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Abstract: Analyzing the conditions of use and selecting which technology is more efficient to apply is
required when transmitting information through wireless networks.The Internet of Things (IoT) has
gained traction in industry and academia as a paradigm in which information and communication
technologies merge to deliver unique solutions by detecting, actuating, calculating, and sharing
massive volumes of data via embedded systems. In this scenario, Low-Power Wide-Area Networks
(LPWAN) appear to be an attractive solution for node connectivity. Typical IoT solutions demand flex-
ible restrictions for wireless communication networks in terms of data rates and latency in exchange
for having larger communication ranges and low energy consumption. Nonetheless, as the amount
of data and data speeds demanded for particular applications increase, such as image transmissions,
IoT network connectivity deteriorates. This paper proposes a communication architecture for image
transmission across LPWAN networks utilizing LoRa modulation. The framework combines image
processing techniques (classification, compressive sensing (CS), and reconstruction) with an inves-
tigation of LoRa modulation parameters using a Software-Defined Radio (SDR) environment. The
results show that is possible to communicate an image of 128× 128 pixels with four packets and one
frequency channel in 2.51 s.

Keywords: Internet of Things (IoT); low-power wide-area networks (LPWAN); LoRa; compressive
sensing; software-defined radio (SDR); image transmission

1. Introduction

Communication and information technologies are becoming increasingly vital in
our daily lives. Smart cities, agricultural monitoring, sensors service control, telemetry,
smart grids, smart homes, smart health services, and human-body signal monitoring
are just a few of the applications that have emerged since the advent of the Internet of
Things (IoT) concept. Because the nature of the sensed data includes simple environmental
variables, most IoT applications rely on the transmission of a small amount of data over a
long distance. However, when data information increases in long-distance transmissions,
IoT communication networks are limited, especially when looking for cost-effective and
scalable solutions. Because of their high operational costs and limited coverage, particularly
in remote areas, cellular networks are rarely used for agricultural applications. Unlicensed
Low-Power Wide-Area Network (LPWAN) technologies have gained popularity due to
their appealing characteristics, which include long range, scalability, low operational cost,
and low energy consumption. Nonetheless, due to their limited capacity, unlicensed
LPWAN-based solutions are still limited when it comes to transporting a large amount of
data [1–11].

As previously stated, LPWAN technologies can be classified based on the frequency
bands in which they operate: licensed bands such as LTE-M, Extended coverage 2G, and
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NB-IoT. Additionally, they operate in unlicensed bands such as l SigFox, On-Ramp, and
LoRaWAN. In terms of design goals, both types of LPWAN networks have advantages and
disadvantages [12,13].

LoRaWAN was used in this work, and its modulation in particular was investigated
due to its flexibility in terms of adaptive data rate and noise robustness. LoRaWAN is one
of the most prominent LPWAN technologies, with a network deployed in over 77 countries
and over a billion end-device connections. LoRaWAN operates at 868 MHz in Europe
and 915 MHz in North America in the sub-GHz Industrial, Scientific, and Medical (ISM)
frequency bands [12]. The LoRaWAN modulation scheme, also known as LoRa, employs
a spread spectrum technique with a payload of 222 bytes per message [7,10,11]. Under
these conditions, the number of messages to send for an IoT application where regular
images must be transmitted is prohibitively large, and the transmission time is a couple
of hours given the spectrum access restrictions of ISM bands. For example, in the best
scenario with 500 kHz of bandwidth (BW) and a Spreading Factor (SF) of 7, the time over
the air (ToA) for transmitting an image larger than 15 kbytes is around 100 ms per message.
Furthermore, taking into account the ISM frequency band policies, which require a duty
cycle of 1% for every single transmission (ETSI EN 300 220-1) [14], the total time exceeds 5 h,
which is prohibitively long for any IoT application. With the same SF and BW conditions,
but frequency hopping between 915 and 928 MHz (implemented between channels with
no contiguity [14]), the time is around 3 min, not including saturation, collisions, and
other problems associated with the use of shared spectrum. Image transmission is a
challenging issue in both cases, and it is a general problem addressed in the literature for
LPWAN networks, particularly when high data rates with low power consumption and
long communication range are required [15–18].

As a result, a framework for transporting images using LoRa modulation without
affecting features such as duty cycling, frequency hopping, or the use of multiple nodes
to transmit different information packets simultaneously has been developed [13,19–23].
The communication system was developed on Software-Defined Radios (SDR) for LoRa
information packet transmission and reception in order to have complete control over the
LoRa modulation features. Because the SDR approach allows for more degrees of freedom
than LoRa commercial radios, characteristics such as bandwidth, transmission power,
spreading factor, preamble sequence definition, and sync sequence chirps definition can
be easily adapted (even beyond the standard values) to meet the needs of the application.
The implementation features of the framework are described in this paper, which include
image processing, image classification, compressing sensing, postprocessing, and image
reconstruction techniques. The structure of the papers is as follows: In Section 2, previous
work is given. Section 3 describes the proposed framework. Section 4 presents the analysis
results. In Section 5 the discussion is presented. Finally, Section 6 presents the conclusions.

2. Related Work

Many works have presented LPWAN design goals, requirements, and features [24–28].
All of them concluded LPWANs are the most suitable network solution for massive IoT
system deployments over large areas with energy-efficient working schemes, low-cost
and low-complexity end-devices, low data rates, and high latency. With a wide variety of
LPWAN technologies, there has been a growing interest in the evaluation and comparison
of the network performances, in particular the ones working in unlicensed frequency
bands. LoRaWAN is one of the most representative LPWAN technologies which operate in
sub-GHz Industrial, Scientific, and Medical (ISM) frequency bands at 868 MHz in Europe
and 915 MHz in North America. This technology has been widely deployed in more than
77 countries worldwide, reaching billions of end-device connections [29]. LoRAWAN is a
proprietary technology based on LoRa physical (PHY) layer which brings large coverage,
low energy consumption, and low data rates. LoRaWAN was developed in North America
by Semtech, IBM, Actility, and Microchip. The LoRaWAN network is single-hop where end-
devices or motes are connected directly to a LoRAWAN base station acting as the gateway
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to the information server. LoRa PHY is based on a Chip Spread Spectrum (CSS) modulation.
CSS is a subcategory of direct-sequence spread spectrum (DSSS) that takes advantage of
the controlled frequency diversity to recover data from weak signals, even near the noise
level. CSS modulation was used in military communications due to the relatively low
transmission power requirements, robustness to channel degradation, multipath, fading,
Doppler effect, and jamming interference [30].

Recently, a growing interest in LPWAN technologies has appeared and several works
have reported different contributions in the comparison, evaluation, and application of
LPWAN. In this regard, LoRaWAN has taken particular relevance due to its flexible
and configurable characteristics, for instance, in the work of [31,32], a realistic testbed
for LoRaWAN network is presented; other works have explored energy consumption
schemes for LoRAWAN networks [33–36], the extension of network coverage in urban
areas [37,38], improvements for the Adaptative Data Rate (ADR) of LoRa modulation
technique [39–41], and wireless systems solutions combined with the use of 5G sys-
tems [42,43]. Among the different LoRaWAN network implementations, platforms such as
DPP2-CC430, DPP-SX1262, and SX1276 are mainly used [5,31,37,44–48]. Other works have
produced analytic and simulation cases, where LoRaWAN network performance features
such as Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR) are obtained [49,50]. In addi-
tion, there has been an increasing interest to investigate optimal modulation parameters in
LoRaWAN, such as the Spreading Factor (SF), modulation bandwidth, and transmission
power for improving data rate, collision avoidance, resource allocation, and latency. In this
regard, multiple techniques and evaluation scenarios have been recently proposed, some of
them include fair ADR algorithms [51], time-slotted spreading factor hopping schemes for
mitigating blind spots [52], performance evaluation in building environments [53], collision
avoidance resource allocation techniques [54], experimental evaluation of LoRa packet
reception [55], radio channel evaluation of massive node deployment [56], traffic evaluation
studies [57], enhanced data transmission techniques [58], integration with cognitive radio
schemes [59], secure firmware updates with adaptive data rate techniques [60], and the
study of the wireless propagation of LoRa chirp radio signals over the water of rivers in
tropical regions [61].

From the application point of view, LoRaWAN has encountered a relevant place as
the network solution for IoT services. Thus, in [62] a LoRa sensor network for monitoring
pastured livestock location is presented. In [63], an air quality monitoring and improve-
ment system based on wireless sensor and actuator networks using LoRa communication
is proposed. In [64], a development for air quality monitoring and gas leakage events with
the LoRa sensor network is presented. The work in [65] presents several low-cost solutions
using novel user interfaces and wireless communication technologies for monitoring irriga-
tion systems. In [66], a new LoRa-like receiver is proposed to improve the robustness of
symbol decoding to synchronization errors for satellite communications. In [67], a rural
healthcare IoT architecture with the use of LoRa is shown. In [68], the development of a
smart irrigation system is presented with enhanced coverage in urban areas thanks to the
use of LPWAN sensor nodes based on LoRa and LoRaWAN. In [69], a farm monitoring
system which incorporates unmanned aerial vehicles (UAVs), and LoRa technology for
farm management and operation is presented. In [70], a smart campus proposal is pre-
sented with the use of LoRa. Ref. [71] presents the results of a study promoted by the
Lisbon city council for trialing LPWAN technology for waste management. The work
in [72] presents a traffic flow detection system based on LoRa, mainly focused on traffic
conditions monitoring for accidental risk reduction in highways.

Image transmission on LoRaWAN has already been tackled by many authors in the
literature. In [15], a monitoring method with image sensors communicating over the LoRa
physical layer was presented. The authors proposed a scheme for overcoming the band-
width limitation on LoRa. The transmitter and receiver node consists of a LoRa Arduino
shield that comprises an RN2903 transceiver stacked on an Arduino Mega microprocessor.
The experimental setup is composed of an Adafruit TTL serial camera that captures a JPEG
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image, then images are encrypted as hexadecimal data and split into packets to transfer
via LoRa. Image postprocessing consists on the evaluation of the Peak Signal-to-Noise
Ratio (PSNR) of the received image. Results use different SF values with different coverage
ranges. Results with a typical SF value of 7 show a total transmission packets of 314 with a
transmission time of 67 s. In addition, the number of transmitted images were 21, where
only 12 were successfully received. Some important features such as image size, medium-
access duty cycle, shipping time, and LoRa symbol forms are not presented. The work
in [73] presents a low-cost, low-power, long-range image sensor. The proposed system uses
a Teensy 3.2 board as the host microcontroller to drive the CMOS uCamII camera capable
of providing JPEG bitstream. First, the authors retrieve raw 128 × 128 (8 bits per pixel)
greyscale images, then image compression on the board is carried out on the embedded
system. The authors use an encoding scheme proposed in [74] where image compression
is carried out by independent coding blocks to ensure that data packets are decodable
and correctly received at the sink, and the de-correlation of neighboring blocks must be
performed before packet transmission by appropriate interleaving methods to ensure that
error concealment algorithms can be efficiently processed on the received data.

The proposal presented in [74] uses a discrete cosine transformation for image com-
pression. The result of this compression scheme is a JPEG-like coder and operates on
8 × 8 pixel blocks with advanced optimizations on data computation to keep the com-
putational overhead low. In addition, an optimized pixel interleaving scheme based on
Torus Automorphisms is used [75]. Data are transmitted in different packets, with an
interleaving scheme for retrieving enough information to obtain an approximation of the
original value without affecting the energy consumption and time of use, or complexity
of the image reconstruction process. The reconstructed image quality is acceptable until
80%. The LoRa module in Air9 from Modtronix with the reference SX1276 chip is used
in the implementation. In the transmission test, an image can be completely sent with a
number of information packets between 8 and 10. The system operates in a range of 1800 m
without packet loss. This results are obtained when at least 50% of the original information
is needed in order to recover the image without considerable losses. The work in [18]
presents a medium-access mechanism to implement an image sensor with LoRa technology.
An adapted Carrier Sense Multiple Access (CSMA) mechanism is presented for avoiding
packet collision and packet losses. The mechanism is combined with a shared active time
frame schedule technique to mitigate duty cycle issues. Thus, a high trade-off between
image size and visual quality is presented. This feature gives the possibility to transport an
image size between 900 to 1200 bytes, which can be encapsulated into five LoRa packets.
The work in [16] proposes a low-power wide-area network protocol, which combines the
LoRa modulation technique with embedded microprocessor technology. The proposal
network is composed of three LoRaWAN nodes that provide three physical channels. The
camera node allows bidirectional communications where each uplink transmission is fol-
lowed by two short downlink windows. When the camera node needs to upload the data,
it randomly selects a channel to execute channel activity detection. The proposal only gives
a theoretical analysis without real testbed implementation. The work in [76] presents a
method to transmit continuous images through LoRa. The samples are taken from a camera
in a static environment where the critical challenge is to reduce the amount of transmitted
data while preserving the image quality. The image-splitting technique consists on the use
of grid patches that are only transmitted when there is an image modification based on a
dissimilarity measure. The implementation and evaluation were on Raspberry Pi for data
compression and an Arduino Uno with LoRa shield for data transmission.

The work in [77] aims to review the available methods applied to transfer images via
LoRa infrastructure. The limitations of each method are pointed out, and the challenges
that need to be managed in the future are also defined toward establishing a reliable image
transfer over a LoRa network. A review of the LoRa approaches toward transmitting visual
data was presented. Only few methods explore the modification of the LoRa physical layer
to overcome the packet collision problem, and few methods deal with the compact image
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representation. Table 1 presents a summary of the methods found in the literature for image
transmission through LoRaWAN, where parameters such as transmission time, number of
packets, and the employed image compression method are presented.

Table 1. Image transmission through LoRaWAN networks.

Reference Method
Transmission Time

(One Image)
(Min)

Packets
Number

Image Compression
Method

Pham, 2016 [73] Image compression
Discrete Cosine Transform - 8–10 JPEG

Kirichek et al., 2017 [78] Fragmentation data 6 700 JPEG/JPEG2000

Jebril et al., 2018 [15] Data encrypted hexadecimal 1.1 314 JPEG

Pham, 2018 [18] CSMA (avoid collisions) - 5 JPEG

Fan and Ding, 2018 [16] Multiple out single in - - -

Chen et al., 2019 [79] MPLR protocol Tx/Rx 0.3 - -

Ji et al., 2019 [76] Image processing
(Only transmits data with change) - - -

Wei et al., 2020 [80] 1 85 JPEG

Juliando et al., 2021 [81] - 858 - -

3. Proposed Framework

The proposed framework (Figure 1) is designed in four stages. In stage I, image pro-
cessing and classification techniques are implemented. In stage II, compression techniques
are used in order to reduce the image information, and thus facilitate data transmission
through LoRa. Stage III includes image transmission implemented on SDR platforms.
Finally, in stage IV, postprocessing and reconstruction techniques are implemented.

Figure 1. Framework to transmit and receive LoRa symbols.

3.1. Stage I: Processing and Classification

In the transmitter node, image processing was used to classify images and reduce the
amount of data in an image using compressive sensing. The image data is transformed
using a wavelet representation base [74,82–88]. As a result, this transformation unites the
samples and reduces the variability of the original data. In this work, wavelet transforms
prior to evaluation is used in between Kronecker, Discrete Cosine, and wavelet transforms.
Furthermore, this process reduces data dispersion and allows for greater efficiency in the
compression process. Similarly, the receiver used the inverse wavelet transformation to
recover the original data.
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3.2. Stage II: Compressive Sensing

A picture is a rectangular array of dots with m rows and n columns. The expression
m× n is known as image resolution, and the dots are commonly referred to as pixels. The
term resolution is also used to describe the number of pixels in an image per unit length. A
monochromatic image (also known as a bilevel image) has pixels with one of two values,
0 or 1, that correspond to black or white colors and is considered the simplest type of image.
A pixel in a grayscale image can have one of the n values be 0 through n− 1, indicating
one of 2n, where n can be 4, 8, 12, 16, . . . . A continuous-tone image can have many similar
colors (or grayscales) that are difficult for the eye to distinguish. A discrete-tone image is
typically an artificial image with a few or many colors that lacks the noise and blurring of a
natural image. A cartoon image has a color image made up of uniform areas, with each
area having a uniform color but adjacent areas having very different colors. Each type of
image clearly has feature redundancy, but they are redundant in different ways. As a result,
any given compression method may not work well for all images, and different methods
are required to compress the various image types [86].

Because modern hardware can display many colors, a pixel is commonly represented
as a 24-bit number (R–G–B components, each of which occupies 8 bits). As a result, a 24-bit
pixel can specify 1 to 224 million colors, so an image with a resolution of 128 × 128 pixels
occupies 49,152 bytes (16,384 in each component), one with 512 × 512 pixels occupies
786,432 bytes, and one with 1024 × 1024 pixels occupies 3,145,728 bytes. Then, image
compression is critical. In general, information can be compressed if it is redundant;
however, there is a concept known as “remove irrelevancy”, which allows an image to
be compressed with loss by removing irrelevant information even if the image contains
no redundancy [86]. The spatial redundancy principle is used in image compression; as a
result, if we select a random pixel in an image, its neighbors may have the same or similar
colors, implying that the neighboring pixels are highly correlated. It is possible to rebuild
the original data with high efficiency using this information.

Compressive Sensing (CS) can reduce information by up to 95% of its original size.
Only 5% of the original vector information can be rebuilt with high precision. This allows
for a reduction in the amount of data that must be transported into LoRa. CS is a technique
for creating and retrieving sparse signals with low noise using far fewer samples than the
Nyquist sampling theorem requires [89,90]. To implement CS, a program that represents
the original signal in a sparse signal using an appropriate sparse representation was
used. The original signal can be represented as a N × 1 vector, where N is equal to
N = n× n [rows]× [columns].

CS employs a sparsity technique to transform an information signal denoted as s into
a vector S ∈ RN in discrete form. k (data value dispersion relation) and s are elements
of the original signal that differ from zero (the most representative). Signals with low
dispersion (high value of k) can be converted to signals with greater dispersion via lineal
transformation f by f = s and f ∈ RN×N , which in our case represents data on wavelet
transform [82,91–95].

A k-disperse signal in which f ∈ RN are sampled with CS to produce the g ∈ RM

signal, where M << N. A system sampling matrix is a representation of the sampling
in matrix form as g = f and ∈ RM×N . If f is unknown, an indeterminate system of
linear equations can be found (infinite solutions). It could be solved for this purpose with
an optimization problem that can be converted into a complex mathematical problem
that is not convex. Another approach is to use a sensing matrix with algorithms such
as Iterative Hard Thresholding (IHT), Orthogonal Matching Pursuit (OMP), Gradient
Projection for Sparse Reconstruction (GPSR), or Two-Step Iterative Shrinkage/Thresholding
(Twist) [90,96–98]. Previous research evaluated these algorithms, and the results enable us
to select Twist as the best output in our case. We can reduce the computational process,
data payload, processing time, and energy consumption with the help of CS.



Electronics 2022, 11, 1764 7 of 19

3.3. Stage III: Transmission Bandwidth Increase

Initially, our research looked into the possibility of discovering a method to increase
bandwidth. Techniques such as diversity, Multiple In Multiple Out (MIMO), Single In
Multiple Out (SIMO), and others were investigated; however, the results indicate that
for our framework they are not required. As a result, we focus on implementing LoRa
modulation in Software-Defined Radios (SDR) in the transmitter and receiver, allowing
us to have more degrees of freedom than LoRa commercial radios in terms of bandwidth,
transmission power, spreading factor, preamble sequence definition, and sync sequence
chirps definition. LoRa features can be optimized to achieve higher data rates by taking
advantage of the flexibility provided by SDR. Test results show that high bandwidth
(>500 kHz) results in higher capacity and lower SF values (SF7), resulting in data rates
around 50 kbps with good sensitivity at reception, even near noise floor values. This
result is adjusted by having a large payload, a short overhead, and using low coding
rates [48,99–106].

3.4. Stage IV: Postprocessing and Reconstruction

The data sent by the radio transmitter is received by the reception node at this stage.
These data are processed through data frame decomposition in order to organize and
deliver classification information, as well as image reconstruction. The classification result
and reconstructed images are displayed by the reception node. The received data is
processed, and once rebuilt, the vector with its features is used in a sparse representation
reconstruction algorithm to recover a large number of samples of the original signal and
recover the original information vector via wavelet inverse transform. It is now necessary
to change the matrix’s original size from M×N to n× n and display the image. To compare
the original image with the received image, the PSNR function was used, which can be
calculated as (1).

PSNR = 10log
(

S2

MSE

)
(1)

where s is 255 in an image of 8 bits and MSE is the mean squared error, which is the average
of the squared difference in the intensity pixels in the original and the output images. MSE
is calculated with (2).

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=1

[I(i, j)− K(i, j)]2 (2)

where m and n are the respective length and width of the image in pixels, and I(i, j) and
K(i, j) are functions that describe the intensity of individual pixels in the transmitted and
received image. PSNR allows calculating the relation between transmitted and received
images. It is expressed in a logarithmic scale where values of among 30 and 50 dB are
acceptable [87,95]. In wireless communication systems, acceptable values are considered
from 20 to 25 dB [107,108]. If the image on analysis is the same as the reference, the PSNR
is infinite [86].

3.5. Framework Interconnection
3.5.1. LoRa PHY Modulation

LoRa PHY is based on a Chip Spread Spectrum (CSS) modulation. CSS is a subcategory
of DSSS that takes advantage of the controlled frequency diversity to recover data from
weak signals, even near the noise level. In CSS, the SF is the number of transmitted bits in
a symbol by considering the number of symbols in chips of 2SF. The SF is defined in (3),
which is related with spread bandwidth BW, the symbol rate Rs, and the chirp duration
T = 1

Rs
through Equation (4).
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SF =
chip rate

symbol rate
(3)

2SF =
BW
Rs

= BW T (4)

The basic element of LoRa–CSS modulation is the chirp, and its waveform is written
in (5).

Scss(t) =

{
ejφ(t), if − T

2 ≤ t ≤ T
2

0, otherwise
(5)

where, φ(t) is a chirp phase. From [13,50], by taking the relationship of the instantaneous
frequency with the phase f (t) = 1

2π
dφ(t)

dt and combining with the definition in (4), the LoRa
raw chirp signal of (5), in one chirp duration T it is reduced to (6).

Scss(t) = ej
(

2π BW
T

t2
2

)
(6)

The chirp may code up to SF = 12 bits during a chirp period by shifting the frequency
increasing ramp based on the 2SF possible chip values. Thus, each chip code is obtained by
a cyclic shift of the chirp reference. A coded chirp signal is expressed in (7), where k is the
number of shifted chips [13].

Scss(t) = e
j
(

2π BW
T

(t−k/BW)2
2

)
(7)

At the receiver, the signal is processed through a matched filter technique by correlat-
ing a known raw down-chirp signal with the unknown coded up-chirp signal in order to
detect the presence of the shift. In other words, the received coded up-chirp is convoluted
with a conjugate time-reversed version of the raw signal. There are two time periods where
a frequency shift of value BW occurs at the time index k, corresponding to the value of the
coded symbol. Then, down-converting by sampling the signal at the chip rate BW, the in-
stantaneous frequency becomes continuous over the whole chirp and, after subtracting the
carrier, the instantaneous frequency is proportional to the shift k. The FFT of the sampled
signal shows a flat response with a peak shifted by the coded symbol value.

3.5.2. Stage Flow Process

In stage I—processing and classification—the images are classified into normal or
abnormal features. Thus, only the abnormal is transmitted between transmitter and receiver.
Then, the abnormal samples are converted with wavelet transform. In stage II, the data
is operated with CS, and its results give us a sparse vector with decimal and negative
numbers. LoRa technology works with integer values among a range according to the
spreading factor (SF) value. Thus, it was necessary to convert the sparse vector information
into data supported in LoRa symbols. For this reason, it is necessary to encode the sparse
vector. An encoder and decoder with an 8-bit structure were implemented. In stage III, it
is necessary to create the LoRa symbols consequent with 8 bits, and therefore SF = 8 was
implemented. Despite lower SF giving higher data rates for LoRa modulation, the SF’s
choice is to take into account the transmission of a compressed unit of the spare vector in
one single LoRa chirp symbol, this simplifies the complexity of the reconstruction algorithm
at the receiver at the expense of losing transmission data rates.

Then, using National Instruments NI-2920 cards, the transmission and reception of
LoRa symbols were implemented on SDR. Modulation features such as SF, BW, and the
sampling frequency in the transmitter were set in conjunction with the interpolation and
decimation factor in the receiver in order to achieve the bandwidth to sweep the value
set up in the transmitter. Some specific features, such as the operating center frequency,
gain, number of samples, and decimation factor value, had to be adjusted at the receiver.
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These values are required to operate within the operating frequency range. In our case, we
needed to use a decimation factor that allowed us to sweep the BW used in the transmitter
over 2 MHz of the spectrum around the central operation frequency (500 kHz). To restart
the radio features, packet transmission and reception are required.

In stage IV, a sweep from the beginning of the received vector to the end was required.
Preamble and synchronization chirp symbols are also considered at this stage, as they are
required to locate the image’s coded information. The received vector was then analyzed
using the Fast Fourier Transform (FFT) to find a peak between the image’s preamble and
data chirp symbols. Signal peaks in the FFT signal transform allow us to determine the end
of the preamble and the start of the synchronization symbols; after two synchronization
symbols (two symbols times 2T), we can determine the start of the data. Because the data
were encoded in bytes, it was necessary to decode them in order to find the original values
(wavelet transform representation). To accomplish this, a simple algorithm was developed
that converts the received data back into its original form. Following the data decoding
process, a vector of comparable length to the one transmitted is obtained. The resulting data
contain information about the output wavelet transform values and positions, including
negative values. Thus, the inverse wavelet transform is required, followed by taking the
vector and adjusting the matrix with an original array, and finally representing the image
and evaluating it with the PSNR function.

4. Analysis Results

The following results from the various stages of the proposal framework are presented.
Thus, stage I demonstrated image processing in which the sparsity was evaluated using
wavelet, Kronecker, and Discrete Cosine (DC) transforms. This seeks to establish a common
foundation for improving information reduction. Figure 2 depicts the integration of stages
I and II, where it is possible to observe the PSNR values versus sparsity percentage and
conclude that when the sparcification percentage is increased, the wavelet transform
achieves the best PSNR results. The coefficients of the DCT, wavelet, and Kronecker
transforms are shown in Figure 3a–c. It is possible to see that wavelet has a minor data
deviation, indicating an improvement in Stage II of compressive sensing.
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Figure 2. PSNR values vs sparcity percentage.
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Figure 3. Coefficients distribution.

All algorithms (IHT, OMP, GPSR, and Twist) were used in the reconstruction process.
The sparse vector signals and the sample matrix were used as inputs, and the outputs were
a PSNR-based relationship between the rebuilt signal and the original signal, as well as
the number of rebuilt samples (M). Figure 4 shows that the Twist algorithm achieves the
highest reconstruction index in terms of M.
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Figure 4. Reconstruction algorithms evaluation.

LoRa symbols were created using encoded data. As previously stated, preamble
and synchronization chirp symbols are generated; in our case, 10 preamble symbols (up-
chirps) and 2 synchronizations (down-chirps) were modulated before the start of the data
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symbols to create the total LoRa frame to be transmitted on SDR platforms. It is important
to remember that any chirp symbol (preamble, synchronization, or data) has the same
symbol time, which is proportional to the value of SF. Figure 5 depicts LoRa symbols for an
up-chirp, a down-chirp, and a data symbol created and transmitted on the SDR platform.
Figure 6 illustrates the spectrogram of the transmitted LoRa frame signal, which contains
symbols for 10 preamble up-chirps, 2 synchronization down-chirps, and coded data chirps.
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Figure 5. (a) up-chirp, (b) down-chirp, and (c) coded LoRa signal with SF = 8 and BW = 500 kHz.
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Figure 6. Transmission spectogram.

At the receiver of stage III, the operating frequency and the master click rate were
configured on the SDR. The received chirps are presented in Figure 7 and the received
spectrogram is presented in Figure 8. In stage IV, after the LoRa demodulation process,
it is necessary to sweep from the beginning of the received vector until its end. Here, it
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is considered the first symbols (10 of preamble and 2 of synchronization). These twelve
symbols are necessary to retrieve the data in the received symbols. Figure 9 shows a
complete received LoRa frame signal in time, where preamble synchronization and data
are shown. Signal peaks allow to find the preamble and the synchronization chirp symbols,
after two synchronization symbols (2T), it is possible to find the beginning of the data.
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Figure 7. (a) up-chirp, (b) down-chirp, and (c) received coded LoRa signals.

Figure 8. Reception spectrogram.
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Figure 9. Real component of a received LoRa frame signal.

To decode the image information and find the original values (wavelet transform
representation), a program was created that converts the received data (LoRa symbols)
into their base representation again. Decoding the received data is required to restore the
image. As a result, a vector of similar length must be integrated among the many packets
received. This vector contains information on wavelet transform output values, positions,
and negative value positions. After using the reconstruction procedure to rebuild the vector
using their features, the original vector of information is recovered using wavelet inverse
transform. Finally, the initial size of matrix nxn must be adjusted, and the image must be
screened. The framework’s final section illustrates the differences between the original
and rebuilt images. Figure 10 depicts a sample of the original image in (a), a reconstructed
image with a sparse percentage of 90 and a PSNR value of 30.02 dB in (b), and a sparse
percentage of 95 and a PSNR value of 26.81 dB in (c).

(a) (b) (c)

Figure 10. (a) original image, (b) reconstructed image with a percentage of 90% sparsity with a PSNR
of 30.02 dB, and (c) reconstructed image with a percentage of 95% sparsity with a PSNR of 26.81 dB.

5. Discussion

Wireless networks are used in a wide range of applications every day, LPWAN tech-
nologies are used in IoT scenarios, while their low data transfer capacity limits their use to
low-payload applications. This article presents a framework to transport images through
the use of LoRa modulation. Processing and classification, compressive sensing, transmis-
sion and receiving of LoRa symbols, postprocessing, and image reconstruction techniques
were all employed for this goal.

Previous research has revealed how to transfer images using LoRaWAN networks. See
Table 1. Nevertheless, there is very little information available about these proposals, and to
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the best of our knowledge, there are no LoRa modulation implementations in transmitters
and receivers with open platforms; thus, not only is a framework to transport images with
a LoRa modulation into LPWAN networks shown, this work also shows how it can be
implemented in SDR devices, allowing for future tests to improve the technology.

6. Conclusions

We have used this proposal to transport an image with LoRa modulation. Within our
proposal, images of 128× 128 pixels of information were taken. Thus, information can be
reduced until 95% using processing and classification techniques and CS process. With
only one frequency channel (ISM band) and four (4) packets, the transmission time for an
image is decreased to 2.51 s. The usage of SDR devices in the implementation allows us to
better understand this technology and work on possible protocol changes in the future.

Some remarks are presented to communicate images through LoRa modulation, thus
is possible to observe:

1. Finding a way to capture the image directly in the crop is required because the image
is placed on a neutral background in the manner given in this article. There are
several conditions that must be met while taking a photograph in an uncontrolled
environment, such as brightness, shades, angle of incidence of the sun, and more.
These factors have an impact on the real image and can lead to representation and
classification problems.

2. Integrate a complete system capable of taking an image, compressing it, transmitting
and receiving, reconstructing the information, and finally displaying it. As a result, the
phases must be integrated into the proposed framework, which executes the processes
through an autonomous system that performs all of the processes independently.
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IoT Internet of Things
LPWAN Low-Power Wide-Area Networks
CS Compressive Sensing
LTE-M Long-Term Evolution Machine
NB-IoT Narrow Band-IoT
ISM Industrial, Scientific, and Medical
SF Spreading Factor
BW Bandwidth
ToA Time over the Air
SDR Software-Defined Radio
PSNR Peak Signal-to-Noise Ratio
CSMA Carrier Sense Multiple Access
IHT Iterative Hard Thresholding
OMP Orthogonal Matching Pursuit
GPSR Gradient Projection for Sparse Reconstruction
Twist Two-Step Iterative Shrinkage/Thresholding
MIMO Multiple In Multiple Out
SIMO Single In Multiple Out
MSE Mean Squared Error
FFT Fast Fourier Transform

Appendix A

Math Symbols:
The math symbols are described in Appendix A.
The following math symbols are used in this article:
Compressing sensing:

• N: Information vector.
• n: Rows/columns of matrix.
• s: Signal.
• S: Vector.
• R: Image dimension.
• k: Dispersion relation.
• f: Linear transformation.
• M: Sampled information.

Postprocessing and reconstruction:

• S: Resolution vector.
• MSE: Mean Squared Error.
• m,n: Lenght nd width of image.
• I: Intensity of pixels in transmitter node.
• K: Intensity of pixels in receiver node.
• Scss: Chirp spread spectrum signal.
• t: Period.
• BW: Bandwidth.
• Ts: Symbol time.
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