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Abstract: Digital mammography has become a first-line diagnostic tool for clinical breast cancer
screening due to its high sensitivity and specificity. Mammographic compression force is closely asso-
ciated with image quality and patient comfort. Therefore, optimizing breast compression parameters
is essential. Subjects were recruited for digital mammography and breast magnetic resonance imaging
(MRI) within a month. Breast MRI images were used to calculate breast volume and volumetric
breast density (VBD) and construct finite element models. Finite element analysis was performed
to simulate breast compression. Simulated compressed breast thickness (CBT) was compared with
clinical CBT and the relationships between compression force, CBT, breast volume, and VBD were
established. Simulated CBT had a good linear correlation with the clinical CBT (R2 = 0.9433) at
the clinical compression force. At 10, 12, 14, and 16 daN, the mean simulated CBT of the breast
models was 5.67, 5.13, 4.66, and 4.26 cm, respectively. Simulated CBT was positively correlated with
breast volume (r > 0.868) and negatively correlated with VBD (r < –0.338). The results of this study
provides a subject-specific and evidence-based suggestion of mammographic compression force for
radiographers considering image quality and patient comfort.

Keywords: mammography; breast magnetic resonance imaging; compressed breast thickness;
compression force

1. Introduction

Digital mammography has high sensitivity and specificity for detecting microcalci-
fication and mass in breasts [1]. It has become a front-line tool for clinical screening for
breast cancer. However, the breast must be mechanically compressed during examinations.
Insufficient compression force results in high compressed breast thickness (CBT), which
reduces image quality and increases breast dose [2]. On the other hand, vigorous compres-
sion makes the patient uncomfortable during imaging procedures [3]. Some women even
refuse mammography because of the painful experience. The compression force is closely
related to breast volume and density [4]. Therefore, the use of breast tissue information
may help us to determine objective recommendations for mammographic compression.

Asian women generally have denser mammary glandular tissue, and breast cancer
occurs at a younger age compared with women in Europe and the United States. Breast
ultrasound is often the first examination, especially for those who already have symptoms.
However, breast ultrasound cannot detect microcalcifications in the case of carcinoma in situ.
Digital mammography has thus become the primary method of screening asymptomatic
and high-risk women. Breast tomosynthesis is a new technique that has been designed
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to reduce tissue overlap for the extremely dense breast. It provides better visualization
and characterization of tumor mass, asymmetric density, and architectural distortion in
the breast, thus reducing the number of unnecessary biopsies. Breast magnetic resonance
imaging (MRI) has increasingly been used for the diagnosis of mammographically occult
cancer [5]. Breast MRI provides three-dimensional and multi-axis imaging with high tissue
contrast, making it suitable for evaluating breast volume and density and constructing
digital breast models.

To bridge the gap between breast MRI and mammography, simulation of breast com-
pression using the finite element method (FEM) has been performed for breast tumor
excision [6] and breast imaging [7]. Shih et al. [8] used MR images and the hyperelastic
model to simulate four cases of breast compression in craniocaudal (CC) and mediolat-
eral oblique (MLO) views. Thanoon et al. [9] applied the neo-Hookean model to simu-
late breast deformation after breast preservation therapy. Pianigiani et al. [10] inserted
several nodules into the breast model to predict a large deformation of breast tissue.
Lapuebla-Ferri et al. [11] produced virtual mammograms and tracked breast lesions across
different views. Other studies have investigated the deformation and registration of breast
lesions between different imaging modalities [12–14]. To our best knowledge, no studies
have performed clinical validation of mammographic CBT for FEM simulation.

In clinical practice, the compression force applied for digital mammography is highly
dependent on radiologic technologists [15]. Currently, there are no scientific recommen-
dations regarding the appropriate compression force or CBT during mammography. The
objective of this study was to establish the relationships between compression parame-
ters of mammography and tissue parameters of breast MRI using FEM. Bridging the gap
between these two modalities can provide evidence-based mammographic compression
guidance under consideration of patient comfort, image quality, and radiation dose.

2. Materials and Methods
2.1. Case Collection

A total of 65 subjects were recruited for digital mammography and breast MRI within
one month. The age of the subjects ranged from 45 to 69 years, with a mean age of 49 years.
The inclusion criteria were women over 45 years of age and registered in the Taiwanese
National Cancer Screening Program for breast cancer screening every two years. The exclu-
sion criteria were women who had any of the following conditions: suspected or confirmed
breast tumors, breast implants, and breast mastectomy. The research procedures were
approved by the Institutional Review Board of Chi Mei Medical Center (No. 10002-012),
and all subjects gave their written informed consent.

2.2. Image Acquisition

A Senographe DS system (GE Healthcare, Milwaukee, WI, USA) was used to perform
digital mammography. The CC view was acquired with a compression force greater
than 10 daN, which is recommended by the Taiwan Health Promotion Administration for
full-field digital mammography. If subjects verbally expressed severe pain during breast
compression, their image data were excluded from the analysis. The corresponding CBT
was recorded and the breast imaging reporting and data system (BI-RADS) classification
was performed according to the 5th edition of BI-RADS [16]. For breast MRI, an Aurora
1.5T dedicated breast MRI system (Aurora Imaging Technology, North Andover, MA, USA)
was used to acquire T2 images with a flip angle of 45 degrees, a repetition time (TR) of
29 ms, an echo time (TE) of 4.8 ms, and a slice thickness of 1.125 mm. Each breast MRI
dataset comprised 160 axial images, and each image had a matrix size of 512 × 512 and a
pixel size of 0.7 × 0.7 mm2.

In terms of image quality, mammograms should have uniform exposure, good image
contrast, full tissue coverage, correct breast positioning, and no motion blurring, whereas
breast MR images should not have motion artifacts, inhomogeneous fat saturation, phase
wrap, and chemical shift. The acquired images were further verified for the above criteria
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by a senior radiologist. Finally, a total of 40 breast datasets with both MR images and
mammograms were used for modeling and compression simulation.

2.3. Image Segmentation

Three-dimensional breast models were constructed using MR images. A standard
region growth algorithm was applied with a seed point manually placed in the breast to
outline the contours of the breast. The chest wall and pectoralis major were excluded from
the calculation of breast volume. Glandular tissue was then segmented using pixel values
ranging from 900 to 1000 according to the histogram of MR images. The difference set
between the entire breast and the glandular region was taken as adipose tissue. Volumetric
breast density (VBD) was calculated as the ratio of glandular volume Vg to breast volume
Vb. Figure 1 shows a computer-aided design (CAD) model with a breast volume of
286.8 cm3 and a VBD of 18.9%.
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286.8 cm3, 54.0 cm3, and 18.9%, respectively.

2.4. Finite Element Modeling

A two-dimensional (2D) mesh was built using a set of quads to define the outer surface
of breast models. A tetrahedral volume mesh was then generated with an edge length of the
element of 4 mm to compose the internal structure. On average, a total of 3270 nodes and
28,977 elements were required to compose a model. Abaqus (Dassault Systèmes, Waltham,
MA, USA) was used to simulate compression of the breast model, where the Mooney-Rivlin
biomechanical model was applied to address tissue behavior. The C10 and C01 material
parameters of the biomechanical model were set as 2000 Pa and 1333 Pa, respectively, for
adipose tissue and 3500 and 2333.3 Pa for glandular tissue [17].

The breast model was placed between a fixed support paddle and a compression
paddle which exerted a downward movement during compression. The displacement of
the nodes belonging to the chest wall and pectoralis muscle was set to zero as a boundary
condition. During FEM simulation, the applied force and the corresponding paddle dis-
placement were recorded. The distance between the two paddles is denoted as simulated
CBT. The clinical CBT of the subject was compared with the simulated CBT at the clinical
compression force of the subject. Furthermore, the breast model was compressed by 10, 12,
14, and 16 daN to investigate the simulated CBT as a function of breast volume and VBD.

3. Results

Figure 2 illustrates the distributions of clinical CBT obtained from digital mammog-
raphy and breast volume and VBD obtained from breast MRI. The clinical CBT ranged
from 2.3 to 8.1 cm with a mean value of 4.68 cm, which is similar to the average CBT of
Taiwanese women [18]. The breast volume ranged from 232 to 1358 cm3 with a mean value
of 575.7 cm3, and VBD ranged from 1.4% to 42.5% with a mean VBD of 16.0%. Figure 3a
shows the correlation between breast volume and clinical CBT with a Pearson correlation
coefficient r of 0.900 (p < 0.001), suggesting a significant positive correlation. Figure 3b
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shows the correlation between VBD and clinical CBT. A moderately negative correlation
(r = –0.474, p < 0.05) was observed.
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Figure 3. (a) Strong positive correlation between breast volume and clinical CBT (r = 0.900) and
(b) moderately negative correlation between VBD and clinical CBT (r = −0.474).

The box plot of VBD obtained from breast MRI for different categories of BI-RADS
obtained from mammography is shown in Figure 4. The most frequently occurred BI-RADS
category was c, followed by d and b, and the corresponding mean VBD was 14.7, 19.7, and
3.6%. No cases of category a were recorded. Although the VBD and BI-RADS category
exhibited a positive correlation, the widespread and overlapping distribution of VBD
between each category infers that the BI-RADS classification is influenced by observers and
cannot accurately quantify breast density.

Figure 5 shows the compression force as a function of paddle displacement for dif-
ferent volumes of breast models. The compression force increased dramatically when the
displacement exceeded 60 mm. The breast volume did not significantly affect the shape
of the curve. Figure 6 illustrates node displacement in the compressed breast model of
the left breast of a 52-year-old woman, whose breast tissue parameters are Vb = 670.3 cm3,
Vg = 155.6 cm3, and VBD = 23.2%. At the same compression force of 15 daN, the simulated
CBT and the clinical CBT were 5.6 cm and 5.3 cm, respectively. The tissue in the outer
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region of the breast model was moved outward and backward, whereas the tissue in the
inner region was moved outward and forward.
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Figure 7a shows the scatter plot of the simulated CBT obtained from the breast models
and the clinical CBT obtained from mammography at the same clinical compression force.
The simulated CBT increased as the clinical CBT increased with good fitting linearity
(R2 = 0.9433). The studentized residual as a function of clinical CBT is shown in Figure 7b.
The residuals were randomly scattered without showing any noticeable trend. A paired
sample t-test was performed at a 95% confidence level, showing no significant differences
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(p = 0.564). These results demonstrate the accuracy of FEM and mechanical deformation of
the breast models.
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The simulated CBT as a function of breast volume for different compression forces
is shown in Figure 8a. The average simulated CBT at 10, 12, 14, and 16 daN was 5.67,
5.13, 4.66, and 4.26 cm, respectively. The simulated CBT was highly positively correlated
with breast volume (r > 0.868, p < 0.001). In Figure 8b, the simulated CBT was plotted
against VBD, demonstrating moderate negative correlations at 10, 12, 14, and 16 daN
(r < −0.338, p < 0.05). Combined with the results in Figure 3, once a patient’s breast volume
or VBD is known through the linear fitting of clinical CBT or directly measuring from
MRI or Volpara software [19], we can obtain an appropriate compression force and CBT as
clinical recommendations.
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4. Discussion

The dense breast has more glandular tissue and a higher chance of developing breast
cancer [20]. Therefore, several evaluation methods of mammographic parenchymal patterns
have been proposed to classify mammographic density, in which the BI-RADS classification
divides the breast into four categories, namely extremely dense, heterogeneously dense,
scattered, and entirely fatty. Although the BI-RADS category has a strong positive corre-
lation with VBD (Figure 4), it is a qualitative surrogate, and the quantity it represents is
not explicit [21]. The correlation between VBD and clinical CBT established in this study
(Figure 3b) makes the clinical CBT a potential density indicator for assessing breast cancer
risk [22]. High-risk subjects should be mammographically screened at a higher frequency
or perform additional breast MRI.

A total of 65 subjects were randomly recruited for this study. The distributions of their
CBT, breast volume, and VBD (Figure 2) matched very well with the clinical distributions
of Taiwanese women investigated by Dong et al. [18], indicating there is no sampling bias.
Such non-uniform sampling does not affect the applicability of the fitting results, while it
can provide more accurate compression parameters for most clinical conditions. In other
words, the extreme clinical CBT, breast volume, or VBD contribute less to the fitting results
and will not significantly affect the suggested compression parameters.

The Mooney-Rivlin model is a kind of hyperelastic model. Although the hyperelastic
model has been proven to have more accurate results in breast deformation than the linear
model [7], the reliability of the Mooney-Rivlin model in breast compression simulation has
not been clinically validated. In this study, the Mooney–Rivlin model was used to perform
CBT simulation for different compression forces. The comparison of simulated CBT and
clinical CBT shows the accuracy and robustness of the Mooney–Rivlin model, which makes
bridging breast MRI and digital mammography possible.

Simulated CBT has a strong positive correlation with breast volume and a moder-
ate negative correlation with VBD. However, other studies have demonstrated a strong
negative correlation between CBT and breast density [23,24]. The main reason for this
inconsistency is that previous studies used physical tissue-equivalent phantoms, whereas
this study used subject-specific breast models. In addition to breast density and volume,
the distribution of glandular tissue and breast geometry also affect CBT. Therefore, the
correlations we established are more clinically representative.
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In clinical practice, a wide variation in the applied compression force is observed in
Taiwan. This variation is highly dependent on radiographers and screening sites. The
reason for this is that no subject-specific guidelines are currently available for radiographers,
who can only rely on their own experience of what suitable compression force is. Based
on our findings, a suitable CBT recommendation is provided according to breast volume
or VBD information (Figure 3). Then, radiographers can select an optimized compression
force to achieve good image quality and avoid patient discomfort (Figure 8). If there are no
MR images to obtain breast volume and VBD, we can still use Volpara software or BI-RADS
classification to estimate this information [25].

In terms of reducing the discomfort associated with breast compression, recent studies
investigated the use of pressure control instead of force control of the compression pad-
dles [26–28]. Although the technique showed the ability to reduce pain, it is a trade-off from
thicker CBT. The potential degradation of image quality, mean glandular dose (MGD), and
diagnostic performance of mammography is not taken into account during the pressure
control procedure. Recently, a large-scale clinical study showed that there were no clinically
relevant differences in the pain scores of patients and the compression parameters between
the pressure-controlled paddle and the force-controlled paddle [29]. In addition, there was
a higher variation of the applied pressure in relation to the breast contact area than the
applied compression force [30]. The force-controlled compression technique is still the most
used method in the existing mammography and the standard technique recommended
by the health care authorities of most countries. Our proposed method is based on the
force-controlled compression technique at 10 daN suggested by the mammographic guide-
line. Patient comfort, image quality, and breast positioning are all taken into account. In
addition, this method can be implemented on existing mammography instruments, which
is worth promoting in clinical practice.

In addition to providing optimal breast compression parameters, the results of this
study can also be applied to breast dosimetry. Currently, MGD, which is the product of the
normalized glandular dose (DgN) coefficient and the entrance skin kerma, is widely used
for mammography [31]. The DgN coefficient is a function of breast volume, breast density,
and CBT. Using the relationships established in this study, once the compression thickness
and compression force are known, the breast volume and density can be estimated to index
the DgN coefficient and calculate MGD [32]. The incidence of radiation-induced secondary
breast malignancy can be further assessed [33].

Women at high risk of breast cancer are often advised to have early mammography
and MRI exams, and to increase the frequency of regular breast cancer screening and
follow-up with mammography. Through the evidence-based methodology proposed in this
study, the tissue information provided by breast MRI can be applied to optimize clinical
breast compression parameters for mammography. This allows women to avoid pain and
increase compliance with frequent mammography exams while reducing radiation dose to
the breast glandular tissue and maintaining the image quality of mammograms.

The limitation of this study is that although the recommended compression force
and CBT can be applied to the majority of women, some women may not be able to
achieve the recommended parameters due to their particular sensitivity to pain or extreme
breast sizes. Radiographers can still refer to the fitting formulas of this study and make
appropriate adjustments. In addition, our proposed fitting results may not be suitable for
other countries, mainly because of the differences in the distributions of breast volume and
density and the breast compression technique used.

5. Conclusions

The relationships between mammographic compression parameters and breast tissue
information were established through the construction of subject-specific breast models and
the FEM compression simulation. The simulated CBT was highly positively correlated with
breast volume and moderately negatively correlated with VBD at 10 to 16 daN. Through
this study, a suitable CBT is offered according to breast tissue information. A personalized
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and evidence-based compression force suggestion can be provided to radiographers taking
into account image quality, patient comfort, and radiation dose.

Author Contributions: Conceptualization, J.W.; methodology, T.-Y.C. and Y.-L.L.; software, H.-C.L.;
validation, P.-Y.L. and Y.-L.L.; investigation, P.-Y.L. and Y.-L.L.; resources, T.-Y.C.; data curation,
T.-Y.C.; writing—original draft preparation, J.W.; writing—review and editing, J.W., T.-Y.C. and D.L.;
visualization, P.-Y.L. and Y.-L.L.; supervision, J.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Cheng Hsin General Hospital under the grant number
CY10904 and by the Ministry of Science and Technology, Taiwan under the grant number MOST
111-2623-E-A49-002-NU.

Data Availability Statement: The data presented in this study are available on request from the
first author.

Acknowledgments: The authors thank Mei Lan Huang from Chi Mei Medical Center, Tainan, Taiwan,
for case collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lehman, C.D.; Wellman, R.D.; Buist, D.S.; Kerlikowske, K.; Tosteson, A.N.; Miglioretti, D.L. Diagnostic accuracy of digital

screening mammography with and without computer-aided detection. Acta Radiol. 2015, 175, 1828–1837. [CrossRef] [PubMed]
2. Suleiman, M.E.; Brennan, P.C.; McEntee, M.F. Diagnostic reference levels in digital mammography: A systematic review. Radiat.

Prot. Dosim. 2015, 167, 608–619. [CrossRef] [PubMed]
3. Moshina, N.; Sagstad, S.; Sebuødegård, S.; Waade, G.G.; Gran, E.; Music, J.; Hofvind, S. Breast compression and reported pain

during mammographic screening. Radiography 2020, 26, 133–139. [CrossRef] [PubMed]
4. Dong, S.L.; Chu, T.C.; Lin, Y.C.; Lan, G.Y.; Yeh, Y.H.; Chen, S.; Chuang, K.S. Determination of equivalent breast phantoms for

different age groups of Taiwanese women: An experimental approach. Med. Phys. 2011, 38, 4094–4100. [CrossRef]
5. Partovi, S.; Sin, D.; Lu, Z.; Sieck, L.; Marshall, H.; Pham, R.; Plecha, D. Fast MRI breast cancer screening—Ready for prime time.

Clin. Imaging 2020, 60, 160–168. [CrossRef]
6. Esslinger, D.; Rapp, P.; Knödler, L.; Preibsch, H.; Tarín, C.; Sawodny, O.; Brucker, S.Y.; Hahn, M. A novel finite element model-based

navigation system-supported workflow for breast tumor excision. Med. Biol. Eng. Comput. 2019, 57, 1537–1552. [CrossRef]
7. Garcia, E.; Diez, Y.; Diaz, O.; Llado, X.; Marti, R.; Marti, J.; Oliver, A. A step-by-step review on patient-specific biomechanical

finite element models for breast MRI to x-ray mammography registration. Med. Phys. 2018, 45, e6–e31. [CrossRef]
8. Shih, T.C.; Chen, J.H.; Liu, D.; Nie, K.; Sun, L.; Lin, M.; Chang, D.; Nalcioglu, O.; Su, M.Y. Computational simulation of breast

compression based on segmented breast and fibroglandular tissues on magnetic resonance images. Phys. Med. Biol. 2010, 55,
4153–4168. [CrossRef]

9. Thanoon, D.; Garbey, M.; Bass, B.L. Deriving indicators for breast conserving surgery using finite element analysis. Comput.
Methods Biomech. Biomed. Eng. 2015, 18, 533–544. [CrossRef]

10. Pianigiani, S.; Ruggiero, L.; Innocenti, B. An anthropometric-based subject-specific finite element model of the human breast for
predicting large deformations. Front. Bioeng. Biotechnol. 2015, 3, 201. [CrossRef]

11. Lapuebla-Ferri, A.; Cegonino-Banzo, J.; Jimenez-Mocholi, A.J.; Del Palomar, A.P. Towards an in-plane methodology to track breast
lesions using mammograms and patient-specific finite-element simulations. Phys. Med. Biol. 2017, 62, 8720–8738. [CrossRef]
[PubMed]

12. Green, C.A.; Goodsitt, M.M.; Brock, K.K.; Davis, C.L.; Larson, E.D.; Lau, J.H.; Carson, P.L. Deformable mapping technique
to correlate lesions in digital breast tomosynthesis and automated breast ultrasound images. Med. Phys. 2018, 45, 4402–4417.
[CrossRef] [PubMed]

13. Ismail, H.M.; Pretty, C.G.; Signal, M.K.; Haggers, M.; Chase, J.G. Finite element modelling and validation for breast cancer
detection using digital image elasto-tomography. Med. Biol. Eng. Comput. 2018, 56, 1715–1729. [CrossRef] [PubMed]

14. Mehrabian, H.; Richmond, L.; Lu, Y.; Martel, A.L. Deformable registration for longitudinal breast MRI screening. J. Digit. Imaging
2018, 31, 718–726. [CrossRef]

15. Waade, G.G.; Moshina, N.; Sebuodegard, S.; Hogg, P.; Hofvind, S. Compression forces used in the Norwegian Breast Cancer
Screening Program. Br. J. Radiol. 2017, 90, 20160770. [CrossRef]

16. Rao, A.A.; Feneis, J.; Lalonde, C.; Ojeda-Fournier, H. A pictorial review of changes in the BI-RADS Fifth Edition. Radiographics
2016, 36, 623–639. [CrossRef]

17. Yin, H.M.; Sun, L.Z.; Wang, G.; Yamada, T.; Wang, J.; Vannier, M.W. ImageParser: A tool for finite element generation from
three-dimensional medical images. Biomed. Eng. Online 2004, 3, 31. [CrossRef]

18. Dong, S.L.; Chu, T.C.; Lan, G.Y.; Lin, Y.C.; Yeh, Y.H.; Chuang, K.S. Development of an adjustable model breast for mammographic
dosimetry assessment in Taiwanese women. AJR Am. J. Roentgenol. 2011, 196, W476–W481. [CrossRef]

http://doi.org/10.1001/jamainternmed.2015.5231
http://www.ncbi.nlm.nih.gov/pubmed/26414882
http://doi.org/10.1093/rpd/ncu365
http://www.ncbi.nlm.nih.gov/pubmed/25543130
http://doi.org/10.1016/j.radi.2019.10.003
http://www.ncbi.nlm.nih.gov/pubmed/32052779
http://doi.org/10.1118/1.3591989
http://doi.org/10.1016/j.clinimag.2019.10.013
http://doi.org/10.1007/s11517-019-01977-0
http://doi.org/10.1002/mp.12673
http://doi.org/10.1088/0031-9155/55/14/013
http://doi.org/10.1080/10255842.2013.820716
http://doi.org/10.3389/fbioe.2015.00201
http://doi.org/10.1088/1361-6560/aa8d62
http://www.ncbi.nlm.nih.gov/pubmed/29091591
http://doi.org/10.1002/mp.13113
http://www.ncbi.nlm.nih.gov/pubmed/30066340
http://doi.org/10.1007/s11517-018-1804-5
http://www.ncbi.nlm.nih.gov/pubmed/29524117
http://doi.org/10.1007/s10278-018-0063-1
http://doi.org/10.1259/bjr.20160770
http://doi.org/10.1148/rg.2016150178
http://doi.org/10.1186/1475-925X-3-31
http://doi.org/10.2214/AJR.09.3700


Electronics 2022, 11, 1784 10 of 10

19. Fedon, C.; Caballo, M.; García, E.; Diaz, O.; Boone, J.M.; Dance, D.R.; Sechopoulos, I. Fibroglandular tissue distribution in
the breast during mammography and tomosynthesis based on breast CT data: A patient-based characterization of the breast
parenchyma. Med. Phys. 2021, 48, 1436–1447. [CrossRef]

20. Wanders, J.O.P.; van Gils, C.H.; Karssemeijer, N.; Holland, K.; Kallenberg, M.; Peeters, P.H.M.; Nielsen, M.; Lillholm, M. The
combined effect of mammographic texture and density on breast cancer risk: A cohort study. Breast Cancer Res. 2018, 20, 36.
[CrossRef]

21. Sartor, H.; Lang, K.; Rosso, A.; Borgquist, S.; Zackrisson, S.; Timberg, P. Measuring mammographic density: Comparing a fully
automated volumetric assessment versus European radiologists’ qualitative classification. Eur. Radiol. 2016, 26, 4354–4360.
[CrossRef] [PubMed]

22. McCormack, V.A.; dos Santos Silva, I. Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis.
Cancer Epidemiol. Biomark. Prev. 2006, 15, 1159–1169. [CrossRef] [PubMed]

23. Geise, R.A.; Palchevsky, A. Composition of mammographic phantom materials. Radiology 1996, 198, 347–350. [CrossRef]
[PubMed]

24. Jamal, N.; Ng, K.H.; McLean, D.; Looi, L.M.; Moosa, F. Mammographic breast glandularity in Malaysian women: Data derived
from radiography. AJR Am. J. Roentgenol. 2004, 182, 713–717. [CrossRef] [PubMed]

25. Lee, H.N.; Sohn, Y.M.; Han, K.H. Comparison of mammographic density estimation by Volpara software with radiologists’
visual assessment: Analysis of clinical-radiologic factors affecting discrepancy between them. Acta Radiol. 2015, 56, 1061–1068.
[CrossRef]

26. de Groot, J.E.; Branderhorst, W.; Grimbergen, C.A.; den Heeten, G.J.; Broeders, M.J.M. Towards personalized compression in
mammography: A comparison study between pressure-and force-standardization. Eur. J. Radiol. 2015, 84, 384–391. [CrossRef]
[PubMed]

27. de Groot, J.E.; Hopman, I.G.M.; van Lier, M.; Branderhorst, W.; Grimbergen, C.A.; den Heeten, G.J. Pressure-standardised
mammography does not affect visibility, contrast and sharpness of stable lesions. Eur. J. Radiol. 2017, 86, 289–295. [CrossRef]

28. Moshina, N.; Larsen, M.; Holen, Å.S.; Waade, G.G.; Aase, H.S.; Hofvind, S. Digital breast tomosynthesis in a population based
mammographic screening program: Breast compression and early performance measures. Eur. J. Radiol. 2021, 139, 109665.
[CrossRef]

29. Jeukens, C.; van Dijk, T.; Berben, C.; Wildberger, J.E.; Lobbes, M.B.I. Evaluation of pressure-controlled mammography compression
paddles with respect to force-controlled compression paddles in clinical practice. Eur. Radiol. 2019, 29, 2545–2552. [CrossRef]

30. Serwan, E.; Matthews, D.; Davies, J.; Chau, M. Mechanical standardisation of mammographic compression using Volpara
software. Radiography 2021, 27, 789–794. [CrossRef]

31. Boone, J.M. Normalized glandular dose (DgN) coefficients for arbitrary X-ray spectra in mammography: Computer-fit values of
Monte Carlo derived data. Med. Phys. 2002, 29, 869–875. [CrossRef] [PubMed]

32. Chang, T.Y.; Lai, K.J.; Tu, C.Y.; Wu, J. Three-layer heterogeneous mammographic phantoms for Monte Carlo simulation of
normalized glandular dose coefficients in mammography. Sci. Rep. 2020, 10, 2234. [CrossRef] [PubMed]

33. NRC. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2; National Academies Press: Washington, DC,
USA, 2006; Volume 7.

http://doi.org/10.1002/mp.14716
http://doi.org/10.1186/s13058-018-0961-7
http://doi.org/10.1007/s00330-016-4309-3
http://www.ncbi.nlm.nih.gov/pubmed/27011371
http://doi.org/10.1158/1055-9965.EPI-06-0034
http://www.ncbi.nlm.nih.gov/pubmed/16775176
http://doi.org/10.1148/radiology.198.2.8596830
http://www.ncbi.nlm.nih.gov/pubmed/8596830
http://doi.org/10.2214/ajr.182.3.1820713
http://www.ncbi.nlm.nih.gov/pubmed/14975974
http://doi.org/10.1177/0284185114554674
http://doi.org/10.1016/j.ejrad.2014.12.005
http://www.ncbi.nlm.nih.gov/pubmed/25554008
http://doi.org/10.1016/j.ejrad.2016.11.030
http://doi.org/10.1016/j.ejrad.2021.109665
http://doi.org/10.1007/s00330-018-5953-6
http://doi.org/10.1016/j.radi.2020.12.009
http://doi.org/10.1118/1.1472499
http://www.ncbi.nlm.nih.gov/pubmed/12033583
http://doi.org/10.1038/s41598-020-59317-4
http://www.ncbi.nlm.nih.gov/pubmed/32042071

	Introduction 
	Materials and Methods 
	Case Collection 
	Image Acquisition 
	Image Segmentation 
	Finite Element Modeling 

	Results 
	Discussion 
	Conclusions 
	References

