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Abstract: Human Activity Recognition (HAR) is nowadays widely used in intelligent perception and
medical detection, and the use of traditional neural networks and deep learning methods has made
great progress in this field in recent years. However, most of the existing methods assume that the data
has independent identical distribution (I.I.D.) and ignore the data variability of different individual
volunteers. In addition, most deep learning models are characterized by many parameters and high
resources consumption, making it difficult to run in real time on embedded devices. To address these
problems, this paper proposes a Gate Recurrent Units (GRU) network fusing the channel attention
and the temporal attention for human activity recognition method without I.I.D. By using channel
attention to mitigate sensor data bias, GRU and the temporal attention are used to capture important
motion moments and aggregate temporal features to reduce model parameters. Experimental results
show that our model outperforms existing methods in terms of classification accuracy on datasets
without I.I.D., and reduces the number of model parameters and resources consumption, which can
be easily used in low-resource embedded devices.

Keywords: HAR; channel attention; temporal attention; GRU

1. Introduction

HAR has become a research hotspot for many years. Thanks to recent technological
advances, it has been widely used in various fields, including health management, medical
monitoring, human-computer interaction, sports science, and remote control [1,2]. HAR
can be very helpful in real life. For example, a patient posture monitoring system can track
daily activities and detect t falls, which is significant for senior people. A typical HAR
system attempts to fulfill two tasks: collecting body-moving information and analyzing
it. The raw data, like physiological parameters and body postures, is acquired through a
variety of devices [3], and then analyzed and modeled. Thus, the system can identify the
activities and reveal the rules of human movements. The aim of this paper is to construct a
lightweight model, while the model can be adapted to the data without I.I.D.

Sensors are the most common devices used by the HAR system to obtain individual
activity data. They can capture human activities and transfer them into data representation
that could be automatically processed later. Currently, the sensors can be divided into two
categories: (1) fixed sensors that are installed at fixed locations, and (2) mobile sensors that
are not limited by geographical positions.

Fixed sensors include acoustic sensors [4], vibration sensors [5], other environment-
based sensors [6], and static cameras [7,8]. Many researchers have attempted to develop
HAR approaches using fixed sensors. The method proposed in [8] extracted features of
human activities from the frame sequences captured by cameras and constructed a robust
neural network model to classify these activities. Ajmal et al. [9] proposed a multi-level
context feature and context estimation method based on unlabeled datasets. This method
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could recognize complex human activities from videos. Ayhan et al. [10] believed that
different activities exhibit different rhythms, and developed a method to identify activities
from long videos by differing changes in these rhythms. Oguntala et al. [11] established
a simple and novel multivariate Gaussian distribution framework. It enhanced the prior
information from passive RFID tags to obtain more detailed activity description. These
fixed-sensor-based methods can deploy mature computer vision technologies and output
satisfying results [12]. However, fixed sensors are limited by environments and personal
privacy policies, and human activities in the real world do not occur in a fixed place.

Mobile sensors can solve the above problems. They are non-invasive, easy to deploy,
and can keep monitoring continuously. A variety of mobile sensors are now available for
HAR applications, including acceleration sensors, gyroscopes, magnetometers, barometers,
light sensors, etc. [13–15]. These sensors are increasingly miniaturized and easily integrated
into different devices, like smartphones, smartwatches worn on human wrists [16,17], and
glasses equipped with ubiquitous computing capabilities [18].

HAR is regarded as a typical pattern recognition problem, involving four steps: (1) data
collection; (2) data pre-processing; (3) feature extraction; and (4) time sequence modeling.

The last step, time sequence modeling, is the most crucial one for HAR and has been
solved by traditional machine learning methods, such as Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Although they
have achieved good performance, they all rely heavily on handcrafted feature extraction,
which is usually driven by domain knowledge and can only capture shallow features from
the input data.

Deep-learning networks had been used in HAR. Garcia et al. [19] constructed a classic
CNN-LSTM model to identify human activities. Zhou et al. [20] introduced a cascaded
parsing network using Graph Parsing Neural Network (GPNN) to recognize Human Object
Interactions (HOI) in images.

Attention has been used in many fields. For example, by only using attention, machine
translation tasks developed by Vaswani et al. [21] could achieve a superior performance.
Hu et al. [22] used SE block to catch capture channel weights. This approach performed
well in image recognition. Sun et al. [23] introduced BERT to recommendations. Zhou
et al. [24] presented Motion-Attentive Transition (MAT) to capture leverage motion cues
for video object segmentation.

Some researchers adopted the attention mechanism into deep learning networks for HAR
tasks. Sun et al. [25] deployed the temporal attention in LSTM to select the more important
information from the original sensor data of all activities. Zhang et al. [26] integrated the
attention mechanism into a multi-headed CNN and conducted proof-of-concept experiments
on public datasets established by Wireless Sensor Data Mining (WISDM) laboratory.

Most of the existing methods assume that the dataset has I.I.D. Under this assumption,
both the traditional methods and the deep learning methods exhibit better classification
performance. However, the traditional methods rely on manual feature extraction, and the
deep learning models, while addressing the drawbacks of traditional methods, also suffer
from multiple parameters and high resource consumption, which hinder their application
on mobile devices and limit their real-time performance. Moreover, few researchers have
studied the performance of models under datasets without I.I.D.

While achieving classification accuracy for data with I.I.D., we add the channel atten-
tion and the temporal attention to the traditional GRU network to address the decay of ac-
curacy when the model classifies data without I.I.D., and reduce the number of parameters
and the resources consumption of the model to facilitate its use in the embedded devices.

2. The Proposed Model

The workflow of the proposed model is shown in Figure 1. First, the input data is
processed through the feature-processing module for the raw collected sensor data, which
consists of four parts: data preprocessing, time slicing, feature boosting, and channel
attention. Second, each slice of the time-sliced data is fed into the GRU network to generate



Electronics 2022, 11, 1797 3 of 14

temporal features. Third, the temporal processing module uses the temporal attention and
the fully connected layer for the recognition of specific human activities. The � in Figure 1
represents the element-wise multiplication that determines how much past information
needs to be forgotten and how much information from the previous moment and the
current moment needs to be passed on.

Compared with traditional deep learning, the proposed model in this paper can run
faster and the trained model can be adapted to multiple time-slice sizes of sensor data input.
In this paper, we use fixed-size time slice data to adapt the training with batch-size >1.
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Figure 1. Framework of the proposed approach.

The model can be divided into three logic components, the feature extraction with
the channel attention, the GRU, and the temporal attention. The logic structure of the
model is illustrated in Figure 2, which illustrates the data flow process for input with a
sliding window size of 128 and a hidden state of 16. The channel attention is implemented
using squeeze-and-excitation, and squeeze compresses the number of input channels into a
quarter. To guarantee that the channel attention acts, feature extraction is performed using
a 1 × 1 conv, increasing the dimension from 6 to 16.
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2.1. Data Pre-Processing

Sensor data collected from the real world usually contain noises. In order to reduce
the influence of noises, a third-order low-pass Butterworth filter with a cut-off frequency
of 40 Hz is used to remove high-frequency signals. For most human activities, denoising
can highlight body movements and ignore the noise caused by irregular vibrations during
sensor acquisition.
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After denoising, we calculate the mean and the variance of the training set and use
them to normalize both the training set and the test set. This process facilitates faster
convergence of the neural network.

2.2. Channel Attention

The channel attention is a lightweight mechanism. It can focus on the information
more relevant to the task by calculating the importance of each sensor axis and assigning
weights to a different axis.

In the HAR system with multi-axis sensors, one channel represents one spatial di-
rection, but in most cases, movements in some directions can be ignored, for example,
the vertical direction of a waist sensor or the arm direction of a watch sensor. The chan-
nel attention can help to ignore those less useful data and focus on the data in the most
important directions. Thus, the model can be further improved.

We use a convenient way to operate the channel attention mechanism. First, a 1 × 1
convolution layer is set to extract high-dimensional features. Second, a 1D average pool
and two 1 × 1 convolutions are used for squeezing and excitation. The motive for using a
1-dimensional operation here is to decouple the correlation between the parameters and
the sliding window size. This convolution operation performs a feature boosting, which
facilitates the second squeeze step. The attention of the raw data is defined as:

Wc = ∑n

i=1
wi,c � σ(W2δ(W 1G(A))) (1)

where W2 and W1 are the weights of the convolution layers from the squeezing and
the excitation modules, wi,c is the feature after feature boosting, respectively; G is the
average pooling of the features, and G(A) = 1

H ∑H
i=1 Ai; δ is the ReLu function, and σ is the

Sigmoid function.

2.3. Temporal Attention

In RNNs, information may be lost when a long sequence is transformed into fixed-
length vectors, and the attention mechanism is introduced to address this. It is often applied
in the fields of computer vision and natural language processing (NLP).

In the HAR task, traditional RNN networks have difficulty capturing important
information about long-time activities because they use the last moment of hidden states
for classification without paying attention to the previous hidden states. The temporal
attention mechanism can solve this problem by aggregating all the hidden states and
reinforcing the data of important moments among them. In our proposed model, a soft
self-attention mechanism is used to determine the weight of each moment, and the soft self-
attention mechanism does not impose additional parameters. The weight of the temporal
attention is expressed as:

Wt= SoftMax

(
XT

i Xi√
d

, dim = 2

)
(2)

where Xi is the attention input and d is the size of Xi. dim indicates the dimension to which
the SoftMax function is applied. The SoftMax function can scale the weights into [0,1] and
change them into the attention weights. The resulting feature is the average of the attention
weights multiplied by the feature sequence.

Different from the classic attention mechanism, the self-attention can achieve good
results using only the data itself. In our model, the soft self-attention mechanism is
computed using a scaled dot product model, this model measures the correlation of features
at different moments by dot product and generates more stable gradients by scaling.
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3. Experiments and Results

We conducted a series of experiments to validate the proposed approach’s performance
from five perspectives:

1. Ablation experiments to evaluate the effect of different combinations of dual attentions;
2. Comparison between the proposed model and the traditional HAR methods;
3. Visualization of the temporal attention to investigate its interpretability;
4. Parameter sensitivity analysis of the sliding window size and the hidden state of

the model;
5. The evaluation of the proposed model on the single sensor data and the multi-

sensor data.

In this section, CA represents the channel attention and TA represents the temporal attention.

3.1. Dataset

We conducted the experiments on the dataset that was established in a controlled
laboratory environment at the University of Ulster. There are 1,817,583 samples from 10 dif-
ferent volunteers, equivalent to 4 h of collection. It contains 6 activity labels. The specific
descriptions of the dataset are listed in Table 1.

Table 1. The description of the dataset.

Category Label Description

Static
Stand Stand for five minutes
Sleep Sleep on the couch for five minutes
Watch Sit on a sofa and watch TV for five minutes

Walk Walk on a treadmill for five minutes
Dynamic Run Run on a treadmill for five minutes

Clean Vacuums the room for five minutes

This dataset contains 10 subjects, sampling at 102.4 Hz and ±2.0 g (g = 9.8 m/s)
amplitude range. All experimental data were collected by accelerometer and gyroscope,
which have three-axis. By using UMAP [27], we obtained the visualization description of
the data, as displayed in Figure 3.
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Figure 3 depicts the two-dimensional representation of the six activities we selected.
It presents the relationships between data points with different labels. Different colored
dots represent different human activities. All points in Figure 3 represent a 128*6 tensor.
The distance from point to point partly represents the local distance between higher dimen-
sional vectors. It clearly exhibits the essential characteristics of the dataset. For example,
when a user is walking or running, the sensor data form rings in Figure 3.

3.2. Experiment Setup

The platform we established for the experiments included a laptop with a CPU of
i7-8565U and a 16G DDR3 memory for data pre-processing and operating the trained
model, a server with a CPU of Intel(R) Xeon(R) Gold 6226 and TESLA V100S for model
training, the software of SciPy, NumPy, Pandas, and PyTorch for pre-processing signals
and UMAP for visualizing high-dimensional data.

During the model training, the sliding window size was 128, lasting about 1.25 s,
and the overlap size was 1, lasting about 0.01 s. The sliding window size is determined
based on a trade-off between the amount of information in the time slice and the resource
consumption. Detailed parameter sensitivity analysis is presented in Section 3.4. The model
was trained with the Adam optimizer using cross-entropy. The learning rate, beta1, beta2,
weight decay, and epochs were set to 0.0005, 0.9, 0.999, 0.001, and 50, respectively. The Batch
size was set as 512 and the dropout was set as 0.8.

3.3. Evaluation Indexes

We used the following metrics to assess the models. First, Accuracy, F1-score, and
confusion matrix were used to evaluate the model’s classification ability.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1− score =
2× Precision× Recall

Precision + Recall
(6)

where TP stands for true positive, TN for true negative, FP for false positive, and FN for
false negative. These parameters can be obtained through the confusion matrix.

Second, we used model parameters, multiply and accumulate operations (MACs) and
the running time to investigate the resource consumption of the model. MACs is a com-
monly used indicator to evaluate the computational complexity of a model. It represents the
total number of multiply-add operations performed by the model. Since the computational
complexity cannot represent the running time, the average time of 10,000 predictions that
a model spends is used to measure the computing power. In the prediction process, the
Batch size was set to 1 and the model was running on a CPU to simulate the state of the
algorithm running on wearable devices.

3.4. Parameter Sensibility Analysis

The sliding window with a fixed size of 128 and the hidden state of 16 was also
subjected to sensitivity analysis. First, we used different hidden states of 8, 16, 32, 64,
128, and 512 to examine how hidden states affect classification by using 128 fixed state
data. Second, sliding windows with 32, 128, and 256 were used for sensitivity analysis.
The results are listed in Figure 4 and Table 2.
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Figure 4 shows the test accuracy for each epoch in different hidden states. To prevent
overfitting, we used early stopping with a patience of 3. We used the model from the last
third epoch for evaluation.

With the hidden state of 4, the model exhibited underfitting; while the model with the
hidden state of 8 and 16 performed well. When the hidden state was increased, the test
accuracy fluctuated gradually. For this dataset, if accuracy is not the first consideration,
the hidden state of 8 may be a better choice.

Table 2 shows model performance for different lengths of time series. The average
time is the average number of milliseconds per run, calculated by averaging 10,000 runs,
representing the resource consumption. Short-time series lack enough information to clas-
sify. Sliding windows with the size of 128 and 256 achieve the same accuracy. The f1-score
indicates that using longer time series, “stand”, “walk” and “clean” perform better.

Table 2. Parameter sensitivity analysis of different sliding windows.

Sliding
Window Size

Average
Time (ms)

Accuracy
F1-Score

Stand Sleep Watch Walk Run Clean

32 1.89 0.789 0.935 0.912 0.497 0.796 0.932 0.605
64 4.43 0.881 0.964 0.959 0.861 0.808 0.956 0.733
128 8.83 0.902 0.975 0.961 0.903 0.824 0.972 0.784
256 17.06 0.903 0.982 0.942 0.837 0.846 0.965 0.837

The results show that a sliding window size greater than or equal to 128 can provide
sufficient information for classification. Longer sliding windows provide only a small accuracy
gain with a significant increase in resource consumption. Therefore, a sliding window size of
128 is a better choice considering the classification effect and the resource consumption.

3.5. Ablation Experiments

We designed the ablation experiments to value the effect of the channel attention and
the temporal attention. We constructed four models, the naive GRU, the GRU with the
channel attention, the GRU with the temporal attention, and the GRU with dual attentions
for this experiment. We divided the dataset for these four models in two ways: the first
way was to obtain the dataset with independently identical distribution (I.I.D), while the
second was without I.I.D. These two ways correspond to the distribution of data in an ideal
situation and the distribution of data in real life.

When dividing datasets, we split the time series after Butterworth filtering to 512 size
time slices. Randomly selecting time slices allows the dataset to satisfy with I.I.D. while
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selecting time slices according to different volunteers makes the dataset without I.I.D. For
each time slice, we used a 128-size sliding window at step size 1.

3.5.1. Experiments on the Datasets with I.I.D.

Traditional machine learning methods require I.I.D. for the training set and the test
set. In most fields, it is a basic assumption of the data. In this experiment, we ignored the
differences between persons and obtained the training set and the test set with the same
distribution. Here, we divided the training set and the test set at 7:3 and deployed the four
attention models for the ablation experiments. The results are listed in Table 3.

Table 3. Ablation experiments of the four attention models on the datasets with I.I.D.

Model Accuracy
F1-Score

Stand Sleep Watch Walk Run Clean

GRU 0.986 0.991 0.995 0.992 0.973 0.995 0.971
GRU + CA 0.986 0.990 0.993 0.990 0.974 0.995 0.953
GRU + TA 0.991 0.993 0.995 0.993 0.985 0.996 0.983

GRU + CA + TA 0.992 0.994 0.998 0.996 0.984 0.996 0.983

In Table 3, compared with the accuracy and the F1-scores of the model of GRU + TA,
they are higher than those of the GRU and the GRU + CA. This indicates TA worked better.
However, the two indexes of the GRU + TA are lower than those of the GRU+ CA + TA.
The latter obtained the best effect with an accuracy of 0.992. For almost all activities,
the models of GRU with either CA or TA achieved satisfying results, but more accuracy
improvement came from TA. Further discussion of why CA has not been significantly
effective is presented in Section 4.

Figure 5 shows the confusion matrix of the GRU + CA + TA model on the datasets with
I.I.D. The most obvious misclassifications came from “walk” and “clean”: 1145 samples of
“walk” were misclassified as “clean”, and 654 “clean” were mistaken as “walk”. The rest of
the other misclassifications were less than 400.
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3.5.2. Experiments on the Datasets without I.I.D.

In HAR, most of the data in the real environment do not have I.I.D because the
measured individuals usually have differences: in age, body size, etc. These differences
cause the collected data to have different variances and means.

Therefore, we divided the dataset according to different individual volunteers to
analyze the effect of the attention mechanism in real situations. We randomly selected the
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data of volunteer #2 as the test set and the data of the other 9 volunteers as the training set.
The ratio of the training set to the test set is about 9:1.

Table 4 lists the ablation experiments of the four attention models on the datasets
without I.I.D.

Table 4. Ablation experiments of the four attention models on the datasets without I.I.D.

Model Accuracy
F1-Score

Stand Sleep Watch Walk Run Clean

GRU 0.857 0.893 0.922 0.916 0.747 0.938 0.742
GRU + CA 0.896 0.975 0.979 0.919 0.772 0.960 0.776
GRU + TA 0.890 0.954 0.967 0.900 0.784 0.956 0.791

GRU + CA + TA 0.902 0.975 0.961 0.903 0.824 0.972 0.784

The model of GRU with dual attention mechanism, output the highest accuracy, as
the results in the fourth row in Table 4 indicate. The second and the third rows in Table 4
indicate that CA and TA also worked as we expected.

The F1 scores in Table 4 imply that numerous errors occurred in the classification
of both “walk” and “clean”. As the two close curves of “clean” and “walk” in Figure 3
indicate, the two movements are so similar that the models can hardly distinguish them.
Comparing the F1 scores in the second and the third rows in Table 4, we could infer that
CA worked better in the classification of “stand”, “sleep”, “watch” and “run”; while TA
was good at identifying “walk” and “clean”. The F1 scores in the fourth row reveal that the
model of GPU with dual attentions had a great effect on the movements of “stand”, “walk”
and “run”.

Compared to the results in Tables 3 and 4, we found that the accuracy of the experi-
ments on the datasets without I.I.D was decreased by at least 10% from that on the datasets
with I.I.D. The model with dual attentions performed the best, and either CA or TA can
improve the model’s performance independently.

Figure 6 exhibits the confusion matrix of the GRU + CA + TA model on the datasets
without I.I.D. The most errors came from the classification of “walk” and “clean”: 6241
“clean” were regarded as “walk”, and 3357 “walk” were identified as “clean”. In addition,
some errors also occurred in the classification of “watch”, with a total of 5124 samples
being misclassified into other types.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 14 
 

 

Compared to the results in Tables 3 and 4, we found that the accuracy of the experi-
ments on the datasets without I.I.D was decreased by at least 10% from that on the datasets 
with I.I.D. The model with dual attentions performed the best, and either CA or TA can 
improve the model’s performance independently.  

Figure 6 exhibits the confusion matrix of the GRU + CA + TA model on the datasets 
without I.I.D. The most errors came from the classification of “walk” and “clean”: 6241 
“clean” were regarded as “walk”, and 3357 “walk” were identified as “clean”. In addition, 
some errors also occurred in the classification of “watch”, with a total of 5124 samples 
being misclassified into other types. 

 
Figure 6. Confusion matrix of the GRU + CA + TA model on the datasets without I.I.D. 

3.6. Comparison Experiments 
We conducted a series of experiments on datasets without I.I.D by deploying the pro-

posed model (GRU with dual attention mechanism) and the six classic machine learning 
methods, including the SVM (rbf), the SVM (linear), the SVM (poly), the KNN, the Light 
GBM, and the Random Forest. The results are listed in Table 5. 

Table 5. Comparison experiments of different models on the datasets without I.I.D. 

Model Accuracy 
F1-Score 

Stand Sleep Watch Walk Run Clean 
SVM (rbf) 0.450 0.942 0.740 0.273 0.103 0.404 0.005 

SVM (linear) 0.495 0.031 0.883 0.793 0.606 0.531 0.163 
SVM (poly) 0.753 0.870 0.871 0.889 0.747 0.583 0.534 

KNN 0.832 0.863 0.882 0.837 0.797 0.923 0.665 
Light GBM 0.889 0.952 0.988 0.915 0.798 0.961 0.732 

Random Forest 0.873 0.915 0.984 0.904 0.823 0.919 0.720 
GRU + CA + TA (the proposed) 0.902 0.975 0.961 0.903 0.824 0.972 0.784 

In Table 5, the proposed model achieved the best accuracy of 90.2%. Among the other 
six machine learning methods, the Light GBM acquired the best performance with an ac-
curacy of over 88%. All the six models acquired a low accuracy on the activities of “walk” 
and “clean”, which echoes the results of the previous two experiments. This implies that 
all the models are hard to extract a representation of some similar activities. For the clas-
sification of “sleep” and “watch”, the Light GBM performed the best, even better than the 
proposed model. However, the proposed model worked the best on “walk” and “clean”, 
indicating that it is more apt to distinguish confusable activities. 

Figure 6. Confusion matrix of the GRU + CA + TA model on the datasets without I.I.D.



Electronics 2022, 11, 1797 10 of 14

3.6. Comparison Experiments

We conducted a series of experiments on datasets without I.I.D by deploying the
proposed model (GRU with dual attention mechanism) and the six classic machine learning
methods, including the SVM (rbf), the SVM (linear), the SVM (poly), the KNN, the Light
GBM, and the Random Forest. The results are listed in Table 5.

Table 5. Comparison experiments of different models on the datasets without I.I.D.

Model Accuracy F1-Score

Stand Sleep Watch Walk Run Clean

SVM (rbf) 0.450 0.942 0.740 0.273 0.103 0.404 0.005
SVM (linear) 0.495 0.031 0.883 0.793 0.606 0.531 0.163
SVM (poly) 0.753 0.870 0.871 0.889 0.747 0.583 0.534

KNN 0.832 0.863 0.882 0.837 0.797 0.923 0.665
Light GBM 0.889 0.952 0.988 0.915 0.798 0.961 0.732

Random Forest 0.873 0.915 0.984 0.904 0.823 0.919 0.720
GRU + CA + TA
(the proposed) 0.902 0.975 0.961 0.903 0.824 0.972 0.784

In Table 5, the proposed model achieved the best accuracy of 90.2%. Among the
other six machine learning methods, the Light GBM acquired the best performance with
an accuracy of over 88%. All the six models acquired a low accuracy on the activities
of “walk” and “clean”, which echoes the results of the previous two experiments. This
implies that all the models are hard to extract a representation of some similar activities.
For the classification of “sleep” and “watch”, the Light GBM performed the best, even
better than the proposed model. However, the proposed model worked the best on “walk”
and “clean”, indicating that it is more apt to distinguish confusable activities.

3.7. Resources Consumption

HAR tasks usually require rapid response and cost fewer resources. We listed the
number of model parameters, MACs, and the average running time for 10,000 operations
of the four models: GRU, GRU + CA, GRU + TA, and GRU + CA + TA in Table 6. These
data were obtained under the following conditions: the Batch-size was set 1 since sensors
do not contain GPUs and the model needs to predict results in real-time; the CPU was
i7-8565U with a reference speed at 1.8 GHz and without Intel Turbo Boost.

Table 6. Consumption of Resources of the four models.

Model Number of Parameters MACs Average Time (ms)

GRU 1846 237,664 7.16
GRU + CA 2102 239,984 8.47
GRU + TA 1846 237,664 7.87

GRU + CA + TA 2102 239,984 8.83

The model of GRU used 1846 parameters while the model of GRU + CA used 2102,
indicating CA cost 256 parameters. Similarly, the computational complexity of CA can
be inferred as 2320 MACs. In our model, we used the soft self-attention as the temporal
attention, which means TA costs no parameters for training and only involves multipli-
cation during operation. Thus, the number of parameters and MACs cannot reflect TA’s
computational complexity. However, the average running time could tell something. CA
cost 15 s and TA 5 s, an extra 15% and 7% running time of the GRUs, respectively. To verify
the performance of the model on a wearable device, we applied the proposed model to an
Apple Watch with a CPU speed of 700 MHz. The results show that each prediction takes
0.02 s, which is sufficient in practical applications.
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3.8. Visualization of TA

To understand how TA achieves the accuracy improvement, we visualized the atten-
tion weights through heat maps. A heat map was a 128*128 image. The visualization results
are depicted in Figure 7.
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Figure 7 reveals that the three static activities, “stand”, “sleep” and “watch”, exhibit
few changes, while the three dynamic activities, “walk”, “run”, and “clean”, are presented
with apparently periodic changes, especially “walk” and “run”. Each image contains a blue
stripe of low attention on the left side because the weights of the first few sliding windows
were all smaller than those of the later ones.

Further, the visualization indicates that TA can improve the model’s interpretability.
For example, the periods of walking and running implied that the step frequencies of the
two movements were about 75 and 35 frames, respectively; considering the 128 frame/s
frequency of the sensor, we could infer that the person walked at a speed of 0.58 s/half step
and run at 0.27 s/half step. Plus, the visualization also indicates that the model focused on
certain states of a cycle, and TA contributes to its interpretability.

3.9. Impact Analysis of Sensors

We conducted an experiment using the proposed model to deal with the data from
different sensors. Usually, different types of sensors could influence the performance of a
model. To investigate these influences, we deployed the proposed model (GRU + CA + TA)
on the datasets without I.I.D, with the same experimental parameters as Section 3.2. The
results are listed in Table 7.

Table 7. Comparison experiments of different sensors without I.I.D.

Sensor Accuracy
F1-Score

Stand Sleep Watch Walk Run Clean

Accelerometer 0.817 0.972 0.837 0.612 0.817 0.919 0.701
Gyroscope 0.644 0.640 0.631 0.416 0.717 0.749 0.715

Accelerometer + Gyroscope 0.902 0.975 0.961 0.903 0.824 0.972 0.784
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Table 7 indicates that the accelerometer was more effective than the gyroscope, with a
17% improvement in recognition accuracy. It is consistent with existing research findings
that accelerometers capture more linear changes in human activities, while gyroscopes
mainly detect changes in the angular velocity as the object rotates and deflects. It can
be seen that the model with the gyroscope performed slightly better than that with the
accelerometer at “clean” because “clean” involves a change in the angle of the person’s
posture. Plus, the model with the combined sensors had a significant effect on most of
the accuracy enhancements. Therefore, combined sensors can better help the model’s
performance than a single sensor.

4. Discussion

We investigated the role of two attentional mechanisms in the HAR task and found
that they have different focuses and strengths. The performance of the temporal attention
is consistent with the performance of the temporal attention in other domains such as
NLP, with improved classification accuracy. In the proposed model, the soft self-attention
implementation of the temporal attention focuses the weight on the most important part
of the temporal data, and the temporal attention mechanism can better connect long-term
temporal features compared to the long-range feature extraction of the GRU model.

In our experiments, the temporal attention steadily improved the ability to classify
confusable activities on datasets with or without I.I.D. The temporal attention reinforced
the difference between “walk” and “clean” by highlighting the most important time series.
The visualization of the temporal attention (Figure 7) displays no special key points in
static activities while obvious key points in dynamic activities, indicating that the temporal
attention performs better for activities with more movements.

The channel attention had a better performance when dealing with the datasets
without I.I.D. In Table 4, the F1 scores of the model with single CA on static activities
achieved the best, even better than the model with dual attentions. This implies that the
channel attention performs better on static activities, but this good performance would be
crippled when the channel attention works with the temporal attention.

The channel attention, however, had little effect on the datasets with I.I.D. The reason
may be that the channel attention assigns very similar weights for all activities, and cannot
present effective distinguishing. The approach in [22] has the same performance as the
channel attention SENet used in the earlier layer. The importance of feature channels is
likely to be shared by different classes in the early stages. For the same reason, CA used in
our model in the early stages has shown little effect on classification. What we expect CA
to do is mitigate the effects of biased data from new volunteers. By assigning weights to
different channels, bias from different volunteers can be mitigated.

Our study implies that the two attentions have different performances in processing
characteristics when they work separately, but we need to further investigate the model’s
performance when they work together. The proposed model with dual attentions can deal
with most human activities because it can put the attentions on certain features and time
points simultaneously. For more complex human activities, however, whether the temporal
attention can continue to work well requires further research.

5. Conclusions

In this paper, we proposed a GRU model with dual attention mechanisms for HAR.
This model automatically extracts attention for different channel temporal sequences, with
channel attention focusing on attention between sensor spatial axis directions and temporal
attention focusing on attention on temporal sequences. Experiments show that these
two types of attention have preferences for different human activity categories: channel
attention performs better on static activities, and temporal attention performs better on
dynamic activities. The dual attention mechanism enhances the classification ability of the
model with a small amount of additional resource consumption.
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In the future, we will further investigate the recognition method for continuous com-
plex human activities, and will also consider the impact of additional sensor combinations
on recognition accuracy.
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