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Abstract: We propose a new parametrization of motion primitives based on Bézier curves that suits
perfectly path-planning applications (and environment exploration) of wheeled mobile robots. The
individual motion primitives can simply be calculated taking into account the requirements of path
planning and the constraints of a vehicle, given in the form of the starting and ending orientations,
velocities, turning rates, and curvatures. The proposed parametrization provides a natural geometric
interpretation of the curve. The solution of the problem does not require optimization and is obtained
by solving a system of simple polynomial equations. The resulting planar path composed of the
primitives is guaranteed to be C2 continuous (the curvature is therefore continuous). The proposed
primitives feature low order Bézier (third order polynomial) curves. This not only provides the final
path with minimal required turns or unwanted oscillations that typically appear when using higher-
order polynomial primitives due to Runge’s phenomenon but also makes the approach extremely
computationally efficient. When used in path planning optimizers, the proposed primitives enable
better convergence and conditionality of the optimization problem due to a low number of required
parameters and a low order of the polynomials. The main contribution of the paper therefore lies in
the analytic solution for the third-order Bézier motion primitive under given boundary conditions that
guarantee continuous curvature of the composed spline path. The proposed approach is illustrated
on some typical scenarios of path planning for wheeled mobile robots.

Keywords: path planning; motion primitive; Bernstein–Bézier curve; continuous curvature; mobile
robots

1. Introduction

Autonomous or guided mobile systems require path planning to find a path that allows
the system to move safely from a starting configuration to a desired goal configuration.
Finding a globally optimal, safe, and feasible path, given the driving constraints is a complex
process that requires some kind of discretisation over the continuum of the configuration
space. This makes it possible to compute a path plan in the limited time that satisfies the
real-time requirements such as self-driving cars that need to react and replan their path
promptly according to traffic changes [1,2].

In addition to the discretisation of time, which is essential in computer-aided design,
space must also be discretised to a final number of possible configurations. Typically,
regular grid-based environment discretisations are used, where the resulting path is a
sequence of straight-line segments with discontinuities in the tangents and curvatures in
the joints. For mobile systems such as wheeled robots with kinematic constraints, motion
primitives provide a more flexible discretisation and better performance in sampling-based
planning algorithms [2–7]. Motion primitives can consist of precomputed motions or curves
with predefined (parametric) structure such as circular arcs, polynomials and the like.

Path planning can be reactive or cognitive. The former responds to local sensor read-
ings (e.g., ultrasonic sensor, laser range camera, or visual sensors) and reschedules actions
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to avoid collisions using potential field methods, reactive controllers such as model pre-
dictive control, dynamic window approaches, or trajectory roll-out algorithms [8–10]. The
latter rely on global environment information available in the form of an environment map
and use roadmap or grid-based planners (such as A∗, D∗) [1,2], random sampling-based
planners [11,12], and others. As the number of tuning parameters and the complexity
of path planning algorithms (e.g., multi-robot planning) increases, various artificial intel-
ligence methods are gaining popularity [13], such as reinforcement learning, Gaussian
mixture models, neural networks, and others. The rest of the introduction and this paper
focuses on path planning with motion primitives, which provide a basic type of smooth
transitions in planning and environment exploration.

Paths or trajectories combined from motion primitives must be continuous to the
k-th derivative (Ck) in the joints to satisfy vehicle driving constraints. Continuity may be
geometric (e.g., continuity of curvature) or parametric (e.g., continuity of time derivatives of
the trajectory). The former is more general and includes the latter. The path determined in
the planning process must be consistent with the kinematic constraints of the vehicle, which
usually include geometric continuity requirements [2,14,15]. When this path is driven by
a vehicle, the time dimension is also included (resulting in a trajectory), which must also
take into account the dynamic constraints of the vehicle, such as the maximum permissible
velocity, acceleration, or jerk [16–18]. Trajectory planning includes path planning and
velocity profile planning and is therefore even more complex. Therefore, a path-velocity
decomposition is typically applied, where in the second step admissible velocity profiles
are determined that meet time-related requirements such as minimising travel time or
optimising driving comfort, while taking into account dynamic constraints on a predefined
path [16,19,20].

A pioneering work constructing the shortest curvature-constrained path with straight-
line segments and circular arcs for a vehicle with steering constraints was proposed by [21].
Such paths (Dubins or Reeds-Shepp’s) provide only geometric continuity of tangency
while the curvature in the joints is discontinuous. Several extensions of these basic mo-
tion primitives have been proposed to obtain continuous curvature by inserting clothoid
transitions [22] and similar smoothing approaches. Other popular parametric and non-
parametric motion primitives with continuous curvature in the joints are clothoids [23,24],
Bézier curves [5,14,17,18,25,26], B-splines [27], or higher order polynomials [15,28,29].

Among the alternatives mentioned for the construction of motion primitives, the
Bernstein–Bézier polynomials are among the most commonly used. It was first introduced
by S.N. Bernstein in 1912 and later enjoyed great popularity in computer-aided geometric
design and also in other applications such as motion planning [30]. Its popularity is
mainly due to its mathematical description, which is compact and intuitive and allows for
elegant parameterisation. Several extensions of the classical Bézier curves were proposed
to overcome some limitations of their fixed structures by introducing additional parameters
for controlling curve shape [31–33]. In applications for mobile systems, it is typically used
for exploring the environment, constructing lattice graphs for path planning [5,34–36],
randomized (e.g., RRT) planner [11], path smoothing [37], or as a local planner [38] for
connecting a given start and goal configuration or series of waypoints.

Objectives Furthermore, Contributions

In this work, we propose a new parametrisation of low-order (third order) Bézier
motion primitives with continuous curvature (i.e., C2 geometric curve continuity) in joints.
The main innovations of the approach are as follows:

• Based on the findings of our literature review this is one of the few if not the first
approach that apply third order Bézier curve motion primitives in path planning and
takes into account the given requirements for initial and final position, orientation and
curvature. The combined path using the proposed primitives has minimal required
turns or oscillations between the initial and final configurations, since only a third
order curve is used. Due to the small number of required parameters, the method is
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also suitable for use in path planning optimisers, since it reduces computational effort
and improves convergence.
Previous works from path planning area typically use higher order Bézier curves
to satisfy C2 continuity requirements, such as seventh order in [11], fifth order
in [5,25,26,38,39], or fourth order in [17,36,37].

• We provide a new parametrization that allows an intuitive geometric interpretation of
the curve and a simple algorithm to calculate its parameters. Parametrization is based
on the initially available information, i.e., the position, orientation, and curvature
requirements in the endpoints. The problem is solved by solving a system of two
quadratic polynomial equations without the need for optimisation. It is therefore
computationally very efficient.

• Practical directions for the construction of primitives and the related analysis of their
performance are provided. The applicability of the proposed primitives is illustrated
on typical path-planning scenarios.

Since a low order curve is used, only simpler forms of the path can be obtained.
To obtain more complex forms of the path, e.g., in complex environments with obstacles,
more primitives must be used. Effective algorithm to connect a series of given waypoints
with the proposed motion primitives is also suggested. It can serve as a stand-alone
planner or a way to obtain feasible initial parameters for solving an optimal planning
problem according to desired optimisation criteria and given constraints. The combined
path obtained with the proposed primitives has a guaranteed continuity of curvature. If this
path is realised by a robot, a desired velocity profile (e.g., with minimum time as in [19])
can also be obtained in order to achieve also parametric continuity such as translational
and angular velocities in the joints of the motion primitives.

2. Bézier Curves as Motion Primitives

Bézier curves are parametric curves that are often used in scientific work and practical
applications [30–33] due to their advantageous properties such as smoothness, simple
definition and interpretation, easy computational burden, etc. Moreover, being parametric
curves in the form of polynomials with simple derivatives has sparked their use in the area
of mobile robotics and autonomous mobile systems [5,11,25,35–39].

2.1. Bézier Curves

A Bézier curve of the n-th order is defined as:

Bn(λ) = ∑n

i=0
Pi

(
n
i

)
λi(1− λ)n−i, λ ∈ [0, 1], (1)

where Pi are the vectors representing the so-called control points Pi (i = 0, 1, 2, . . . n) in the
Euclidean coordinate system. In this work, only planar curves in the (x, y) plane will be
dealt with, so Bn(λ), Pi(i = 0, 1, 2, . . . n) ∈ R2.

Bézier curves of a high order can meet a lot of constraints and could be used for
describing a complex planar curve in the parametric form given by Equation (1). However,
as it will be shown later, high-order curves also suffer from some problems. Typically,
a large number of low-order curves are used instead to describe the planar curve. Such
composite Bézier curves are composed of individual segments, each given by Equation (1).

Let us analyse some geometric properties of the Bézier curve given by Equation (1).
The end points of the curve are P0 and Pn:

lim
λ→0

Bn(λ) = P0

lim
λ→1

Bn(λ) = Pn
(2)
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The orientations of the tangents at the endpoints of the Bézier curve can be obtained
by finding the derivatives of the function Bn with respect to the independent variable λ (at
λ ∈ {0, 1}):

lim
λ→0

d
dλ

Bn(λ) = n(P1 − P0)

lim
λ→1

d
dλ

Bn(λ) = n(Pn − Pn−1)

(3)

Equations (2) and (3) reflect the symmetry of Bézier curves, i.e., the same curve (with
opposite direction) is obtained if the sequence of the control points is reversed. This is why,
all the properties that hold for the starting point also hold for the ending point. According
to Equations (2) and (3), the starting point of the curve is given by the 0-th control point P0,
while the initial orientation coincides with the vector

−−→
P0P1.

2.2. The Curvature of Bézier Curves

The curvature of the path of the moving vehicle will play a key role in this paper.
The curvature is inversely proportional to the radius of curvature. The curvature κ at a
certain point of the curve can have a positive value (the vehicle is turning in the positive
direction, i.e., turning left), a negative value (turning right), or 0 (the vehicle is driving
straight; this also happens at the point where the left curve joins the right one). The cur-
vature of the path directly influences accelerations and jerks acting on the vehicle driving
along the path. If we assume that the vehicle is driving along the path with velocity v (we
also call this velocity tangential velocity), the acceleration in the tangential direction is v̇
while there also exists the other component of the acceleration that is due to the curvature
and acts in the direction perpendicular to the motion—this so-called radial acceleration
is given by v2κ. Sometimes, we are also interested in the third derivative of the position,
the jerk. The tangential component of the jerk associated with the motion along the path is
(v̈− κ2v3), and the radial component is (v−1 d

dt (v
3κ)). In order to keep the masses driving

along the curved paths, the external forces are needed to produce appropriate accelerations.
As shown above, these forces increase with increasing curvature. In order to keep these
forces acceptable for driving comfort and to reduce mechanical wear, the curvature of the
path should be low. Furthermore, variation of the curvature along the curve contributes to
the radial jerk. In this work, we will treat curves or paths with the continuous curvature.
An important consequence of the continuous-curvature path is that when driving with the
continuous tangential acceleration v̇, both the tangential and the radial jerk are bounded. If,
however, the curvature is not continuous in some point, an infinite spike of the radial jerk
cannot be avoided in this point, no matter how low the velocity and/or the acceleration are.

The curvature of the planar curve given in the parametric form is given as follows:

κ =
x′y′′ − y′x′′(
x′2 + y′2

) 3
2

(4)

where primes indicate derivatives with respect to the independent variable λ. It is easy to
see from (1) that in the case of Bézier curves x(λ) and y(λ) are polynomials of the n-th order
while the order of their first and second derivatives are (n− 1) and (n− 2), respectively.
The order of the each term of the numerator of (4) is therefore (2n− 3) but the highest
powers of λ cancel, and the order of the numerator of (4) is in general (2n− 4) (it is possible
that for certain choice of control points the leading coefficient becomes 0).

Why is the order of the numerator of (4) important? Any polynomial of m-th order can
have at most m real roots. The denominator of Equation (4) is positive except in a special
case where all the control points coincide and the curve shrinks into a point. This means
that the curvature given by Equation (4) can change the sign at most (2n− 4) times on the
interval of interest λ ∈ [0, 1]. Not only the curvature is important but also its derivative
with respect to λ. It can easily be derived that the stationary points of the rate of change of
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the curvature coincide with the roots of the polynomial of degree (4n− 7). It is therefore
possible to have up to (4n− 7) local minima and maxima of the curvature as a function
of λ. We see that the number of oscillations increases rapidly with the polynomial order.
This is a similar effect as the Runge’s phenomenon. For illustration purposes, a Bézier
curve of the third order can have at most 2o zeros of the curvature and at most 5 zeros of
its derivative (with respect to λ) while a Bézier curve of the fifth order can have at most
6 zeros of the curvature and at most 13 zeros of its derivative. This is a huge difference in
the number of the zeros with a relatively small difference in the order, and consequently,
to decrease oscillations of the curvature, the order of the polynomials involved should be
kept as low as possible.

The curvature of the Bézier curve at the endpoints will be given as a function of the
geometric properties of the control points. An arbitrary Bézier curve of an arbitrary order n
is shown in Figure 1. After a short derivation we can obtain the expression for the curvature
at the starting point:

lim
λ→0

κ(λ) =
n− 1

n
d2 sin(ϕ2 − ϕ1)

d1
2 (5)

We see that the curvature at the endpoint depends only on the first (or last) three
control points of the Bézier curve. An important consequence of Equation (5) is that the
initial curvature of the Bézier curve will not change if the point P2 is moved on a line parallel
to the line through P0 and P1. This observation will be crucial for our choice of parameters.

Figure 1. Geometric relations among the control points of a Bézier curve: di represents the length of
the vector

−−−→
PiPi+1 while ϕi is its angle with respect to the positive direction of the x axis.

From this point on we will limit our analysis to the case n = 3. This means that
there are four control points (P0, P1, P2, P3) that define the Bézier curve (as depicted in
Figure 1). Following from Equation (5), the formulas for the initial and the final curvature
are given by:

κ0 = lim
λ→0

κ(λ) =
2
3

d2 sin(ϕ2 − ϕ1)

d1
2

κ3 = lim
λ→1

κ(λ) =
2
3

d2 sin(ϕ3 − ϕ2)

d3
2

(6)

2.3. Parametrization of Motion Primitives

We will parametrize the primitive given some geometric properties of the curve at its
endpoints. The input parameters for the motion primitives will be:
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• The position of both endpoints, i.e., P0 and P3;
• The orientation in both endpoints, i.e., angles ϕ1 and ϕ3; and
• The curvature in both endpoints, i.e., κ0 and κ3.

We will refer to the above information as the boundary conditions because they define
the properties of the primitive at its endpoints or boundaries. Angles ϕ1 and ϕ3 can
be interpreted as the initial and the final orientation, respectively. We will define two
additional parameters analogous to di and ϕi that apply to individual segments. Let D and
φ represent the Euclidean distance between P0 and P3, and the angle between the vector
−−→
P0P3 and the x axis, respectively. These two parameters can be computed easily given the
endpoints P0 and P3. After a simple derivation, these two parameters can substitute d2 and
ϕ2 in the expressions for the curvature (6):

κ0 =
2
3

D sin(φ− ϕ1)− d3 sin(ϕ3 − ϕ1)

d1
2

κ3 =
2
3

D sin(ϕ3 − φ)− d1 sin(ϕ3 − ϕ1)

d3
2

(7)

We will rewrite these two equations to obtain the final form that will be used for
constructing the motion primitives in this paper:

3
2 κ0d1

2 + d3 sin(ϕ3 − ϕ1) = D sin(φ− ϕ1)

3
2 κ3d3

2 + d1 sin(ϕ3 − ϕ1) = D sin(ϕ3 − φ)
(8)

Note that all the angles (ϕ1, ϕ3, φ) can be given in all the possible directions from −π
to +π (technically, all the equations also hold if the angles are outside of this interval).
When inserting the boundary conditions, Equation (8) can be seen as a system of two
quadratic equations with two unknowns (d1 and d3). Solving this system of equations for
d1 and d3 gives all the control points and finally the explicit form of the primitive itself.

2.4. Reconstruction of the Motion Primitive from the Boundary Conditions

The system of equations presented by Equation (8) can best be depicted in a graphical
form in the (d1, d3) plane. In order to do so, we will rewrite Equation (8):

d3 =
D sin(φ− ϕ1)

sin(ϕ3 − ϕ1)
− 3κ0

2 sin(ϕ3 − ϕ1)
d1

2 = v3 − l3d2
1

d1 =
D sin(ϕ3 − φ)

sin(ϕ3 − ϕ1)
− 3κ3

2 sin(ϕ3 − ϕ1)
d3

2 = v1 − l1d2
3

(9)

The equations in (9) represent two parabolas. The first one with the vertex v3 on the
d3 axis opens either upward (U-type) if the leading coefficient l3 is positive, or downward
(D-type) if the leading coefficient l3 is negative. The second parabola with the vertex
v1 on the d1 axis opens either to the left (L-type) if the leading coefficient l1 is negative,
or to the right (R-type) if the leading coefficient l1 is positive. When there is no curvature,
the parabolas become straight lines, either horizontal (H-type) if l3 = 0 or vertical (V-type)
if l1 = 0. All these types can further be classified into cases where the vertex of the parabola
is positive (index +) or negative (index −). Note that l1 and l3 are of the same sign if and
only if κ0 and κ3 are of the same sign.

It is important to note we are only interested in the positive solutions for d1 and d3
(negative solutions for d1 and/or d3 represent opposite orientations in the respective end-
point), so we will only focus on the first quadrant of the (d1, d3) plane. In the first quadrant,
only four type possibilities exist for the first parabola in (9), they are depicted with thick
lines in Figure 2. There also exist four possible types for the second parabola—depicted
with thin lines in Figure 2. So, the solution of the system of equations in Equation (8) is
shown with the circle at the intersection of a thick and a thin line.
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Figure 2. The solution of the system of two equations with two unknowns in Equation (8) can be
represented by the intersection of two parabolas (9) parametrized by the boundary conditions. Thick
lines illustrate possible parabola types for the first and thin lines for the second parabola in (9) while
circles at intersection are possible solutions of (8).

Two parabolas can have at most four intersections. If we limit ourselves only to
the first quadrant, there cannot be more than three intersections. In order to analyse the
number of solutions, we should note the following facts for the shape of the functions in
the first quadrant:

• U-type and R-type functions are increasing while D-type and L-type are decreasing;
• Only U-type functions are convex while D-type, R-type, and L-type are concave.

Some important observations about the number of intersections of different functions:

• An increasing and a decreasing function can have at most one intersection;
• A decreasing convex function and a decreasing concave function can have at most

two intersections (the same is true if both functions are increasing);
• Two decreasing concave functions (or any other of the three combinations decreasing-

convex, increasing-concave, increasing-convex) can have more than two intersections.

So, the system of equations in Equation (8) can have the following number of distinct
solutions satisfying d1 > 0, d3 > 0:

• One solution. This is the most frequent case that gives a unique Bézier curve.
• Two solutions. This happen rarely because the boundary conditions given above are

quite restricting. An example is given in Figure 2 (the intersection of a green and a
blue line).
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• Three solutions. This can only happen if one function is D+ and the other is L+ and
the parameters of both parabolas are extremely restricted. Two intersections lie very
close to both axes. The solutions with very low values of d1 and/or d3 often result in a
high-curvature path near the endpoints and should be avoided.

• No solutions. This happens when the parabolas do not have intersections in quadrant 1.
Examples in Figure 2: two green lines, a black line, and a red line. We have to also
mention here the cases where the parabolas do not even enter quadrant 1—the vertex
is negative and the leading coefficient l1 (or l3) is negative.

Remark 1. If the system of equations in Equation (8) has no solutions, then no Bézier curve of the
third order exists that meets all the boundary conditions. This happens when these conditions are
demanding in the sense that the resulting curve would be unnatural for a simple motion primitive.
In such cases, the curve should be split into two primitives which gives the designer additional
degrees of freedom to construct the desired path. In Section 3.1, an algorithm will be given that
produces a composite Bézier curve where the boundary conditions of the individual primitives are
chosen so that the existence of the solution is guaranteed.

Remark 2. If the system of equations in Equation (8) has more than one solution, there exist more
(two or even three) distinct curves that all meet the given boundary conditions. An example is given
in Figure 3 where bottom left and bottom right curves both meet the same boundary conditions
although they are structurally quite different. Note that this example also relates to “demanding”
conditions where we start with turning left although our goal is on our right-hand side, and we
finish with turning left although our starting point is on the opposite side.

Figure 3. Four basic motion primitives: C-shaped (top left), S-shaped (top right), loop (bottom left),
and V-shaped (bottom right). The Bézier curves shown with thick line, initial and final orientation
with the dashed line, the tangential circular arcs showing the curvature at the endpoints with the
dotted one.

Remark 3. Special case: sin(ϕ3 − ϕ1) = 0. This means that the directions of the initial and
the final orientation are parallel. In this case, the original system of equations in Equation (8)
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decomposes into two quadratic equations that can be solved easily. Both equations have a distinct
positive solution if sin(φ− ϕ1) and κ0 are of the same sign, and sin(ϕ3 − φ) and κ3 are of the same
sign. Again, if we study the cases that give no solutions carefully, we see that the requirements are
unnatural for a simple primitive.

Remark 4. Very special case: sin(ϕ3 − ϕ1) = 0 and sin(φ− ϕ1) = 0 (consequently
sin(ϕ3 − φ) = 0). The initial and the final orientation lie on the same line which means that
the primitive is a line segment. The curvature of the line is 0, so the solution only exists if κ0 and κ3
are both 0. The system (8) has infinitely many solutions. Since the algorithm has to produce some
result, one possibility is to choose: d1 = d3 = D

3 .

2.5. Basic Motion Primitives

The most natural motion primitives include a straight line (discussed in Remark 4),
a left curve and a right curve. A simple right (or left) curve will be denoted as a C-shaped
primitive. Slightly more complex primitive that has a very natural shape is an S-shaped
primitive. Another primitive that can be described by a third order Bézier curve is a loop.
Some examples of the motion primitives are shown in Figure 3.

2.5.1. C-Shaped Primitive

A C-shaped curve (shown top left in Figure 3) is a simple left or right turn where the
curvature does not change the sign throughout the curve. A C-shaped primitive is obtained
if all the coefficients in the system of equations in Equation (8) have the same sign. In other
words, v1 and v3 in Equation (9) are positive while l1 and l3 are negative. It is easy to see
that we are dealing with a D+ and an L+ parabolas. Note that zero-curvature in either side
also results in the C-shaped curve which means that the parabola collapses to a straight
line (V+ or H+).

The intersection between two parabolas always exists as long as the curvatures are
low enough. In the case where there is no intersection (one parabola lies above the other
in the first quadrant), the intersection always appears by decreasing the curvature at one
end or increasing it at the other. It is important to note that the solution is always obtained
by changing just one curvature (initial or final). Furthermore, the solution can be obtained
by changing just the requested one, not an arbitrary one. This will be important in the
algorithm in Section 3.2 because we will only be allowed to change κ0 while κ3 will be fixed
for each segment.

2.5.2. S-Shaped Primitive

An S-shaped primitive is a useful curve that consists of a left and a right curve (in any
order) joined together in a single primitive. Such a curve (shown top right in Figure 3) has
the curvature that changes its sign exactly once.

An S-shaped primitive is obtained if the curvatures κ0 and κ3 in Equation (8) are of
a different sign. This means that the parabolas in (9) have the leading coefficients of the
different sign. The possible combinations are either U-type and L-type or D-type and
R-type. At least one of the vertices (v1 and/or v3) also has to be positive.

In Section 3.1, it will be shown how to choose the orientations in the intermediate points
so that we always obtain the L+ parabola. Now, we have two case for the other parabola:

• U− parabola. The intersection exists if the point of entry of the U− parabola into
the first quadrant lies below the vertex of the L+ parabola. If this is not the case,
the intersection appears by increasing the curvature of the U− parabola. An alternative
solution is to change the sign of the L+ parabola which turns the primitive to the
loop-shaped or V-shaped curve (shown in the bottom part of Figure 3).

• U+ parabola. The intersection exists if the vertex of the U+ parabola is lower than
the point where parabola L+ crosses from quadrant 1 to quadrant 2. It there is no
intersection, one can be obtained by changing the curvature of the U+ parabola. This
then changes the primitive into C-shaped one.
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2.5.3. Loop-Shaped Primitive and V-Shaped Primitive

A loop shaped primitive (shown bottom left in Figure 3) is a special type of a primitive
that might be used in very specific circumstances. Similar path can be constructed by
more primitives where the results can be supervised more easily. The curvature of the
loop-shaped primitive does not change its sign. The control points of the loop-shaped
primitive lie quite far from each other.

The V-shaped primitive (shown bottom right in Figure 3) slightly resembles letter V. It
is distinguished from the C-shaped primitive by the fact that its curvature changes sign
twice. In the beginning and the end the curvature is slightly positive (or negative) but in
the middle a high-curvature curve of the different sign appears.

The V-shaped primitive is treated together with the loop-shaped one because they are
two solutions of the same parametrization, i.e., the same boundary conditions. Both appear
if the sign of the curvatures at the endpoints are the same (but opposite than in the case
of C-shaped primitives). This results in an U-type parabola and an R-type one that have
two intersections (an example of the intersections is given in Figure 2 with the a green and
a blue line). The solution with higher values of d1 and d3 results in a loop, and the other
results in a V-shaped curve.

3. Construction of the Path from Motion Primitives

In Section 2, we have shown how motion primitives can be obtained from the boundary
conditions. In this section we will propose a solution for constructing an appropriate path
for wheeled vehicles by joining together several motion primitives. Technically, the path
is defined as a planar curve with given initial and final pose (position and orientation).
The curve should satisfy C2 continuity. The curve will be composed of several third-order
Bézier primitives. In order to apply Algorithm 1 proposed in Section 2 for constructing the
path, the following information has to be predefined:

• Waypoints or intermediate points denoted by the sequence W0, W1, . . . WN (W0 and
WN are the initial and the final position, respectively);

• The orientation in the waypoints denoted by the sequence θ0, θ1, . . . θN (θ0 and θN are
the initial and the final orientation, respectively);

• The curvature in the intermediate points denoted by the sequence K0, K1, . . . KN .

Algorithm 1: The algorithm for calculation of motion primitives from boundary
conditions.

In general, the solution of the system of equations in Equation (8)—or the
intersection of parabolas in (9)—is obtained by following these steps:

1. Introduce d3 given by the first equation in (9) into the second equation in (9)
which results in a depressed quartic (the polynomial of the fourth order
without the cubic term).

2. Find the roots of the quartic polynomial.
3. Remove complex and negative solutions among the four solutions which

results in d1. (The cases with more or no solutions are discussed in
Remarks 1 and 2).

4. Calculate d3 from d1 using the first equation in (9).
5. Calculate control points P1 and P2.
6. Apply the formula in Equation (1) to obtain the parametric form of the

motion primitive.

The path is then constructed by treating each segment separately. On each segment all
the necessary information is readily available to describe the problem as given by the system
of quadratic equations in Equation (8). The system is then solved by finding the intersections
of the parabolas representing the equations as shown in Section 2. After resolving all the
segments of the path, the whole path that satisfy all the boundary conditions is completely
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known and given in the parametric form. Let us emphasize again that the resulting path
composed of individual primitives is infinitely differentiable except in the intermediate
points where the path and the first two derivatives are continuous (C2 continuity).

The above mentioned approach is problematic if all the necessary information is not
available. It is quite safe to assume that the waypoints are known. When the designer
faces the problem of path planning, he or she needs to know the points that the path will
cross. They are either explicitly known, prespecified by the design requirements, given
as a result of a certain path-planning algorithm, determined graphically by some kind of
interpolation or other method, or even given by an optimization algorithm that minimizes
certain criterion of the path. On the other hand, the information about the orientation
and/or the curvature in the intermediate points might not always be readily available. It
would therefore be very useful to have some guidelines how to choose it. We will next
propose a method that gives the orientation in the waypoints. This not only simplifies the
approach but also guarantees that Algorithm 1 always gives a unique solution.

3.1. The Algorithm for Proposing Suitable Orientations in Waypoints

We will assume here that the waypoints are known and the orientations in the initial
and the final points are given (denoted by θ0 and θN) while the proposed algorithm gives
the orientations in the waypoints. The algorithm runs from the end of the curve towards
the start and determines the orientations in the waypoints:

θi = φi − f (θi+1 − φi), i = N − 1, N − 2, . . . 1 (10)

where φi is the angle between the vector
−−−−→
WiWi+1 and the positive direction of the x axis,

and f is a design parameter that will be discussed later. In simple words, φi are the angles
of the lines through the endpoints of the individual segments. Note that θi, θi+1, and φi
correspond to ϕ1, ϕ3, and φ in Equation (8). For the analysis of solutions of (8), the following
corollaries of (10) can easily be derived:

φi − θi = f (θi+1 − φi), i = N − 1, N − 2, . . . 1

φi − θi =
f

1+ f (θi+1 − θi), i = N − 1, N − 2, . . . 1

θi+1 − φi =
1

1+ f (θi+1 − θi), i = N − 1, N − 2, . . . 1

(11)

Parameter f will be chosen on the interval (−1, 1) which results in the expressions
(θi+1 − φi) and (θi+1 − θi) being of the same sign which follows from the third equation in
(11). Consequently, the vertex v1 of the second parabola in (9) is always positive. The sign
of f will be based on the type of the primitive selected by the designer (S or C).

Based on the analysis given in Section 2.5.1, C-shaped primitive is obtained when
the curvatures at the endpoints are of the same sign and the intermediate orientations are
suggested by (10) with f > 0. A typical value that gives good results is f = 0.2. This
suggestion has a plausible explanation: When we face the end of the segment from its
beginning and the final orientation appears to the left (right) from this viewpoint, the initial
orientation should be obtained by turning slightly to the right (left). Then, the path is
obtained by a single left (right) curve.

Based on the analysis given in Section 2.5.2, S-shaped primitive could be obtained
when using the intermediate orientations suggested by (10) with positive or negative sign
(only −1 < f < 0). Typical value that give good results are f = ±0.2. Choosing negative
f (larger than −1) results in the parabolas of the U− and L+ type in Equation (9) while
positive f results in the parabolas of the U+ and L+ type.

3.2. The Algorithm for Proposing Suitable Curvatures in Waypoints

The algorithm will determine curvatures in the waypoints so all the segments will
have a unique solution of the motion primitive. The last segment is treated first. If the
orientations are chosen using (10) with f > −1, the second parabola in Equation (9) always
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has a positive vertex. Now the curvature in the final point WN (it will be denoted by KN) is
selected so that the second parabola will be of the L+ type. An appropriate way of choosing
the curvature is to force the parabola to leave the first quadrant at d3 = D

2 . Apart from the
unknowns (d1 and d3), all the parameters in Equation (9) are already known at this point
except κ0. We have already determined that the second equation corresponds to the L+ type
parabola because of (10). The first equation in (8) corresponds to the parabola with κ0 to be
determined. There is plenty of freedom to choose the curvature κ0 so that the parabolas
intersect. One thing to note here is that in most cases the distance between the first two
control points of the Bézier curve (d1) should be similar to the distance between the last
two control points (d3). Based on this observation, we will propose the following relation:

d3 = gd1 (12)

where g is a design parameter to choose. Usually it is chosen around 1. Now we can obtain
d1 and d3 following the next steps:

• Obtain the intersection of the parabola given by the second equation in (9) and a
straight line given by (12). The intersection always exists in the first quadrant because
the parabola is of L+ type.

• d3 follows directly from (12).
• The curvature κ0 is obtained from the first equation in (9). (We could also analyse the

first parabola in (9). If the intersection is above the vertex, the curve is C-shaped. If the
intersection is below the vertex, the curve is S-shaped.)

The algorithm then proceeds with the previous segment, and we continue until we
finish the first one.

4. Examples and Comparisons

In this Section two practical examples of using the proposed algorithms will be treated.

4.1. Example 1: A Path in a Given Corridor

We will now test the proposed approach on a simple example. A layout depicted
in Figure 4 is assumed. Blue patches represents the forbidden area while grey corridor
that should contain the path is chosen taking into account some criterion. Note that we
do not take into account the size of the robot or any practical limitations. In this example
we simply search for the path to be contained in a specific area. The goal is to find a
continuous-curvature path that starts in the red cross and finishes in the green cross. First,
we need to identify waypoints. We could use some algorithm but in this case waypoints are
obvious and are given by black circles in Figure 4. Note that there are also some additional
limitations: the initial orientation is 90◦, the final orientation is 0◦, and the curvature on
the last segment is 0. We will apply Algorithm 1 to find the path on the first five segments.
In the first try, we will choose the orientations and curvatures based on the fact we know
our waypoints and we roughly know where to make turns. The orientations in the seven
waypoints (including the initial and the final) have been chosen as: 90◦, 45◦, 60◦, 45◦, 60◦,
0◦, 0◦. The curvatures have been chosen as: 0, −0.4, 0.4, −0.4, 0.2, 0, 0. The resulting
path is shown in Figure 4 and the curvature in Figure 5 (both with red colour). Note
that the independent variable of each segment is λ that runs from 0 to 1 in Bézier curves,
but here λ runs from one integer to the next one during one segment. The second path was
obtained by applying the algorithm for suggesting orientations ( f = 0.2 was chosen for
the C-shaped segments—the first and the last—and f = −0.2 for the S-shaped ones—the
second, the third, the fourth)—and curvatures (the design parameter g was chosen as
g = 0.7). The results are depicted with blue colour in Figures 4 and 5. In the last part of this
experiment, the free orientations and curvatures were searched for by optimization where
the cost function consisted of the part that minimizes the integral of κ2(λ) on λ ∈ [0, 6],
and the second part was added to penalize the curves that leave the corridor. The resulting
path is depicted with magenta colour in Figures 4 and 5.
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Figure 4. In example 1 the paths should start in the red cross and finish in the green one and be
contained in the grey area. They are constructed by Algorithm 1: red curve is obtained by manually
chosen free parameters (orientations and curvatures in waypoints), blue—the free parameters are
obtained by the algorithms in Sections 3.1 and 3.2, magenta—the free parameters are obtained
by optimization.
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Figure 5. Example 1: the curvature as a function of the curve parameter λ. The colours correspond to
the ones in Figure 4.



Electronics 2022, 11, 1709 14 of 20

4.2. Example 2: Environment with Random Obstacles—Comparison with an Existing Method

The proposed primitives can also be applied in environments with obstacles to define
smooth paths with continuous curvature.

The initial information for the path calculation is provided by a safe corridor and
an optimised path consisting of straight-line segments within the corridor (see Figure 6).
The environment is first decomposed into square cells using the Quadtree decomposition.
The optimal path from the cell with the start position to the cell with the goal position is
determined using the A∗ algorithm. The A∗ path connects the centres of free cells, where
the neighbourhood of the cells is defined by cells that have a common edge. The cells along
the optimal path define the corridor within which the optimised path is calculated using
the funnel algorithm [40].
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Figure 6. Example 2: environment with random obstacles, decomposed into square cells with
quadtree decomposition, with the starting position in the cell at the bottom left. The optimal path
connecting the centres of the free cells is determined by the A∗ algorithm (grey line). A safe corridor
is identified (red and blue line) within which an optimised path with straight segments is determined
using the funnel algorithm (magenta line).

The capabilities of the proposed motion planner in path planning applications are also
illustrated by comparisons. The proposed motion planner solution is compared with an
optimisation-based path planner on a race track proposed in [41]. The approach performs a
comprehensive optimisation of the path within a given corridor (e.g., corridor in Figure 6)
to find the path shape that minimises the overall curvature of the solution. A brief summary
of the approach is as follows. The discrete kinematics of the vehicle is defined by

x(i + 1) = x(i) + ∆s(i) cos
(

θ(i) + ∆s(i)κ(i)
2

)
y(i + 1) = y(i) + ∆s(i) sin

(
θ(i) + ∆s(i)κ(i)

2

)
θ(i + 1) = θ(i) + s(i)κ(i),

(13)

where x(i), y(i), θ(i) define the pose of the vehicle at the i-th point along the path. The con-
trol variables are the current curvature of the vehicle κ(i) and the driving distance ∆s(i)
between adjacent points. Assuming that ∆s(i) = ∆s is constant and predefined, the vehicle
path is defined by the initial vehicle pose and the progression of κ(i) along the path. We
have searched for the optimal path within the given corridor (e.g., in Figure 6) using con-
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strained optimisation, which minimises the objective function J at the current point i taking
into account the prediction for h future points

J(i) = min
κ(j)

∑i+h
j=i κ2(j)

subject to: stay inside provided corridor.

(14)

Once the optimal parameters κ(j) for the prediction horizon j ∈ i, · · · , i + h are found,
the first one (κ(i)) is used to move to the next vehicle pose (i + 1) using kinematics (13).
The algorithm then continuous in a classical receding horizon fashion. Thus, the optimisa-
tion searches for the path within a corridor that has a minimum curvature in the prediction
horizon h. Since the local curvature defines the maximum permissible vehicle speed to
prevent lateral sleep the path optimised according to the criteria J in (14) is a good estimate
for the fastest possible path within the corridor [41].

In the following optimisations, we set the horizon h to the half of the total path
length. In Figure 6, the estimated path length in the corridor is L = 15 and is described by
N = 200 points, therefore the horizon includes h = 100 points and ∆s = L

N . The optimi-
sation (14) is computationally intensive as it involves a large number of parameters (e.g.,
curvatures in a hundred points) and is performed at every point along the path.

The results of the described approach are depicted with green colour in Figures 7 and 8.
Green dots in Figure 7 show the points where the curvature was recalculated by optimiza-
tion. Now, we will compare these results with the proposed algorithm. First, the waypoints
have been identified. They are chosen as black circles in Figure 7. Note that relatively low
number of segments have been used. The orientation in the waypoints has been determined
by the algorithm in Section 3.1 where f = 0.2 was chosen. Note that two orientations that
were outside of the corridor were manually fixed to be on the boundary of the corridor.
In the second step the algorithm in Section 3.2 was used to determine the curvatures (g = 1
was used). The resulting path is shown in Figure 7 and its curvature in Figure 8 (both with
blue colour). In Figures 7 and 8 magenta colour is used for showing the results of the paths
obtained by optimization minimizing the criterion:

I =

∫ sL
s0

κ2(s)ds∫ sL
s0

ds
(15)

where s is the curve length (s0 at the beginning and sL at the end of the curve). The criterion
I from (15) gives average value of the squared curvature. The red colour in Figures 7 and 8
shows the result of Algorithm 1 where the orientations and curvatures are “copied” from
the green line. This means that only the results of the funnel algorithm in the waypoints
are taken into account. Orientations and curvatures in the waypoints are then used as an
input to Algorithm 1. It turns out that the shape of the whole path lies very close to the one
obtained by the funnel algorithm but its curvature is much smoother. This suggests that the
proposed approach could be used for smoothing paths obtained by some other algorithms.

Some statistics are shown in Table 1. The first row shows the results of the funnel
algorithm [40] (green colour in Figures 7 and 8); the second row shows the results of
Algorithm 1 with the orientations and curvatures proposed in Sections 3.1 and 3.2 (blue
colour in Figures 7 and 8); the third row shows the results of Algorithm 1 with the orienta-
tions and curvatures proposed by the optimization (magenta colour in Figures 7 and 8); the
fourth row shows the results of Algorithm 1 with the orientations and curvatures “copied”
from the funnel algorithm (red colour in Figures 7 and 8). The first column shows the
length of the path, the second shows the value of the cost function I from (15), the last two
show the maximal and minimal values of the curvature.
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Figure 7. The paths constructed to be contained in the black polygon in Example 2: funnel
algorithm [40] (green line), Algorithm 1 with free parameters obtained by the algorithms in
Sections 3.1 and 3.2 (blue), by optimization (magenta), and by copying free parameters from the
funnel algorithm [40] (red).
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Figure 8. Example 2: the curvature as a function of the curve length s. The colours correspond to the
ones in Figure 7.
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Table 1. Four properties of the paths obtained by four different path-construction methods in
Example 2.

Algorithm Length Average κ2 Max κ Min κ

funnel alg [40] 16.1395 0.2415 0.8669 −1.0000
Sections 3.1 and 3.2 16.6174 0.6825 5.3447 −1.2397

optimization 16.3910 0.2451 0.8394 −0.8666
“filtering” of [40] 15.9238 0.2576 0.8493 −1.0266

The results presented in Figures 7 and 8 and in Table 1 show that the basic algorithm
that does not involve optimization produces satisfactory results but cannot compete with
the results obtained by comprehensive optimizations. The funnel algorithm is able to obtain
the lowest value of the cost function I from (15) which is understandable because it has
the highest number of degrees of freedom. However, the other properties are not so good
in comparison to the solutions obtained from Algorithm 1. Optimization-based results
show low averages and low extrema of the curvature. The curvature also exhibits very
smooth shape. It is worth mentioning that the approach where we copied the values of
the curvature and the orientation in four waypoints also produces excellent results which
shows that the third order Bézier curve with the proposed boundary conditions is able to
“filter” the curve in a very natural way.

5. Discussion

Obtaining splines from multiple motion primitives is much less restrictive and more
natural when using the geometric C2 continuity of the combined path than when using
the parametric C2 continuity. A combined path using geometric continuity only needs to
have the same tangent orientation and curvature in the joints, while parametric continuity
requires the same derivatives of the path (e.g., the time derivatives such as velocities and
accelerations). For this reason, the proposed approach only requires a third order Bézier
curve compared to common approaches in the literature where higher order Bézier curves
are required to ensure parametric continuity [5,11,25,35–39].

Lower order motion primitives are also advantageous because they have fewer possi-
ble oscillations between the endpoints where the boundary conditions are satisfied. Higher
order Bézier curves are known to have poor numerical stability [18]. The disadvantage of
using lower order splines is less freedom in curve shaping between endpoints. Therefore,
more primitives must be combined to approximate the desired arbitrary path. So, instead
of a higher order motion primitive with several free shape parameters, a spline is combined
from several lower order primitives, where the shape parameters (also) become the inter-
mediate joint points. Additionally, discontinuity of higher order derivatives may appear.
More precisely, if the obtained path is driven by the continuous tangential acceleration,
the resulting radial jerk is discontinuous but bounded in the joints (see Section 2.2) while
higher derivatives such as snap can be unbounded.

Once you have determined the desired path according to the requirements of the
environment and the application, e.g., collision-proof, shortest, or safest, this path must
eventually be followed by a vehicle. This means that velocity profile must also be defined
for this path according to the dynamic constraints of the vehicle (maximum speed and
acceleration). Therefore, for trajectories where a velocity profile is also defined for a
given path, splines of motion primitives are required that have parametric continuity.
Furthermore, it is very helpful if the derivatives of these functions could be obtained
analytically as is the case with the proposed approach. Thus, the problems of numerical
differentiation are avoided.

We provide an analytical solution to obtain a motion primitive that can satisfy the
required boundary conditions for position, orientation and curvature in the endpoints.
Depending on the requirements, up to three different solutions can be found to satisfy
the endpoint requirements. The most common case is that we have a single solution that
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results in a unique curve. Three solutions only exist in extremely rare cases and only one of
them is meaningful. Two solutions (a loop-shaped primitive and a V-shaped one) occur
when the boundary conditions are demanding and a simple curve that satisfy them does
not exist. No solutions exist if the conditions are very difficult and unnatural for a simple
curve. We could say that the cases with more or no solutions remind us that the boundary
conditions are not chosen cleverly. In such cases, additional waypoints should be chosen to
add more flexibility.

Normally, path planning algorithms specify waypoints that the mobile system must
traverse on its way to the goal. Finally, the realised path connecting these points must
be feasible for a wheeled vehicle, i.e., it must typically have continuous orientation and
curvature. Besides the position of the waypoints which is usually available, we provide an
algorithm that suggests suitable orientation and curvature which are usually not known.
This algorithm selects the appropriate primitive type C-shaped or S-shaped and proposes
the constraints that guarantee the solution of the composite path from the proposed third-
order Bézier primitives. This solution may already be good enough for non-demanding
applications (e.g., in free space or when no obstacles are crossed). For additional path
requirements, such as minimum distance, minimum time, collision safety and or considera-
tion of vehicle constraints on curvature, additional optimisation can be applied. In doing
so, the proposed constraints can provide good initial conditions for the optimisation.

In the examples provided, both paths with the proposed initial boundary conditions
in the waypoints and the optimised path according to the corridor requirements and the
path comfort criteria [41] are shown. Both solutions are also compared with the path
obtained with a complex optimisation where the vehicle kinematics and the optimised
curvature are searched for a prediction horizon. The proposed solutions are quite close to
the compared complex optimisation, indicating that the proposed primitives are natural
and good candidates for path planning applications. The advantages of the optimised path
obtained using the proposed primitive are the following. Compact analytic solution of the
path, which has a nice and smooth (in joints of the primitives is C2) course of curvature.
On the other hand, a complex optimisation within the horizon can provide a better path
according to the optimisation criteria, but it is more difficult to obtain a smooth course of
curvature due to the complexity of the optimisation (high number of parameters, chattering
effects between successive optimisations in the time instants, etc.). Therefore, the proposed
solution with third-order primitives can also be used to smooth paths of some other existing
solutions. No optimisation is required for the smoothing. Waypoints are simply selected
along the existing solution (to obtain boundary conditions for the primitives) and the
primitives are fitted to them, as also shown in the results.

6. Conclusions

A new parametrisation of low-order (third order) Bézier motion primitives with con-
tinuous curvature (i.e., C2 geometric curve continuity) in joints is proposed. The primitive
is obtained analytically where the solution satisfies the required boundary conditions
for the position, orientation and curvature at the endpoints. Besides C2 continuity and
analytic solution, the proposed primitive has several other advantages resulting from its
low order such as computational efficiency, minimal unwanted curve oscillations which
typically appear at higher-order curves and better convergence when applied to planning
optimizers. Practical instructions for constructing primitives and an effective algorithm
that connects given waypoints with the primitives resulting in C2 path are provided. Exam-
ples and comparisons confirm the applicability of the proposed motion primitives in path
planning applications.

In the future, we will apply and validate the proposed primitives in practical applica-
tions, e.g., in a path optimizer for minimal-time safe path planning in a warehouse under
variable load.
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