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Abstract: Lithium-ion batteries are an ideal power supplier for electric vehicles (EVs) due to their high-
power density and wide operating voltage, but their performance decays to 80% before retirement
from EVs. Nevertheless, they still have a particular use value after decommissioning, so recycling
the retired power battery in cascade can be considered. Therefore, accurate estimation of battery
state-of-charge (SoC) and state-of-health (SoH) is crucial for extending the service life and echelon
utilization of power lithium-ion battery packs. This paper proposes a comprehensive co-estimation
scheme of battery SoC/SoH for the second-use of lithium-ion power batteries in EVs under different
cycles using an adaptive extended Kalman filter (AEKF). First, according to the collected battery
test data at different aging cycle levels, the external battery characteristics are analyzed, and then a
cycle-dependent equivalent circuit model (cECM) is built up. Next, the parameter estimation of this
battery model is performed via a recursive least square (RLS) algorithm. Meanwhile, the variations
in internal battery parameters of the cycle numbers are fitted and synthesized. Moreover, validation
of the estimated parameters is further carried out. Based on this enhanced battery model, the AEKF
algorithm is utilized to fulfill battery SoC/SoH estimation simultaneously. The estimated results
of SoC/SoH are obtained for a LiCoO2 cell in the case of CCC (constant current condition) under
different cycle times. The results show that this proposed co-estimation scheme can predict battery
SoC and SoH well, wherein the peak values of the SoC errors are less than 2.2%, and the peak values
of SoH, calculated by the estimated capacity and internal resistance, are less than 1.7% and 2.2%,
respectively. Hence, this has important guiding significance for realizing the cascade utilization of
lithium-ion power batteries.

Keywords: retired lithium-ion battery; second use; cycle-dependent equivalent circuit model; adap-
tive extended Kalman filter; state-of-charge; state-of-health

1. Introduction

With the booming electric vehicle market, lithium-ion batteries (LIBs) are widely used
as a power candidate for electric vehicles (EVs) [1,2]. However, when the performance of
an EV’s power battery pack drops to 80% of the original implementation of a new one, it
is no longer suitable for use in EVs. After the power LIBs are retired, they maintain high
safety and use values. When these power batteries are recycled, it causes waste of resources
and environmental pollution. Therefore, it is possible to consider cascade recycling of the
retired power LIBs. Both state-of-charge (SoC) and state-of-health (SoH) are two important
indicators for second-use LIBs. Hence, the accurate estimation of battery SoC/SoH for
lithium-ion power batteries is crucial for increasing the operation range of EVs as well as
prolonging the service life and second use of the power LIBs [3–5].

It is well known that battery SoC is a vital real-time indicator of the residual capacity
of a battery cell/system with respect to its rated capacity. It helps to predict the remaining
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mileage and driving time of EVs. To date, many researchers and scholars have contributed
to the SoC estimation algorithm for various types of LIBs; current SoC estimation methods
mainly include the coulomb counting approach [6,7], the model-based open circuit voltage
(OCV) approach [8–10], the neural network model approach [11–13], the Kalman filter (KF)
family approach [14–16], etc. Here, the KF-based approach is an effective method that
integrates coulomb-counting technology with model-based OCV prediction. In particular,
KF-based SoC estimation has been widely applied in recent decades due to its accuracy
and robustness. It is important to note that battery SoH is usually employed to depict
the aging performance of LIBs, which is reflected by the capacity loss or the resistance
increment [17], and the existing SoH estimation methods are mainly divided into two
categories: experimental analysis methods and model-based approaches. Experimental
analysis methods include direct measurement methods, the voltage trace method [18]
and approaches based on an incremental capacity analysis (ICA) [19] and differential
voltage analysis (DVA), etc. Model-based algorithms include the Kalman filter family
algorithms [20], particle filter algorithms [21], neural network algorithms [22,23], support
vector machines [24,25], genetic algorithms [26], artificial intelligence algorithms [27] and
data-driven methods [28,29]. With flourishing use of EVs, the batteries’ capacities and
internal resistances often vary with aging cycle times, which reduces the estimation accuracy
of battery SoC and SoH, especially when the battery has been charged and discharged after
many cycle times. Therefore, to make the estimation of battery SoC and SoH reasonable
and effective, it is challenging to consider the cycle times. Battery SoC/SoH estimation
methods are summarized in Tables 1 and 2, respectively.

Recently, a number of research papers have reported on the battery aging cycle, in-
cluding capacity estimation, resistance estimation, SoH estimation and remaining useful
life (RUL) estimation. For example, capacity fade can be modeled by using two exponential
functions of discharge cycles and analyzing the battery data in [30]. An empirical model
based on the physical degradation phenomena of LIBs was developed, and the RUL was
predicted based on data available through battery capacity monitoring. Xing et al. [21] con-
structed an ensemble model to capture the capacity degradation and predict the battery’s
remaining functional performance. Zhang et al. [31] proposed a stochastic framework in
terms of the SoC estimation to predict the remaining discharge time based on the Thevenin
model, and the experimental results demonstrated that the proposed prediction frame-
work had great effectiveness as it has the capability of accurately predicting the remaining
discharge time under different operations and uncertainties. Liang et al. [32] used ohmic
resistance as a SoH indicator to evaluate the batteries’ performances by combining the
equivalent circuit model (ECM) and data-driven model; the results showed that the pro-
posed method was feasible for the implementation of a battery management system in
real-world EVs. Wu et al. [33] proposed a SoH estimation method based on the long
short-term memory (LSTM) by using the voltage profile acquired during the charging and
discharging process through the cycle life test; a grey relation analysis and the entropy
weight method were employed to analyze the healthy features, and the LSTM technique
was then established to achieve the SOH estimation of LIBs.

Most of the aforementioned studies on the battery life cycle only focus on one battery
state, such as the battery SoC, SoH, RUL, capacity, internal resistance, etc.; however, there
are a few studies that focus on two states. These include Li et al. [34], who proposed
a co-estimation scheme based on ECM for battery capacity and SoC estimations. The
recursive least squares (RLS) method and an adaptive extended Kalman filter (AEKF)
were combined to attain an online parameters identification model and SoC estimation.
Hu et al. [35] determined the SoC reliance of the nominal parameters of a Thevenin model,
and the performance degradation of the nominal model over the battery lifetime was
quantified. Then, the SoC was estimated in real-time utilizing a second-order EKF, and the
SoH (the capacity and internal ohmic resistance) was updated offline in a fourth-order EKF.
Ouyang et al. [36] proposed a co-estimation scheme of the SoC, SoH, and state-of-function
(SoF) for LIBs in EVs. The model-based SoC estimation was fulfilled by the EKF. The
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battery parameters relevant to the battery SoH and SoF were identified online using the
RLS method with a forgetting factor; the capacity and the maximum available output
power were then estimated based on the identified parameters. Du et al. [37] proposed an
adaptive sliding mode observer to estimate the battery SoC and SoH based on 2RC-ECM,
avoiding the influence of buffeting and improving the estimation performance. In summary,
proposing a comprehensive state prediction scheme that can concurrently estimate the
SoC and SoH is significant and challenging. Furthermore, to apply the current battery
model to a longer lifespan and provide a higher accuracy SoC and SoH estimation for the
model-based estimation method, it is necessary to consider different aging cycle levels
based on the standard ECM model.

Table 1. Summary of battery SoC estimation methods.

Approach Major Benefits Major Limitations Application
Conditions

Coulombic
counting [6,7]

Easy implementation;
online; low power

consumption.

Error accumulation;
needs accurate initial

SoC current.

In conjunction with
various methods.

OCV method [8–10] Easy to understand;
initial SoC calibration.

Time-consuming;
long relaxation time.

SoC offline estimation
in the lab.

NN [11–13]
Independent model;
great accuracy; high

universality.

Large amount of
training data;

generalization ability
issues.

Needs numerous
experimental data.

KF [14–16]
Online; insensitive to
initial SoC; pinpoints

accuracy.

Relies on model
accuracy; domain

knowledge required.

Accurate battery
model.

EKF [35,36] High accuracy; strong
robustness.

Impractical
assumption of white

Gaussian noise.

Accurate battery
model.

Table 2. Summary of battery SoH estimation methods.

Approach Major Benefits Major Limitations Application
Conditions

Voltage trace
method [18]

Easy to understand;
simple structure and

low cost.

Online estimates are
difficult to achieve.

Fixed environment,
such as lab.

ICA [19]
High measurement

accuracy, easy to
implement.

Repeated
charge-discharge tests

are required.

SoH estimation in the
laboratory.

KF [20] Online; high accuracy.
Relies on model

accuracy; domain
knowledge required.

Accurate battery
model.

PF [21]

High accuracy; strong
robustness, handles

non-Gaussian system
noise well.

Dimension of
sampling space
reduced; a large

sample size.

Accurate battery
model.

Data-driven
method [22–29]

Excellent learning
and generalization

abilities; strong
nonlinear mapping

ability.

Large amount of
training data;

time-consuming trial
and error process.

High performance
processors; data

storage technology
conditions.

Based on the second-use LIBs, this paper starts with several vital indicators, such
as SoC, battery capacity and internal resistance sum, and a series of charge-discharge
cycle tests were performed on certain LIBs. First, based on the 2RC-ECM, an improved
battery model considering the impact of different cycle times is established. Then, an
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AEKF algorithm considering the influence of cycle times is utilized to estimate the SoC,
capacity and internal resistance of a LIB cell simultaneously. The battery state estimation
can be effectively applied to the long-life cycle. The main contributions of this study
are summarized as follows: (i) The OCV-SOC cycle table is established to describe the
OCV-SOC relationship under different cycles by considering the differences in batteries’
OCV-SOC curves under different cycles; (ii) the relationship between parameters and
cycle times is obtained by the RLS method; and (iii) an AEKF is applied to simultaneously
estimate battery SOC, capacity and internal resistance, and the SOH[Ccap] and SOH[R0] of the
battery are obtained by the definition formula of residual power and the definition formula
of internal resistance, respectively. The decay characteristics of the main performance
parameters, such as SoC, ohmic internal resistance and battery capacity, are compared and
analyzed, which is of guiding importance for the cascade use of decommissioned batteries
in energy storage systems to maximize the value of retired batteries.

2. Second Use Framework and Battery Experimental System
2.1. Second-Use Framework of Vehicle Power Battery

For the retired LIBs in EVs, they may be reused in cascade scenarios when their
functional components are practical, which is of great significance for improving their life
cycle utilization value, reducing the cost of producing LIBs and alleviating environmental
pollution problems. To maximize the value of cascade utilization batteries, it is necessary to
research sorting and performance analyses of batteries based on several critical indicators,
such as battery SoC, capacity and internal resistance. To correctly estimate the SOC/SOH
of a LIB cell, accurate establishment of the battery model is necessary. First, based on the
2RC-ECM, the selected single cells are subjected to constant current discharge experiments
in a standard test environment to perform parameter identification and SOC-OCV curve
identification, and the model validation is performed. Afterward, a co-estimation of the
battery SoC/SoH is proposed and verified. Finally, according to the battery SoC/SoH
estimation results, some valuable suggestions are made for the second-use LIBs. It is noted
that a battery SoH of 50~80% is used in energy storage devices, such as power grids and
new energy power generation. SoH of 40~50% is used in ordinary users. When the SoH is
less than 40%, the battery is disassembled and recycled. The specific power battery cascade
utilization framework process is shown in Figure 1.

Figure 1. The framework for determining second-use power LIBs.

2.2. Battery Experimental System

The battery experimental setup revealed in Figure 2 is used to collect the test profiles,
which contain (1) a battery test system (ITS 5300, ITECH Inc., South Burlington, VT, USA);
(2) a thermal chamber for controlling the ambient temperature; (3) a host computer; and
(4) MATLAB 2016b® for data analysis. Three separate test schedules are undertaken in
this empirical setup, which encompasses the constant current condition tests (CCC), static
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capacity tests, and OCV-SOC tests in the case of driving cycles [30, 100, 200, 300, 600,
800, 1000], separately. The test profiles of CCC, static capacity tests and OCV-SOC tests
under different driving cycles are presented in Figure 3a–c, respectively. Moreover, the key
specifications of the employed LiCoO2 cell are listed in Table 3.

Figure 2. Schematic of battery experimental setup.

Figure 3. (a) Constant current discharge curves; (b) maximum available capacity curves; and (c) the
OCV-SOC curves at different cycle times.

Table 3. Key specifications of employed test battery cell.

Items Specifications (Value)

Cell chemistry LiCoO2
Size 6.6 × 33.8 × 50 mm

Rating capacity (Crat) 1.35 Ah
Upper cut-off voltage 4.2 V ± 50 mV
Lower cut-off voltage 2.7 V

It is noted that the test profiles at driving cycles [1, 100, 200, 600, 800] are used to
identify the parameters of R0, R1, C1, R2 and C2 for a LiCoO2 cell, while the test profiles
at driving cycles [30, 300, 1000] are employed to validate the identified parameters of this
battery cell; all the test profiles are collected under CCC due to our test setup limitation.
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The experiments are conducted at 25 ◦C. The LiCoO2 cell was tested with standard constant
current and constant voltage test scheme. First, the cell was charged at a constant current
rate of 0.5 C until the voltage reached the upper cut-off voltage of 4.2 V. Then, it was
charged at 4.2 V constant voltage until the charging current dropped below 0.05 A. Next, it
was left off for 10 min. Finally, it was then discharged at a constant rate of 0.5 C to a cut-off
voltage of 2.7 V. In this way, the cell was then recharged and discharged 1000 times, and
the constant current discharge curves in different cycle processes were finally obtained.

3. Battery Model Development and Parameters Estimation

In this section, we expect to carry out the model development of LIBs considering
various driving cycles. It is well known that the Thevenin model and 2RC-ECM model
have been extensively investigated and extensively applied in the area of battery modeling
and state estimation over the past decades (see sources [8–10]). Apart from the ambient, the
driving cycles (charging and/or discharging) may also result in some changes in battery
internal states [10,35]; i.e., the capacity usually decreases the internal resistance, which
affects the accuracy of battery SoC and other related statistics. Consequently, in the first
place, the battery cECM shown in Figure 4 is reconstructed for battery parameters and
estimation of internal states.

Figure 4. The schematic of battery cECM.

Unlike the previous 2RC-ECM model, battery internal statistics including R0, R1, C1,
R2 and C2, along with the battery OCV are only considered to be dependent on the SoC. By
contrast, it is expected that the battery OCV is regarded as a function of the battery SoC
and Cyc, denoted by UOC(SoC, Cyc), and the other five battery states R0(Cyc), R1(Cyc),
C1(Cyc), R2(Cyc) and C2(Cyc) are all functions of driving cycles (Cyc); for brevity, the
parameters of R0(Cyc), R1(Cyc), C1(Cyc), R2(Cyc) and C2(Cyc) are expressed as R0, R1, C1,
R2 and C2 in this paper.

According to the Kirchhoff theorem, the state equation of this battery cECM is con-
structed as: 

.
U1 = It

C1(Cyc) −
U1

R1(Cyc)C1(Cyc).
U2 = It

C2(Cyc) −
U2

R2(Cyc)C2(Cyc)
UTOV = UOC(SoC, Cyc)− U1 − U2 − ItR0(Cyc)

(1)

wherein R0 is the ohmic internal resistance, R1 and C1 are the electrochemical polarization
resistance and corresponding capacitance, respectively, and R2 and C2 are the concentration
polarization resistance and corresponding capacitance, respectively; U1 and U2 are the
voltage across the two parallel RC (resistance- capacitor) networks, separately; Icur is the
applied current (supposed positive for charge and negative for discharge); and UTOV is the
terminal output voltage.

Next, by using the test profiles and the fitted OCV-SoC-Cyc function shown in Figure 3,
we performed the battery parameters estimation and validation on the basis of the recursive
least square algorithm (RLSM) [38–40]. The specific parameters’ identifications can be found
in [39], published by our research group.
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Alternatively, to reveal fluctuations in the related identified parameters concerning
Cyc, the polynomial function is employed to fit the mathematical expressions of these five
battery states with respect to Cyc, as shown in Figure 5. We observed that the magenta circle
(O) denotes the identified parameter values in Table 4 from the proposed battery cECM.
In contrast, the blue solid lines indicate the fitted function by curve fitting tool/MATLAB,
as shown in Equation (2). It is observed from Figure 5 that each parameter of the battery
cECM has a noticeable tendency to increase with the increasing Cyc. In particular, the
internal resistances of R0, R1 and R2 grew faster during the low-Cyc and high-Cyc parts,
and they increased very slowly during the middle-Cyc regions.

R0 = 3.272 × 10−8Cyc3 − 4.741 × 10−5Cyc2 + 0.02765 × 10−8Cyc + 83.93
R1 = 3.215 × 10−9Cyc3 − 8.868 × 10−6Cyc2 + 1.107 × 10−2Cyc + 31.49

C1 = 3.8 × 10−7Cyc3 − 7 × 10−4Cyc2 + 1.0Cyc + 419.1
R2 = 4.159 × 10−9Cyc3 − 5.898 × 10−6Cyc2 + 4.229 × 10−3Cyc + 17.34

C2 = −6.606 × 10−6Cyc3 + 9.568 × 10−3Cyc2 − 0.306Cyc + 4572

(2)

Figure 5. The variations of parameters vs. Cyc by curve fitting method.

Table 4. The identified parameters of LIB cell.

Cyc R0/mΩ R1/mΩ C1/F R2/mΩ C2/F

1000 96.87 36.89 1105 19.85 7783
800 92.50 36.31 945 19.03 7308
600 90.58 35.72 863 18.67 6578
300 88.64 33.87 678 18.32 5153
200 87.75 33.33 596 17.88 4775
100 86.49 32.76 478 17.62 4737
30 85.25 32.14 450 17.53 4568
01 83.41 31.10 438 17.36 4537

Thereby, on one side, the identified parameters of this cECM under different cycles
are given in Table 4 as follows:

After obtaining the battery parameters, to confirm the precision of the obtained five
parameters, the measured and estimated battery TOV, together with their TOV errors under
the test profiles of CCC under different driving cycles of [30, 300, 1000], are provided in
Figure 6.
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Figure 6. The validation results at (a) Cyc = 30, (b) Cyc = 300 and (c) Cyc = 1000 in the CCC test profile.

In Figure 6, the black solid line indicates the measured TOV, while the red solid line
represents the estimated TOV based on battery cECM. It can be seen that the estimated
voltages are always slightly smaller than the measured ones, and the proposed cECM
can reasonably predict the TOV, which illustrates that the proposed model has better
performance in reflecting lithium-ion battery external characteristics under different driv-
ing cycles. It is noted that the estimated voltages are always slightly smaller than the
measured ones.

4. The Co-Estimation of Battery SoC and SoH
4.1. Adaptive Extended Kalman Filter Algorithm

Although KF and EKF have been generally employed in battery state estimation and
parameter identification recently, their performance is heavily dependent on the precision
of the predetermined noise matrix [41,42]. However, although an EKF algorithm takes noise
into account, it assumes that the noise does not change, which is obviously not practical.
Thus, an AEKF algorithm based on covariance matching is applied to the co-estimation of
SoC/SoH. To implement the AEKF algorithm to estimate battery SoC and SoH, a general
framework for the nonlinear discrete-time state and measurement dynamic equations is
as follows: {

xk = f (xk−1, uk−1) + ωk−1
yk = h(xk, uk) + vk

(3)

where xk and yk denote the system state vector and the system measurement output vector,
respectively; f (xk−1, uk−1) and h(xk, uk) represent the system state function and the system
measurement function, respectively; ωk−1 is Gaussian process noise sequence; Qk−1 is the
covariance; vk is Gaussian measurement noise sequence; Rk is the covariance; and k is the
time step.

To apply an AEKF approach to estimation of battery states, we need discrete Equa-
tion (1) as follows:

U1,k = exp(−Ts/τ1)U1,k−1 + R1(1 − exp(−Ts/τ1))Icur,k−1
U2,k = exp(−Ts/τ2)U2,k−1 + R2(1 − exp(−Ts/τ2))Icur,k−1

Ut,k = UOC(SoC, Cyc)− R0 Icur,k−1 − U1,k − U2,k

(4)

where τ1 and τ2 are the time constants, τ1 = R1C1 and τ2 = R2C2. Ts is the sampling time.
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Next, we define the system state vector as xk =
[
SoCk U1,k U2,k R0,k

1
Cα,k

]T
; the

system output variable as yk = UTOV,k; and the system input variable as uk = Icur,k. Then,
the discrete state-space form of Equation (1) can be rewritten as:{

xk = Axk−1 + Buk−1 + ωk−1
yk = Cxk + vk

(5)

where A, B and C denote the system matrices and are defined as follows:

A =


1 0 0 0 η ITs/3600
0 exp(−Ts/τ1) 0 0 0
0 0 exp(−Ts/τ2) 0 0
0 0 0 1 0
0 0 0 0 1

 , B =


0

R1·(1 − exp(−Ts/τ1))
R2·(1 − exp(−Ts/τ2))

0
0


C =

[
α −1 −1 −I 0

]T
Herein, the SoC can be calculated by the following equation:

SoCk = SoCk−1 −
IkηTs

Cα,k
(6)

where SoCk represents the observation of SoC at time step k; Cα,k represents the observation of Ca
in time step k at the current aging levels; η represents the Coulomb efficiency; and It,k denotes the
applied current.

In addition, according to Equation (5), the battery SoH characterized by the available capacity
can be calculated by:

SoH[Ccap],k =
Ccap,k

Cfresh
× 100% (7)

Herein, the SoH can be characterized by the battery’s residual maximum available capacity,
denoted by SoH[Ccap]. Then, Ccap,k represents the observation of Ccap in time step k at the current
aging levels. Cfresh is 1.270 Ah for a new LiCoO2 cell, which represents the maximum available
battery capacity at the factory.

Furthermore, the SoH can also be characterized by R0, denoted by SOHR0 , which is expressed
by

SoH[R0],k =
Reol − R0,k

Reol − Rfresh
× 100% (8)

Herein, the SoH can be characterized in terms of the battery’s ohmic internal resistance (R0),
denoted by SoH[R0]. Then, R0,k denotes the observation of R0 in time step k at the current aging levels;
Rfresh is the R0 at the first cycle times; and Reol indicates the R0 at the end of the life.

Figure 7 shows the flowchart of the AEKF-based SoC/SoH co-estimation method. Note that Hk
is the innovation covariance matrix; M is the window of size; x̂−k and x̂+k denote the priori estimate and
posteriori estimate of the system, respectively; P−

k and P+
k denote the priori estimate and posteriori

estimate of the state estimation covariance, respectively; ek is considered to be innovation, which
indicates the difference between the measured values and observed values; Ik indicates the unit
matrix; and t0 indicates the initial moment of the algorithm’s calculation.
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Figure 7. The implementation flowchart of AEKF-based SoC/SoH co-estimation.

For practical applications, the computational procedure of the proposed AEKF-based co-
estimation scheme is summarized in Table 5.

Table 5. Summary of the AEKF-based co-estimation scheme.

Step 1: Initialization. Given the initial guess values x0, P0 and Q0.
Step 2: Time Update.
(1) State priori estimate x̂−k = f (xk−1, uk−1)

(2) Error covariance P−
k = AkPk−1 AT

k + Qk−1
Step 3: Measurement Update.
(1) Innovation ek = yk − h(x̂k, uk)

(2) Kalman gain Kk = P−
k CT

k (CkP−
k CT

k + Rk)
−1

(3) Adaptive law Hk = 1
M

k
∑

i=k−M+1
ekeT

k ,Rk = Hk − CkP−
k CT

k , Qk = Kk H−
k KT

k

(4) State estimate x̂+k = x̂−k + Kkek
(5) Error covariance P+

k = (Ik − KkCk)P−
k

4.2. SoC Estimation Results and Discussions
Through the implementation of the AEKF-based SoC/SoH co-estimation algorithm, we can

obtain the curves of the SoC estimation and SoC errors at Cyc [30, 100, 200, 300, 600, 800 and 1000]
under CCC test profiles for a LiCoO2 cell. For brevity, only the curves of the SoC estimation and SoC
errors at Cyc [30, 300 and 1000] are presented in Figure 8.

It is observed that the estimated SoC (SoCest) under different cycle numbers can track the
experimental SoC (SoCexp) profiles well, and the maximum values of the absolute error are 0.51%,
0.38% and 2.37%, respectively, which illustrates that the co-estimation algorithm has higher accuracy
in estimating the battery SoC under different aging levels. Moreover, the practical remaining capacity
Ccap decreases more rapidly with the increasing cycle times, and the SoC estimation errors become
more fluctuated with the increasing cycle numbers.
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Figure 8. SoC estimation results and SoC errors at (a) Cyc = 30, (b) Cyc = 300 and (c) Cyc = 1000
under CCC test profile.

4.3. SoH Estimation Results and Discussions
4.3.1. Capacity Estimation Results under Different Cycles

In this section, to reveal the advantages of the proposed co-estimation scheme with respect to
the battery residual maximum available capacity (Cmax) estimation, the capacity estimation results
and the corresponding capacity errors at Cyc [30, 300 and 1000] under a CCC test profile are provided
in Figure 9. Note that the black solid line indicates the battery’s maximum available capacity value
under the current cycle times, which is derived from Figure 3b in Section 2 and is used as the reference
capacity value (Ccapexp) herein; the red solid line represents the estimated battery capacity (Ccapest)
based on the AEKF estimator.

Figure 9. Capacity estimation results and errors at (a) Cyc = 30, (b) Cyc = 300, (c) Cyc = 1000 under
CCC test profile.

It is observed in Figure 9 that Ccapest, obtained by the AEKF, can well track the profile of Ccapexp,
and the averaged values of absolute error are 0.018 Ah, 0.020 Ah and 0.022 Ah, respectively, which
illustrates that the co-estimation algorithm has better performance in a battery’s Cmax estimation
under different aging cycle levels.

Additionally, the averaged values of the estimated capacity at [30, 100, 200, 300, 600, 800, 1000]
cycle numbers are extracted and taken as the values of Ccap,k in Equation (7), of which Cfresh is the
maximal remaining capacity at the first cycle. Afterwards, we can calculate SoH[Ccap] under different
cycle times as shown in Figure 10a. It is important to point out that the green dashed line and circle
represent the reference capacity value Ccapexp; the blue dashed line and asterisk indicate SoHexp;
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the magenta dashed line and circle represent the averaged values of the estimated battery capacity
in Figure 9, denoted by Ccapest; and the red dashed line and asterisk indicate SoHest, calculated by
Equation (7), where Ccap,k is Ccapest. It is observed in Figure 10a that the estimated value of SoHest
(i.e., red dashed line) with the AEKF can track the referenced value of SoHexp (i.e., blue dashed line)
well.

Figure 10. (a) Capacity and SoH[Ccap] estimation results; (b) capacity error and SoH[Ccap] error under
different cycle times.

Conversely, as displayed in Figure 10b, the black line indicates the SoH[Ccap] absolute error,
which is 1.3%, 1.6% and 1.7% under [30, 300 and 1000] aging levels, which further illustrates that
the co-estimation algorithm has higher accuracy in estimating a battery’s SoH[Ccap] under different
aging levels.

4.3.2. Resistance Estimation Results under Different Cycles
Similarly, the estimation of R0 and its errors at Cyc [30, 300 and 1000] under a CCC test profile

are provided in Figure 11. Herein, the black solid line indicates the values of R0 under the current
cycle times, which are derived from Table 4 in Section 3 and are employed as the reference value
R0exp, while the red solid line represents the estimated battery ohmic internal resistance R0est based
on the AEKF estimator. It is observed in Figure 11 that R0est with the AEKF can track R0exp profiles
well, and the averaged values of absolute error are 1.42 mΩ, 1.56 mΩ and 1.87 mΩ, respectively,
which illustrates that the co-estimation algorithm has better performance in estimating battery R0
under different aging levels.

In terms of the above estimations, we can obtain the battery internal resistances at Cyc [30, 100,
200, 300, 600, 800 and 1000], among which the averaged value of R0 at each cycle is taken as the
value of R0,k in Equation (8), noting that Rfresh is the actual resistance value after the first cycle and
Reol is the resistance value when the battery lifespan ends. As such, according to Equation (8), we
can calculate the estimated SoH at different cycle numbers, denoted by SOH[R0]; this is presented in
Figure 12a. Similarly, the green dashed line and circle denote the reference ohmic internal resistance
value R0exp, which is derived from Table 4 in Section 3. The blue dashed line and asterisk indicate
the values of SOHexp calculated by Equation (8), where R0,k means R0exp. In addition, the magenta
dashed line and circle represent the averaged values of the estimated R0 in Figure 11, denoted by
R0est, and the red dashed line and asterisk indicate the SOHest calculated by Equation (8), where R0,k
is R0est. It is observed from Figure 12a that the estimated value of SoHest (i.e., red dashed line) with
an AEKF can track the referenced value SoHexp (i.e., blue dashed line) well.
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Figure 11. R0 estimation results and errors at (a) Cyc = 30, (b) Cyc = 300 and (c) Cyc = 1000 under
CCC test profile.

Figure 12. (a) R0 and SoH[R0] estimation results; (b) R0 error and SoH[R0] error under different
cycle times.

Particularly, as illustrated in Figure 12b, the black line indicates the SOH[R0] absolute error,
which is 1.7%, 1.9% and 2.2% under [30, 300 and 1000] aging levels. This manifests that the proposed
co-estimation algorithm has higher precision in battery SOH[R0] estimation under different aging
levels.

5. Conclusions
The decommissioned lithium-ion power battery was taken as the investigation object in this

paper, and the screening method and process for the second use of the decommissioned battery was
formulated. Aiming at the need to establish a model before SOC/SOH estimation for decommissioned
LIBs, as well as to identify the model parameters, a battery state estimator based on an AEKF was
proposed to study the co-estimation of battery SOC/SOH for EVs’ power battery packs.

The accuracy co-estimation of SoC and SoH play a vital role in developing advanced BMS
with efficient charging management, safety management, lifespan management and endurance
mileage for EVs. First, by performing a battery accelerated aging test and analyzing the battery
external characteristic differences, an enhanced second-order equivalent circuit model considering
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different cycle times is built up. Then, based on this cECM of LIBs, the RLS approach is employed
to estimate the model parameters, and the correctness of the identified parameters is validated in
MATLAB/Simulink platform. Next, a class of AEKF-based battery state estimators is developed
to realize the co-estimation of battery SoC and SoH in the case of CCC test profiles under different
cycle times, and the corresponding simulation investigations of this co-estimator are carried out.
The results indicate that the proposed SoC/SoH co-estimation scheme can predict battery SoC and
SoH well, wherein the peak value of SoC errors is less than 2.2%. While the maximum errors of the
available capacity and its corresponding SoH[Ccap] are less than 0.02 Ah and 1.7%, respectively, the
maximal errors of the estimated R0 and SoH[R0] are less than 1.58 mΩ and 2.2%, respectively.

It is worth noting that the SOC/SOH co-estimation scheme proposed in this paper can sat-
isfactorily provide a valuable reference for the screening of decommissioned batteries in practical
applications.
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