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Abstract: Conflagration is the major safety issue of electric vehicles (EVs). Due to their well-kept
appearance and structure, which demonstrate salient visual changes after combustion, EV bodies are
recognized as an important basis for on-spot inspection of burnt EVs and make application using
semantic segmentation possible. The combination of deep learning-based semantic segmentation
and recognition of visual traces of burnt EVs would provide preliminary analytical results of fire
spread trends and output status descriptions of burnt EVs for further investigation. In this paper,
a dataset of image traces of burnt EVs was built, and a two-branch network structure that splits
the whole task into two sub-tasks separately concentrated on foreground extraction and severity
segmentation is proposed. The proposed network is trained on the dataset via the transfer learning
method and is tested using 5-fold cross validation. The foreground extraction branch achieved a
mean intersection over union (mIoU) of 95.16% in the burnt EV foreground extraction task, and
the burnt severity branch achieved a mIoU of 66.96% for the severity segmentation task. By jointly
training two branches and applying a foreground mask to 3-class severity output, the mIoU was
improved to 68.92%.

Keywords: deep learning; semantic segmentation; electric vehicle fire

1. Introduction

Vehicles are necessities in human life and are extensively utilized in logistics, trans-
portation and travel. The termination of the production of traditional internal combustion
engine vehicles (ICEVs) is being gradually implemented worldwide under the pressure of
the global energy shortage and environment pollution issues, and electric vehicles (EVs)
are recognized ideal alternatives in this situation. Partially or fully driven by Li-ion bat-
teries, EVs have presented the potential hazard of fire, which heavily affects the safety of
passengers under various scenarios, e.g., parking, charging and driving. Fire incidents in
EVs and plug-in hybrid electric vehicles (PHEVs) mostly begin in the battery power system.
Compared with gasoline-caused vehicle fires, battery-caused vehicle fires contain more
energy, extremely high temperatures, and the release of combustible and toxic gas, thus
leading to higher risks and difficulty in extinguishing the fire [1,2].

In order to eliminate potential fire hazards and improve the manufacturing safety of
EVs, correlative research should not only focus on prevention of combustion, but also on
analysis and research of existing cases of burnt EVs. Recently, the on-spot investigation
of burnt EVs has become an important method for analysis and research. Fire or damage
traces remaining on the body panels and vehicle frames are frequently used to locate the
origin of fire [3]. When the vehicle is not burnt extensively, traces with salient appearances,
e.g., burnt-off paint and rusted metal, can provide reliable clues for the determination of
fire origin [4]. Due to the similarity of material and paint utilized in EVs and conventional
vehicles, fire traces of bodies of burnt EVs are also applicable and credible for investigation.
Moreover, fire traces can be conveniently captured as digital images, which also provides
possibilities for using a computer vision method for recognition.
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Semantic segmentation is one of the major computer vision tasks that applies end-
to-end classification of every pixel of the image input and outputs a corresponding seg-
mentation map, in which a cluster of pixels classified as the same class is called semantic.
With fully convolutional network (FCN) [5] first introduce convolutional neural network
(CNN) into semantic segmentation, multiple advanced network structures with various
optimization methods were proposed, e.g., contextual information-reinforced PSPNet [6]
and DeepLab [7,8] and attention mechanism-based DANet [9] and PSANet [10]. Multiple
backbones are also implemented in semantic segmentation tasks for different purposes,
e.g., ResNet [11,12] with deep architecture, MobileNet [13] as a lightweight framework,
and HRNet [14] for high-resolution feature extraction.

With the improvement of computer performance and the emergence of in-depth
research on deep learning, semantic segmentation has been utilized in various prac-
tical tasks and has achieved par excellence performance. In the medical field, Ron-
neberger et al. [15] proposed U-Net with an encoder-decoder architecture for biomedical
segmentation tasks. Milletari et al. [16] proposed a variant called V-Net that utilized resid-
ual blocks. Zhou et al. [17] proposed a much more complex UNet++ with sub-networks
connected through a series of nested, dense skip pathways. Apart from the structures, the
targets for medical segmentation also varies, e.g., lungs, lesions, lobes, tumours, and vessels.
In the scene parsing and automatic driving field, Zhao et al. [6] proposed PSPNet with
a classic pyramid pooling module. Charles et al. [18] expanded the input of the network
to 3d point sets and proposed a related structure named PointNet. Kirillov et al. [19]
combined sematic segmentation and instance segmentation tasks and proposed a new task
called panoptic segmentation. Semantic segmentation is also in large-scale use for fire and
smoke detection and recognition. Wang et al. [20] proposed a model concentrated on small
fire and smoke regions in video data. Zhang et al. [21] proposed a lightweight U-Net-based
network for forest fire detection and recognition. Mseddi et al. [22] proposed a method
combining YOLOV5 and U-Net for fire detection and segmentation. Moreover, in the
remote sensing field, Chen et al. [23] proposed symmetrical dense-shortcut frameworks for
very-high-resolution images, and Zhang et al. [24] proposed a dual lightweight attention
network for high-resolution remote sensing images.

Currently, no semantic segmentation-based research on the recognition of EV fire
traces has been implemented, and no corresponding dataset has been built for the task.
However, according to the forementioned analogous tasks, semantic segmentation would
be compatible with the EV fire trace recognition task of this paper. The combination of
semantic segmentation would not only output a preliminary analytical result of burnt EVs
by collecting images conveniently, but also make its output a status description of burnt
EVs for further archive and research. In summary, the main contributions of this paper can
be summarized as follows:

1. A deep learning-based semantic segmentation technique was novelly applied to the
recognition of fire image traces on EVs, and a dataset was labeled according to the
different visual appearances of burnt EVs for corresponding tasks;

2. A multi-task learning-based two-branch network architecture was proposed. The first
branch of the network was used for the foreground extraction task, and the other
was built for distinguishing different severities of the burnt vehicle body. The best
configuration of training and output of this architecture was found;

3. A connectivity-based weighted cross entropy loss function was proposed in the
foreground branch for eliminating false true regions and keeping the main vehicle
body for further processing;

4. A densely connected module with the expectation maximum attention (EMA) mecha-
nism was proposed for better extracting multi-scale features in the severity segmenta-
tion branch.

The proposed model and an executable demo are available in Supplementary Materials
at: https://github.com/Jkreat/EVFTR (accessed on 27 May 2022).

 https://github.com/Jkreat/EVFTR
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2. Materials and Methods
2.1. Dataset of Burnt EVs

Original images of burnt EVs were collected from various accident cases of EV com-
bustion in China and burning tests conducted by Tianjin Fire Research Institute of M.E.M.
The dataset contains 314 raw images with pixel-level annotations of burnt EVs. Vehicle
bodies of the dataset are labeled into 3 different levels of severity and background into
pixel-level according to their visual appearance after combustion. Blue stands for intact
(IN), brown stands for mild and moderate burnt (MB) regions, red stands for severely burnt
(SB) regions, and black stands for background (BG). The proportion of the numbers of
pixels in different classes is shown in Table 1. Detailed regions of different labels are shown
in Figure 1. The distinction between MB and SB is mainly based on the visual appearance
of the painting. In short, regions with painting burnt into yellow or black were labeled as
MB, and regions with painting entirely burnt out and bottom metal exposed were labeled
as SB. As for tires and glasses, MB and SB were labeled according to whether their basic
structure were kept after burning. All images with labeled masks were resized to 560 × 420
to fit the input of the proposed network. Moreover, the whole dataset was divided into
five folds uniformly for five-fold cross validation. While training the foreground extraction
branch, the labeled images were transferred into foreground masks. More images with
corresponding labeled masks for different tasks are shown in Figure 2.

Table 1. Proportion of numbers of pixels in different classes (%).

BG IN MB SB

57.09 25.70 7.55 9.67

Figure 1. Original image, labeled image and details. (a) Original image of burnt EV. (b) Labeled
image of different severity. (c) Detail of region labeled as SB. (d) Detail of region labeled as MB.
(e) Detail of region labeled as IN.
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Figure 2. Images from the dataset with corresponding labels. First row: original images, second row:
labeled masks for fire trace segmentation, third row: labeled masks for foreground extraction.

2.2. Backbone and Transfer Learning

Many public datasets for semantic segmentation task contain classes annotated as
vehicles or cars. Due to the similarity of burnt vehicles in the tasks of this paper and
intact vehicles annotated in public datasets, initializing pretrained weights from these
public datasets for training the proposed network of this paper via fine-tuning method
will not only lead to quick convergence, but significantly improve the overall accuracy
by transferring knowledge learned from abundant corresponding data. Therefore, rather
than training from scratch, transfer learning was used for training. To obtain benefits from
pretrained weights and extract features better, a mainstream backbone network with deep
architecture was needed. Therefore, ResNet101 with dilated convolution was selected as
the backbone of the proposed architecture. Weights of the backbone were initialized using
pretrained weights from COCO dataset.

Compared with the original ResNet101, the dilated version has the same number
of layers and number of parameters but replaces the normal convolution operation with
the dilated convolution operation in the last two groups of convolution blocks. Such
a replacement increased the resolution of the output feature map without reducing the
reception field. As for the semantic segmentation task, the feature map with higher spatial
resolution contains more context representation; thus, the dilated ResNet101 better fits the
task of this paper. The detailed configuration of the selected backbone is listed in Table 2.

Table 2. Configuration of backbone.

Layer Name Block Configuration Number of Blocks Output Size

Layer0
[

Conv, (7 × 7), 64, stride = 2
Maxpool, (3 × 3), 64, stride = 2

]
1 280 × 210

Layer1
 Conv, (3 × 3), 64, stride = 1

Conv, (3 × 3), 64, stride = 1
Conv, (3 × 3), 256, stride = 1

 3 140 × 105

Layer2
 Conv, (3 × 3), 128, stride = 1

Conv, (3 × 3), 128, stride = 1
Conv, (3 × 3), 512, stride = 1

 4 70 × 53

Layer3
 Conv, (3 × 3), 256, stride = 1

Conv, (3 × 3), 256, dilation = 2
Conv, (3 × 3), 1024, stride = 1

 23 70 × 53

Layer4
 Conv, (3 × 3), 512, stride = 1

Conv, (3 × 3), 512, dilation = 4
Conv, (3 × 3), 2048, stride = 1

 3 70 × 53

2.3. Foreground Extraction Branch
2.3.1. Network Structure

A modified atrous spatial pyramid pooling (ASPP) module from DeeplabV3 was
connected after the backbone in this branch for capturing the multi-scale context. To fit the
size of the feature map from the backbone, the original ASPP module with a dilation rate of
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(6, 12, 18) was modified to a larger module with a dilation rate of (4, 11, 18, 25). Moreover,
the number of output channels of each layer was promoted from 256 to 512. The overall
structure of the foreground extraction branch is shown in Figure 3.

Figure 3. Structure of the foreground extraction branch.

2.3.2. CCE Loss Function

The characteristics of the foreground extraction task in this paper are summarized
as follows:

• Every input image has only one main EV body as the target for processing. Other
partially or fully captured vehicle bodies in the image should all be regarded as
background and be minimized;

• The body of the target EV in each image is always at the center of image, i.e., the farther
a predicted foreground pixel cluster is from the center of image, the less possible it
would be for it to be considered the main vehicle target;

• Compared to false negative (FN) areas, false positive (FP) areas are a major issue that
influence overall accuracy and should be eliminated.

To restrain the FP areas of the results from the foreground branch, a cross entropy loss
function with connectivity-based weights was proposed to increase the penalization of FP
domains according to their area and distance from center of the image.

The proposed loss function works when the model is “nearly converged”, i.e.,
N < threshold connected domains exist in the output image. In this condition, a con-
nectivity analysis algorithm is applied to split output foreground into N sorted domains
according to their area, and the domain with the largest area is regarded as the main body
of the vehicle.

D = {D1,D2, . . . ,DN} (1)

The weighted binary cross entropy loss function for 2-class segmentation task could
be described as below:

L = − 1
N

N

∑
i=1

(yi log pi + w(1− yi) log (1− pi)) (2)

In the equation above, w is the weight value. When w < 1, the function concentrates
more on FNs; on the contrary, the function pays more attention on FPs when w > 1.
Moreover, the function degenerates into normal cross entropy loss if w tends to 1. When
one pixel belongs to the domain Dk, w is calculated as follows:

w = 1 + log

(
1 +

dk
γ

√
Ak
A1

)
(3)

In the equation above, dk stands for the distance between the centroid of the minimum
bounding rectangle of Dk and the center of image, Ak is the area of Dk, and A1 is the
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domain that possesses the largest area, i.e., the main body of the EV. γ is a hyperparameter
for controlling the value of the weight.

2.4. Severity Segmentation Branch

Considering that the features of burnt EV bodies are close to the features of intact
vehicles from the source dataset used for pretraining, the transfer learning method is
effective in the foreground extraction task, and a simple ASPP module would result in
good accuracy. However, in the severity segmentation task, the features of burnt regions
are amorphous and abstract, and the number of classes for classification also increase from
2 to 4. Therefore, a network architecture with a better feature representation capability is
in need.

Contextual information reinforcement and attention mechanism utilization are two
major research priorities in semantic segmentation research. Inspired by DenseASPP, a
densely connected multi-scale structure with an attention module named DA-EMA was
proposed in this paper. The overall structure of the severity segmentation branch, including
the DA-EMA module, is shown in Figure 4.

Figure 4. Structure of the severity segmentation branch. C is the output channels, K is number of
bases contained in the EMA unit, and d is the dilation rate.

Simply improving the dilation rate of the ASPP module to improve the receptive field
may cause a drop in overall model performance caused by the loss of modelling capability.
To solve the problem and enlarge the receptive field further, Yang et al. [25] proposed a
DenseNet [26]-like densely connected ASPP (DenseASPP) module.

Attention mechanisms have been proven effective in many semantic segmentation
scenarios by performing feature recalibration and feature enhancement [27]. In this paper,
an attention module is added to every level of a densely connected structure for enhancing
multi-scale feature representation. However, traditional attention-based modules need
to generate a large attention map that has high computation complexity and high GPU
memory cost. A lightweight expectation maximization attention (EMA) module [28] is a
good alternative in this case. Instead of treating all pixels as the reconstruction bases of the
attention map, the EMA module uses the expectation maximization algorithm to find a set
of compact basis in an iterative manner and then largely reduces computational complexity.
A typical EMA unit consists of three operations, including responsibility estimation (AE),
likelihood maximization (AM) and data re-estimation (AR). Given the input X ∈ RN×C and
the initial bases µ ∈ RK×C, AE estimates the latent variables Z ∈ RN×K as ‘responsibility’,
the step functions as the E step in the expectation maximization (EM) algorithm. AM uses
the estimation to update the bases µ, which works as the M step in the EM algorithm. The
AE and AM steps execute alternately for a pre-specified number of iterations. Then, with
the converged µ and Z, AR reconstructs the original X as Y and outputs it. The detailed
structure of one EMA unit is shown in Figure 5.
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Figure 5. Detailed structure of an expectation maximization attention unit.

To improve the contextual representation, dilated convolution is frequently utilized in
the proposed network. Wang et al. [29] found a “gridding” issue in the dilated convolution
framework: as zeros are padded in the dilated convolution layer, the receptive field of
the kernel only covers locations with a non-zero value and makes other neighboring
information become lost. In this paper, dilation rates in the proposed DA-EMA module
were modified from (3, 6, 12, 18, 24) to (3, 7, 11, 16, 21), which had no common divisor larger
than 1 to improve the information used in the densely connected convolution layers with
alleviation of the gridding effect. According to Figure 4, the overall DA-EMA module
contains 5 EMA units with dilated convolution, and the sixth EMA unit is utilized to process
the concatenated feature map. The detailed configuration of the dilated convolution layers
and EMA units is shown in Table 3.

Table 3. Detailed configuration of DA-EMA units.

Block Name Convolution
Kernel Size Dilation Number of

EMA Bases Input Channels Output
Channels

DA-EMA1 3 × 3 3 32 2048 128
DA-EMA2 3 × 3 7 32 2048 + 128 × 1 128
DA-EMA3 3 × 3 11 32 2048 + 128 × 2 128
DA-EMA4 3 × 3 16 32 2048 + 128 × 3 128
DA-EMA5 3 × 3 21 32 2048 + 128 × 4 128

Output EMA 1 × 1 1 64 2048 + 128 × 5 4

2.5. Multi-Task Learning-Based Two-Branch Architecture

Multi-task learning is a learning mechanism that enables multiple learning tasks to
improve their generalization performance by sharing common knowledge learned from
other tasks and maintaining their own features. The proposed model combines branches
introduced above together with a shared backbone feature. In the foreground extraction
branch, the result is accurate enough by training with the transfer learning method; thus,
the output of this branch is used as a mask for further processes. In the severity branch,
the background class is set as ignored, i.e., the parameters of the background class are not
reckoned in back propagation; only parameters of three different severity levels are learned.
Finally, to get the final results, the mask from the foreground extraction branch is applied
to the output image of the severity segmentation branch.

Two different training methods were adopted for comparison to get better results. The
overall architecture and training methods are listed in Figure 6.

Two-stage training: Train the backbone and foreground extraction branch using trans-
fer learning first, then fully freeze parameters of the backbone and train the severity
segmentation branch.

Joint training: Train the two branches and background together, then calculate the
weighted sum of loss from the two branches for back propagation. Assuming L1 is the loss
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from the foreground extraction branch, and L2 is the loss from the severity segmentation
branch, the overall loss is calculated as:

L = λL1 + (1− λ)L2 (4)

Moreover, two output methods were also implemented and taken into comparison.
The first output method did not set the background label as ignored; thus, the severity
branch also output the prediction of the background, and the number of classes of this
branch output is 4. On the contrary, the second method set the background label as ignored,
i.e., background was not included for back propagation; thus the severity branch barely
output the prediction result containing the background class. Two different methods are
shown in Figure 7.

Figure 6. Two training methods implemented in this paper; dotted lines stand for back propagation.
(a) Two-stage training; (b) joint training.

Figure 7. Two output methods (for the severity segmentation branch) in this paper: (a) 4-class output;
(b) 3-class output.

2.6. K-fold Cross Validation

Generally, to evaluate the performance of a model, the dataset is randomly split into
two subsets for training and testing according to a certain ratio. Test set obtained through
this method may be unreliable to estimate the real performance of the model, especially
when the size of the dataset is relatively small. K-fold cross validation utilizes all data to test
the model, and thus could better estimate the generalization ability of the model. The fold
number K is usually set to 5 or 10 [30,31]. In this paper, K was set to 5 as a trade-off between
the bias of the result and time consumption for training. The leave-one-out method, a
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special case of K-fold cross validation, was utilized. In this case, the number of folds equals
the number of instances.

3. Results
3.1. Experimental Configuration and Evaluation Metrics

All experiments were conducted on a server running the Ubuntu 16.04 operation
system. The server was equipped with two Tesla p40 GPUs and a Xeon Gold 5118 CPU.
The resolutions of images from the dataset were resized to 560 × 420. Due to the utilization
of transfer learning, the model converged rapidly, and the number of training epochs was
set to 10 while each branch was separately trained. When two branches were trained
jointly, the number was increased to 20. For all experiments, the initial learning rate was
set to 0.0001 and the Adam optimizer was used. Additionally, 5-fold cross validation was
implemented. The training group with fold K set for testing was named training group K.

Intersection over union (IoU) was utilized as the metric form of segmentation tasks of
this paper to evaluate the accuracy of the outputs. IoU is calculated as follows:

IoU =
TP

TP + FP + FN
(5)

In experiments of the foreground extraction task, only the IoU of foreground that
represented bodies of target vehicles were counted.

In the EV fire trace recognition task, the number of classes was set to 4, so the mean
IoU (mIoU) of 4 classes was calculated to evaluate the performance. As discussed in 3.1,
the 4 classes were IN, MB, SB, BG, and the mIoU could be calculated as follows:

mIoU =
1
4
(IoUBG + IoUIN + IoUMB + IoUSB) (6)

Additionally, to evaluate the accuracy of vehicle body segmentation, the union regions
of IN, MB and SB were regarded as “Vehicle Body” (VB) regions; to evaluate the segmenta-
tion accuracy of burnt regions as a whole, the union of MB regions and SB regions were
regarded as “Fire Trace” (FT) regions. Their IoU was thus calculated as follows:

IoUVB =
IIN∪MB∪SB

UIN∪MB∪SB
(7)

IoUFT =
IMB∪SB

UMB∪SB
(8)

3.2. Experiments of the Foreground Extraction Branch

In this group of experiments, to evaluate the performance of the foreground extraction
branch, the backbone was connected to the modified ASPP module only, and the proposed
CCE loss function was utilized.

3.2.1. Parameter Experiments of the CCE Loss Function

γ is an important component of the proposed CCE loss function in the foreground
extraction branch. The value of γ was adjusted in a reasonable range, and the results
obtained from different values are shown in Table 4.

3.2.2. Ablation Study

To conduct an ablation study for the foreground extraction branch, we compared the
impact of the modified ASPP module and the proposed CCE loss function. The value of γ
in this experiment was set to 20 according to the results above. The comparison results are
listed in Table 5.
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Table 4. Detailed configuration of DA-EMA units.

γ
Training
Group 1

Training
Group 2

Training
Group 3

Training
Group 4

Training
Group 5 Average Standard

Deviation

1 95.69 95.33 94.31 94.78 93.88 94.80 0.74
2 95.14 95.15 94.89 95.09 94.24 94.90 0.39
3 95.51 95.35 95.31 94.75 94.20 95.02 0.54
5 95.85 95.27 95.04 94.61 94.04 94.96 0.68
10 95.80 95.53 94.96 94.63 94.22 95.03 0.65
15 95.84 95.47 95.19 94.78 94.20 95.10 0.63
20 96.03 95.62 95.24 94.80 94.11 95.16 0.74
30 95.90 95.42 95.20 94.70 94.06 95.06 0.70
50 95.66 95.33 94.63 95.02 93.91 94.91 0.68

Table 5. Detailed configuration of DA-EMA units.

Modified
ASPP CCE Loss Training

Group 1
Training
Group 2

Training
Group 3

Training
Group 4

Training
Group 5 Average Standard

Deviation

95.34 95.27 94.58 94.65 93.81 94.73 0.62
X 95.81 95.37 94.69 94.78 94.02 94.93 0.69

X 95.48 95.59 94.88 94.73 94.09 94.95 0.61
X X 96.03 95.62 95.24 94.80 94.11 95.16 0.74

3.3. Experiments of the Severity Segmentation Branch

In this group of experiments, to evaluate the performance of the severity segmentation
branch, the backbone was connected to the proposed DA-EMA module only, and the
number of classes for training and output was set to 4, i.e., no class was ignored in the back
propagation process.

3.3.1. Performance Comparison

The proposed DA-EMA module and multiple mainstream semantic segmentation
network structures were trained in the same configuration including the same backbone
network. The results are shown in Table 6 and Figure 8.

Figure 8. Results of the proposed DA-EMA and other semantic segmentation models.
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Table 6. Comparison of the proposed DA-EMA and other semantic segmentation models.

Method BG IN MB SB mIoU VB FT

FCN [5] 93.97 76.07 38.89 48.56 64.37 93.61 67.95
PSPNet [6] 94.15 75.07 37.63 46.90 63.44 92.82 67.85

DeepLabV3 [7] 93.84 76.23 39.11 49.06 64.56 93.44 68.47
DANet [9] 94.85 76.52 42.74 49.58 65.92 93.42 70.71

PSANet [10] 94.61 76.00 36.92 49.00 64.13 93.29 67.88
LEDNet [32] 93.18 76.91 37.82 48.82 64.18 91.25 65.75
OCRNet [33] 94.76 76.67 39.65 44.89 63.99 93.33 67.98

DA-EMA 95.30 77.12 42.68 52.73 66.96 94.03 71.00

3.3.2. Ablation Study

To examine the contribution of different modules in the proposed DA-EMA module,
an ablation study was conducted. The first experiment used the structure of DenseASPP
with a modified dilation rate without the EMA module (DA), the second experiment only
utilized one EMA module to process the feature map from the backbone (EMA), and the
third experiment was conducted using the proposed DA-EMA module. As per the results
shown in Table 7, both the EMA module and the densely connected structure helped to
improve the overall performance.

Table 7. Detailed configuration of DA-EMA units.

DA EMA BG IN MB SB mIoU VB FT

X 95.16 76.92 40.03 51.22 65.83 93.86 69.15
X 94.52 75.78 40.79 48.51 64.90 92.87 69.78

X X 95.30 77.12 42.68 52.73 66.96 94.03 71.00

3.3.3. Responsibility Map Visualization

In the EMA module, each basis corresponds to an abstract concept of the image. To
examine whether the EMA mechanism functioned in the proposed DA-EMA module,
multiple responsibility maps, i.e., latent variables Z generated from different EMA bases,
were extracted. These were concluded from responsibility maps from different levels of the
EMA module, as shown in Figure 9.

Figure 9. Converged responsibility maps collected from EMA units from different levels. (a) Maps
from DA-EMA block 1. (b) Maps from DA-EMA block 2. (c) Maps from DA-EMA block 3. (d) Maps
from DA-EMA block 4. (e) Maps from DA-EMA block 5. (f) Maps from output EMA block.
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3.4. Experiment of the Entire Network

Benefiting from the multi-task learning mechanism, the entire network for EV fire
trace recognition combined two branches and achieved better performance than using
the single severity segmentation branch only. To demonstrate this improvement, different
configurations of training and output were implemented using the proposed network,
and the results are shown in Table 8 and Figure 10. In the joint training method, the λ
value for loss calculation was set to 0.25 based on the ratio of the loss value while each
branc converged.

Table 8. Results of different training methods and output methods. “Branch#2” stands for training
the severity segmentation branch only.

Training
Method

Output
Classes BG IN MB SB mIoU VB FT

Branch#2 4 95.30 77.12 42.68 52.73 66.96 94.03 71.00
2-Stage 4 95.84 78.52 45.54 52.59 68.12 94.72 72.44

Joint 4 95.63 77.86 43.81 53.57 67.72 94.86 72.79
2-Stage 3 96.15 79.17 45.11 53.80 68.56 95.10 71.79

Joint 3 95.70 78.92 45.96 55.11 68.92 94.50 73.17

Figure 10. Results of the proposed DA-EMA in different training and output configurations. (a) Orig-
inal images. (b) Labeled images. (c) Results of the single severity segmentation branch. (d) Results of
the two-stage training and 4-class output. (e) Results of the joint training and 4-class output. (f) Re-
sults of the two-stage training and 3-class output. (g) Results of the joint training and 3-class output.

4. Discussion

To evaluate the foreground extraction branch, two experiments were conducted: a
loss function parameter experiment and an ablation experiment. By tuning the value of
hyperparameters in the proposed CCE loss function, we concluded that by using the loss
function with an appropriate value of hyperparameters, the performance of the foreground
extraction branch was improved. While the value is relatively small, it, on the contrary,
hindered the convergence of the network. Once the value was extremely big, the function
degenerated into normal cross entropy loss and lost its ability. Moreover, by conducting the
ablation experiment, we found both the modified ASPP module and the CCE loss function
had a positive effect on the branch.

The transfer learning method is essential in this paper, especially in the foreground
extraction branch. By using weights pretrained on an enormous public dataset including
labeled intact vehicles, the branch converged rapidly, and obtained great IoU results of
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over 95%. Due to the fine results obtained from the selected backbone and modified ASPP
using pretrained weights, it is enough to use the simple ASPP module and CCE loss
function for the foreground extraction task. More complicated models could not cause
considerable excessive improvement. However, the severity segmentation task would be
less benefited from the transfer learning method, which was also the reason for splitting the
whole fire trace recognition task into two sub-tasks and focusing on a new module for the
enhancement of feature extraction and expression. Therefore, the DA-EMA module with
densely connected dilated convolution layers and a lightweight expectation maximization
attention mechanism was proposed in the severity segmentation branch for the EV fire
trace recognition task.

Regarding the experiments on the severity segmentation branch, we first compared
the performance of the proposed DA-EMA module and other mainstream semantic seg-
mentation models. The results in Table 6 showed that the proposed DA-EMA module
achieved better accuracy in comparison to many mainstream networks. Moreover, ac-
cording to Figure 8, due to the combination of the contextual mechanism and attention
mechanism, outputs of the proposed DA-EMA module were more detailed than models
with attention models, e.g., DANet and PSANet, and emphasized burnt regions more
than models with contextual information, e.g., PSPNet and DeeplabV3. In addition, for
EVs with slightly burnt bodies, the proposed DA-EMA module generated less error when
classifying intact regions into burnt regions. For EVs with windows broken and internal
structures or background exposed behind the glass, the proposed DA-EMA could better
recognize regions behind the broken windows. Moreover, some models might wrongly
recognize components, e.g., air inlets and intact tires, as burnt regions, but these issues were
barely present with the proposed DA-EMA module. The other experiment evaluating the
performance of the proposed DA-EMA module was an ablation experiment conducted by
separately utilizing the DenseASPP-like structure with multiple dilated convolution layers
and only one EMA module without a multi-scale structure. As a result, both the dense
structure and EMA module had a positive impact on the overall performance. Moreover,
the visualization of responsibility maps showed that bases of EMA units were converged to
a certain concept of the input image, e.g., regions of different severities, contours of EV, and
backgrounds. Though responsibility maps became more abstract and diffused as dilation
rate increased, representations of different concepts were not reduced.

To prove that the performance improvement benefited from the multi-task learning
mechanism by combining two branches, different training methods and number of classes
of the severity branch were tested. According to the results shown in Table 8, by setting
the background as an ignored label and predicting only three classes of severity levels, the
severity segmentation branch output fewer errors than when taking the background class
into consideration. When the two-stage training method was applied, backbone parameters
were frozen after the foreground branch was trained, and the parameters did not change
while training the severity branch. Therefore, the output of the foreground mask was much
more close to the best performance achieved by training the foreground only. However,
by training the two branches jointly and making the severity segmentation branch output
only three classes, the whole model achieved the best performance.

Although the proposed DA-EMA module achieved better accuracy than other main-
stream semantic segmentation models and the two-branched model also improved the
overall performance further, the model still has some room for improvement. Firstly, the
number of parameters of the network, especially the number of parameters of the backbone
and the modified ASPP with more output channels in the foreground extraction branch is
large, thus raising the time consumption of model training and inference. Though the task
of this paper does not have a real-time requirement, there is still room for simplifying the
model by reducing redundant components. Secondly, the size of dataset is relatively small,
and white is the major color of EV bodies. Therefore, a lack of EV samples of different colors
may lead to error when inferring EVs with rare colors or complicated paintings. Thirdly,
restricted by the computing capacity, the resolution of images was relatively insufficient
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for expressing many detailed features. To solve this problem, a modified model with the
capacity of processing larger images should be implemented.

5. Conclusions

In this paper, we used semantic segmentation techniques for recognizing traces of
different severity levels from burnt EV images. A corresponding model with two branches
separately concentrating on the foreground extraction task and the severity segmenta-
tion task was proposed, the backbone of which was ResNet101 with dilated convolution.
Benefiting from the feature similarity between intact vehicles from a public dataset for
pretraining and burnt vehicles from a dataset built in this paper, transfer learning con-
siderably improved the overall accuracy of the foreground extraction task. Along with
the modified ASPP module and proposed CCE loss function, the foreground extraction
branch achieved an IoU of 95.16%. In the severity segmentation branch, to better enhance
the feature representation capacity, a module combining the DenseASPP-like dense archi-
tecture and attention module named EMA was proposed. Achieving a mIoU of 66.96%,
the proposed severity segmentation branch was tested and found to fit the task of the
paper better than the other mainstream networks. Finally, by combining the two branches
together, the whole multi-task based model was evaluated under different configurations
of training and output, and the mIoU was finally improved to 68.92% while jointly training
two branches and setting the background as ignored in the severity segmentation branch.

However, the proposed model has some limitations in certain scenarios. First, it is
limited by the scale of dataset, as the majority of EV bodies are white. The lack of images of
EVs with rare colors in dataset may cause errors when recognizing fire traces on EVs with
these colors. To solve this problem, continuing to expand the dataset is the most efficient
method. Second, although the gridding effect of the DA-EMA module was alleviated
by modifying the dilation rates, the dilated convolution layers of the backbone were not
optimized, and thus, the gridding effect still existed, especially in the foreground mask
output from the foreground extraction branch. Third, the proposed CCE loss function
in the foreground extraction branch did assist in eliminating FP areas, but when jointly
training two branches, the λ was set to 0.25, which may weaken the function of CCE loss.
As many FP areas were caused by other vehicle bodies, the best solution would be to
apply the instance segmentation method to the foreground segmentation branch. Instance
segmentation would classify pixel clusters of vehicle and distinguish which cluster belongs
to which vehicle. By using this, the FP areas of other vehicle bodies can be conveniently
removed. The problems above are shown in Figure 11.

Figure 11. Limitations of the model. (a) Error of a red vehicle. (b) Gridding. (c) FP area from other
vehicles.

Supplementary Materials: The proposed model and an executable demo are available at: https:
//github.com/Jkreat/EVFTR (accessed on 27 May 2022).

 https://github.com/Jkreat/EVFTR
 https://github.com/Jkreat/EVFTR
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