or ‘1′ label for each sentence. If the label is ‘1′, the sentence is
considered important and should be extracted to form a summary. In this study, we classify
the final output from the document encoder by a binary classifier:

ŷi = sigmoid
(

hL
i Wo + bo

)
(6)

where hL
i is the sentence representation vector of senti, Wo is trainable weights, and bo is

a bias. The loss function is calculated as follows:

loss = BCE(ŷi, yi) (7)

Here, we use the BCE (Binary Cross Entropy) loss function, where ŷi is the prediction
label, and yi is the ground truth.

4. Experiments
4.1. Datasets

Experiments are carried out on the CNN, DailyMail, and CNN/DailyMail benchmark
datasets [10]. The “story highlights” in every document are assumed as standard sum-
maries [27,28]. These standard summaries are used as the ground truth. The standard split
of Hermann et al. [10] is adopted. Table 1 shows the details of the datasets. Each document
contains 28 sentences and approximately 751 words in CNN datasets and 653 words in
DailyMail datasets. Each gold summary contains three or four sentences. CoreNLP is
used to split the sentence and preprocess datasets, following [28]. The documents and
summaries are tokenized using the RoBERTa subwords tokenizer.

Table 1. Benchmark datasets (CNN, DailyMail, and CNN/DailyMail).

Dataset Training Validation Testing

CNN 90,266 1220 1093
DailyMail 196,961 12,148 10,397

CNN/DailyMail 287,277 13,368 11,490
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4.2. Evaluation Criteria

Recall-Oriented Understudy for Gisting Evaluation (Rouge) [9] is used to evaluate
the proposed model. Rouge is a method of evaluating text similarity, which is commonly
used in machine translation and automatic summarization. Rouge-N and Rouge-L are
commonly used in automatic summarization tasks and denote the overlap rate of N-gram,
as well as the longest common substring between the extracted summary and the gold
summary, respectively. Rouge-N is computed as follows:

Rouge−N =
∑S∈{Re f erenceSumm} ∑gramN∈S Countmatch(gramN)

∑S∈{Re f erenceSumm} ∑gramN∈S Count(gramN)
(8)

where N stands for the length of the N-gram (N = 1, 2, . . . ). Rouge-N calculates the
proportion of n-grams co-occurring in the extracted summary and the gold summary to
all N-grams in the gold summary. It is clear that Rouge-N is a recall-related measure. The
more sentences we extract, the higher the Rouge-N score will be, so the Rouge-N F1 score
is commonly used in automatic summarization task.

Rouge-L is computed as follows:

RL =
LCS(X, Y)

M
(9)

PL =
LCS(X, Y)

N
(10)

FL =

(
1 + β2)RLPL

RL + β2PL
(11)

where LCS(X,Y) is the length of a longest common subsequence of X and Y, X is the
extracted summary with M words, and Y is a gold summary with N words. In our
experiments, F1 scores are computed for Rouge-N and Rouge-L. We use a Python-based
calculation tool to evaluate the proposed model.

4.3. Experimental Settings

PyTorch is used to implement the extractive summarization model. The hardware
platform is Intel i9-10900, the memory is 64 GB, and the GPU is RTX 3090. Sentence encoder
Longformer is initialized with pre-trained weights of ‘longformer-base’. Document encoder
Transformer and the classifier are initialized randomly. The vector dimensions of words
and sentences are 768, and the batch size is set to 64. The layer number of the document
encoder Transformer is set to 2. In the first 1000 steps of training, only the weights of
document encoder and classifier are adjusted, while the weights of sentence encoder
remain unchanged. After 1000 steps, adjust the parameters of the model as a whole. The
model is calculated on the validation set every 500 steps. Then, the best model parameters
are saved, and its performance on the test set is considered the final result. The learning
rate is set to 0.003 in the first 1000 steps, while after 1000 steps, it is set to 0.00003.

4.4. Experimental Results and Analysis

Firstly, we conducted experiments on the CNN/DailyMail datasets. In Table 2, KL-
Summ [29], SumBasic [30], and LexRank [15] do not adopt deep learning methods. These
methods show a large performance gap with those that use deep learning. Lead-3 is a com-
monly used, and effective, baseline that extracts the first three sentences in the document.
Compared with the baseline model Lead-3, the proposed method has better performance.
DQN [18], BANDITSUM [7], HSASRL [31], and Refresh [17] use reinforcement learning
method to train their models. BERT-Extr [32], HIBERT [20], and BERTSUMEXT + TRI-
BLK [19] are based on the Transformer structured encoder. BERT-Extr extracts sentence
singletons or sentence pairs. HIBERT trained the encoder on unlabeled data by hiding
several sentences in the document encoding stage. BERTSUMEXT + TRIBLK has a similar



Electronics 2022, 11, 1706 7 of 10

structure to our model, Long-Trans-Extr, but its sentence encoder is BERT. Therefore, its
maximum input sequence length is limited to 512. HSG + Tri-Blocking [21] is based on
GNN (Graph Neural Network). Compared to recent models, our model, Long-Trans-
Extr, performs best on the Rouge-1 and Rouge-L on the CNN/DailyMail dataset, and the
experimental results increased by 0.53 and 0.08, respectively.

Table 2. The experimental results of Long-Trans-Extr and other methods on the CNN/DailyMail datasets.

Model Rouge-1 Rouge-2 Rouge-L

SumBasic [30] 34.11 11.13 31.14
LexRank [15] 35.34 13.31 31.93
KLSumm [29] 29.92 10.50 27.37
Lead-3 40.0 17.5 36.2
DQN [18] 39.4 16.1 35.6
BANDITSUM [7] 41.5 18.7 37.6
HSASRL [31] 41.5 19.5 37.9
HSSAS [16] 42.3 17.8 37.6
Refresh [17] 40.0 18.2 36.6
BERT-Extr [32] 41.13 18.68 37.75
HIBERT [20] 42.37 19.95 38.83
HSG + Tri-Blocking [21] 42.95 19.76 39.23
BERTSUMEXT + TRIBLK [19] 43.25 20.24 39.63
Long-Trans-Extr (ours) 43.78 19.83 39.71

In order to prove the proposed Longformer + Transformer has better effectiveness,
we compare this model with other extractive models, whose decoders are the same as
ours, but the encoders are different, on CNN/DailyMail datasets. The results are shown
in Table 3. NN-SE [27] uses CNN and LSTM as the sentence encoder and document en-
coder, respectively, while BERT-Extr [32] adopts BERT as encoder. Our model is better
than theirs. HSSAS [16] adopts Bi-LSTM + attention as hierarchical encoders. Our Long-
former + Transformer encoder is better than the above models. A competitive model is
BERTSUMEXT + TRIBLK [19], which achieves the best Rouge-2, while Long-Trans-Extr
achieves the best Rouge-1 and Rouge-L. The experimental results show that the proposed
Longformer + Transformer encoder can capture the contextual semantic information of the
document more accurately.

Table 3. The comparison between our Long-Trans-Extr model and other extractive models, with the
same decoder, on CNN/DailyMail datasets.

Model Sentence-Encoder Document-
Encoder Rouge-1 Rouge-2 Rouge-L

NN-SE [27] CNN LSTM 35.5 14.7 32.2

HSSAS [16] Bi-LSTM +
Attention

Bi-LSTM +
Attention 42.3 17.8 37.6

BERT-Extr [32] BERT — 41.13 18.68 37.5
BERTSUMEXT + TRIBLK [19] BERT Transformer 43.25 20.24 39.63

Long-Trans-Extr (ours) Longformer Transformer 43.78 19.83 39.71

Table 4 shows the results of Long-Trans-Extr and other extraction models on CNN and
DailyMail datasets separately. Compared to the previous best HSASRL model, Long-Trans-
Extr improves by 2.83 (Rouge-1), 0.91 (Rouge-2), 3.04 (Rouge-L), as well as 2.01 (Rouge-1)
and 1.11 (Rouge-L) on CNN and DailyMail datasets, respectively. The above results show
that our model performs better on dataset CNN. In view of this result, we further analyze
the datasets of CNN and DailyMail, as shown in Table 5. It can be seen that CNN has
a longer average article length than DailyMail. We believe that the previous models only
retained a limited number of tokens inputs, so CNN would be discarded more. However,
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Longformer can allow up to 4096 token inputs, and almost no content would be discarded.
This also shows that Long-Trans-Extr can effectively solve the long sequence input problem
of extractive text summarization.

Table 4. The experimental results of Long-Trans-Extr and other methods on the CNN and DailyMail
datasets, respectively.

Model CNN DailyMail

Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

NN-SE [27] 28.4 10.0 25.0 36.2 15.2 32.9
Refresh [17] 30.4 11.7 26.9 41.0 18.8 37.7

BANDITSUM [7] 30.7 11.6 27.4 42.1 18.9 38.3
DQN [18] — — — 41.9 16.5 33.8

HSASRL [31] 30.92 12.2 27.4 42.88 20.48 39.71
Long-Trans-Extr (ours) 33.75 13.11 30.44 44.89 20.02 40.82

Table 5. Comparison of document length between CNN and DailyMail datasets, where “Word_num”
and “Sent_num” denote the average number of words and sentences in the document, respectively.

Dataset Word_Num Sent_Num

CNN 760.50 33.98
DailyMail 653.33 29.33

Table 6 shows the GPU memory usage and training time of global attention and
Global + Local attention. As we can see, the local attention mechanism consumes less GPU
memory and training time. When global attention is used for all tokens, the memory and
training time increased by 43.7% and 45.6%, respectively.

Table 6. GPU memory usage and training time of global attention and Global + Local attention.

Attetion Mode GPU Memory Training Time/Epoch

Global 7014 MB 80.8 h
Global + Local 4881 MB 55.48 h

Figure 4 shows two extractive summarization examples, and each includes a generated
summary and a gold summary. We mark different contents with different colors, and the
same color represents the same content.
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Generated summary 1 :the 25-year-old ghana international is out of
contract in the summer and free to talk to foreign clubs .andre ayew is out
of contract at marseille this summer , and swansea have joined the chase for
his signatureswansea , meanwhile , have expressed an interest in schalke
full-back christian fuchs .
Golden summary 1 :andre ayew is free to talk to foreign clubs with his
marseille contract expiring at the end of the season . ghana international has
received offers from swansea , newcastle and everton while wolfsburg and
borussia dortmund are interested . the swans are also chasing schalke
defender christian fuchs .

Generated summary 2 : harry kane and diego costa are locked on 19 goals
in the race to finish as this season 's top scorer but rank fourth and fifth
respectively , behind papiss cisse and olivier giroud .glenn murray has
scored a goal on average every 91 minutes this season - giving him a better
minutes-per-goal ratio than anyone else in the top flight .manchester city
are coming up against statistically the deadliest striker in the premier
league when they face crystal palace on easter monday .
Golden summary 2 : glenn murray has scored four goals in 364 minutes
this season . crystal palace striker has best minutes-per-goal ratio in premier
league . olivier giroud third on the list , harry kane fourth , diego costa fifth .

Figure 4. Examples of a generated summary and a golden summary.
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5. Conclusions

In this study, we propose a Long-Trans-Extr extractive summarization model, which
uses Longformer as a sentence encoder, Transformer as a document encoder, and finally,
an MLP classifier is used to decide whether a sentence in a document should be extracted
or not. This model solves the problem that it is difficult for previous models to deal
with long documents. It enables sentence representation and document representation
to notice longer text information without increasing too much computation and memory.
Experimental results show that, under the same decoder condition, our model is superior
to other models on the CNN/DailyMail dataset, and it achieves the best results on a long
CNN dataset.

Author Contributions: This study was completed by the co-authors. S.L. led the research and wrote
the draft. The model design is performed by S.Y. Major. Experiments and analyses were undertaken
by S.Y. and S.Z. M.F. was responsible for data processing and drawing figures. F.Y. edited and
reviewed the paper. All authors have read and agreed to the published version of the manuscript.
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[grant number 21ZY31] and the project of Jilin Province Development and Reform Commission [the
Grant 2022C047-5].
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published article “Hermann Karl Moritz, Kocisky Tomas, Grefenstette Edward. Teaching machines to
read and comprehend. Advances in neural information processing systems. 2015; 28 (1693–1701)”.
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