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Abstract: Traditional neural networks have limited capabilities in modeling the refined global and
contextual semantics of emotional texts and usually ignore the dependencies between different
emotional words. To address this limitation, this paper proposes a construction-assisted multi-scale
graph reasoning network (ConAs-GRNs), which explores the details of the contextual semantics
as well as the emotional dependencies between emotional texts from multiple aspects by focusing
on the salient emotional information. In this network, an emotional construction-based multi-scale
topological graph is used to describe multiple aspects of emotional dependency, and a sentence
dependency tree is utilized to construct a relationship graph based on emotional words and texts.
Then, the transfer learning and pooling learning on the topology map is performed. In our case,
a weighted edge reduction strategy is used to aggregate the adjacency information which enables
the internal transfer of semantic information in a single graph. Moreover, to implement the inter-
graph transfer of semantic information, we rely on the construction structure to coordinate the
heterogeneous graph information. The extensive experiments conducted on two baseline datasets,
SemEval 2014 and ACL-14, demonstrate that the proposed ConAs-GRNs can effectively coordinate
and integrate the heterogeneous information from within constructions.

Keywords: sentiment classification; multi-scale topological map; heterogeneous information;
construction structure; sentence dependency tree

1. Introduction

Sentiment classification [1,2] aims to interpret the explicit sentiment polarity of a given
sentence in a complex context, which is a fundamental natural language processing task
that has received much attention in recent years. For instance, in a sentence such as “These
MacBooks are encased in a soft rubber enclosure—so you will never know about the razor
edge until you buy it”, the sentiment polarities of “rubber enclosure” and “edge” are
positive and negative, respectively.

Many existing sentiment classification systems [3–8] focus on statistical methods to de-
velop a set of handcrafted features for sentiment classification. However, these handcrafted
feature-based methods usually require human involvement. In such a case, the accuracy is
questionable. Moreover, it is difficult for these methods to meet the growing application
demands. In recent years, deep learning methods [9,10] have received increasing attention
because such methods are able to automatically learn emotional features and generate
useful low-dimensional representations from context; they can also achieve high accuracy
in the sentiment classification tasks without requiring complex feature engineering. For
example, some studies use the attention mechanism [11] to extract important sentiment
words in sentences in order to improve classification accuracy. Other studies use the LSTM
model [12] to establish long-term dependencies. Recently, graph convolutional networks
(GCNs) [13] have been widely used in sentiment classification tasks, in which an informa-
tion transfer mechanism is used to extract the node neighborhood information and the
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local context information. Chen et al. [14] proposed a multiple attention-based LSTM to
capture the relevance between sentiment words and their contexts. Lin et al. [15] developed
a sentiment semantic coding network based on a multi-head self-attention mechanism,
which can model the contextual semantics of sentiment words.

Although the research methods above have made great progress in sentiment classifi-
cation, most of the existing methods only model the semantics of sentiment words, ignoring
the dependencies between emotional words and the semantic relationship between senti-
ment words. For instance, as shown in Figure 1, we can see that “battery” has a negative
sentiment polarity in the first position. We then guess that the second “battery” may be
negative, while the emotional polarity of “battery” after the conjunction “but” and the
qualifier “upgrade” may also be positive. Overall, the same sentiment text has multiple
constructions that can help us to judge the sentiment polarity of sentiment words.

Figure 1. The construction of sentiment context. “Context” represents the emotional text (or sentence),
and “Construction” represents the construction of a sentence, e.g., “The battery won’t last long but
I’m sure this will be fixed by upgrading the battery.” This sentence might be constructed as “NP -1
CC -1 NP -1” and “NP -1 DT -1 NN -1”, where NP is a noun phrase, CC is a conjunction, and DT is a
determiner. The blue and red arrows represent negative and positive emotions, respectively.

In this paper, we develop a construction-aided multi-scale graph reasoning network
(ConAs-GRNs) to capture the contextual and global semantic information of sentiment
texts and to model their sentiment dependencies. More specifically, the graph reasoning
networks can obtain interdependent information from rich relational data and enhance
interdependent interactivity. For each node in the topological and relational graph, the
graph inference network encodes its neighborhood information into a low-dimensional
feature vector. As shown in Figure 1, “battery” is regarded as a node, which can be used to
construct a corresponding dependency graph with the adjacent sentiment words. After
that, on the basis of the structure, a large-scale topological graph containing all emotional
sentences can be constructed by exploiting the relationship between the emotional words
and texts. Our model learns the emotional dependencies of these heterogeneous graphs
at different scales and aggregates information between heterogeneous nodes to obtain
global and contextual semantics. To capture the emotion-specific representations and
the important salient information, before using the graph inference network, we adopt a
triple attention mechanism with positional encoding, i.e., we focus on key features in three
directions: horizontal, vertical, and depth. It is worth noting that in the graph inference
network, we adopt a weighted edge reduction strategy to reduce the number of nodes
in order to ease the computational complexity. The main contributions of this paper are
summarized as follows:

• To the best of our knowledge, this work is the first attempt at building a heteroge-
neous relation graph based on sentiment construction for sentiment words and texts.
Moreover, we utilize Graph Reasoning Networks (GRNets) to capture the details of
the contextual and global semantics of sentences.

• We design an emotional dependency graph and a constructional relationship graph,
where the constructive details are used to assist the learning model for sentiment
classification.
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• In the process of constructing heterogeneous graphs, a weighted edge reduction strat-
egy is used to refine the node information and reduce the computational complexity
of the model. The extensive experiments conducted on two baseline datasets, Se-
mEval 2014 and ACL-14, demonstrate that our method outperforms other sentiment
classification methods.

The rest of this article is organized as follows. We review the related work in Section 2
and present the sentiment classification framework ConAs-GRNs in Section 3. The ablation
research and experimental results are provided in Section 4. Finally, Section 5 presents the
conclusion of our paper.

2. Related Work

Sentiment classification has received extensive attention in recent years [10,15]. In or-
der to improve the accuracy and efficiency of emotion classification, researchers have
developed many classification methods based on traditional handcrafted features [7] and
deep learning [9]. This section will introduce the related research in detail.

Many existing sentiment classification methods extract the handcrafted features by
feature engineering. For instance, Pathik N et al. [16] discussed the relationship be-
tween the Latent Dirichlet Allocation (LDA) and probabilistic modeling. Although LDA
can model different topics, it relies too much on statistical models and does not exploit
high-dimensional features. Machine learning methods increasingly use visualized text
and high-dimensional data as input, which provide more dimensional statistical features.
Thakur et al. [6] developed a Kernel Optimized-Support Vector Machine (KO-SVM) model
for sentiment classification. In their scheme, the sentiment features were fed into the classi-
fier. More specifically, they also improved the SVM classifier by replacing the exponential
kernel with an optimized kernel and used a self-adaptive lion algorithm to improve the
optimizer in order to make it more sensitive to dominant features. Nafis et al. [7] proposed
an improved hybrid feature selection method using Term Frequency-Inverse Document
Frequency (TF-IDF) and Support Vector Machine (SVM-RFE) for sentiment classification.
Fauzi et al. [8] used the random forests for Indonesian sentiment classification and explored
some variations of the term weights in the classification results. However, this method did
not significantly improve the performance of the random forest.

As the network layer of deep learning deepens, features that are more conducive
to sentiment analysis can be extracted. The recurrent neural network (RNN) [17] has
been proved to be suitable for language sentiment classification tasks in many methods.
Zhang et al. [10] proposed a Gated Neural Network, which used a gating mechanism to
control the importance of the context to the target. In this case, only one target with
the highest probability is concerned in a sentence. However, the context relationship of
the sentence is difficult to determine according to the target. To address this limitation,
Ma et al. [12] leveraged the object-level and sentence-level attention with commonsense
knowledge to enhance the long short-term memory (LSTM) network, thus improving the
network’s accuracy.

Due to the control effect of the attention mechanism on the target, many studies
combine attention mechanism and RNN. Huddar et al. [17] proposed a pair-wise atten-
tion mechanism to analyze and understand multimodal context and semantics. Chen et al.
analyzed a corpus of 3200 English tweets using an attention-based LSTM. Zeng et al. [18] in-
troduced position-aware vectors to solve the common problem of the attention mechanism
being unable to focus on the contextual position. However, the RNN structures still have
many limitations. The introduction of graph convolutional networks (GCNs) may give a
promising solution for a better sentiment classification. Zhou et al. [13] combined grammar
and knowledge to improve the graph convolution, which could improve the performance
of emotion classification. Zhu et al. [19] used the local and global structure dependency to
guide the graph convolutional network and then adaptively fused information with the use
of a gate mechanism. Zhang et al. [20] extracted the sentence structure of the dependency
tree and solved the long-term multi-word dependency problem, thus enabling the graph
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convolutional network to achieve better results in aspect sentiment classification. However,
this method does not take full advantage of the label information of edges, and there is still
room for further improvement.

3. ConAs-GRNs Frameworks

In this section, we elaborate on the proposed ConAs-GRNs framework for sentiment
classification. The word feature vectors of emotional sentences are obtained by the BERT
method, which are then fed into the fully connected layer to extract the emotional words
and related construction information to obtain rich underlying semantic features, i.e., prior
knowledge. Secondly, a triple attention mechanism is designed to encode emotional text in
order to obtain the position information of emotional words in the directions of horizontal,
vertical, and depth and then model the context and global semantics. More specifically, it
assigns the corresponding weights to emotional words while paying attention to salient
features, which reduces the use of redundant information. Finally, a multi-scale graph
reasoning network is used to learn heterogeneous graphs constructed by emotional words
and constructions, which can transfer and aggregate the heterogeneous node features from
its neighbors. Note that for the emotional dependency graph, the dependencies between
the sentiment words in a sentence and the edges between nodes are measured by the cosine
similarity. The relationship graph contains emotions. The overall flow of ConAs-GRNs is
shown in Figure 2.

Figure 2. The overall network structure of ConAs-GRNs. s = 1, 2 indicates the size of the dependency
graph with sentiment words in sentences. ζc indicates the construction relation graph with sentiment
sentences. FC(·) indicates the operation of fully connected layers. VA, DA, HA indicate the attention
mechanism acting in the vertical, deep, and horizontal directions, respectively. (ζc; ζs=1; ζs=2)

indicates a weighted fusion of different scale dependency graphs and construction relation graphs.
“GRM” indicates the graph reasoning module.

Next, we will introduce the ConAs-GRNs framework, which includes semantic encod-
ing, the construction of heterogeneous graphs, and the reasoning of multi-scale graphs.

3.1. Semantic Encoding Module

The semantic encoding module consists of a Bert [21] layer, a fully connected layer,
and a three-directional attention mechanism. First, the mapping vectors extracted by the
Bert layer are fed into the fully connected layer (FC) in order to extract the rich low-level
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semantic information from emotional sentences. Second, the positions and interrelation-
ships of sentiment words in sentiment sentences are encoded by the three-directional
attention [22,23] mechanism. Then, we can obtain the fine-grained semantic information of
different sentiment words.

We define the input sentiment sentence as X, where each X ∈ {W1, · · · , WN} is
composed of N words. More specifically, the word vector dimension is represented by D,
and the word vector feature of a sentence is represented by XN×D. The encoded features
f xi
e ∈ RN×D are obtained by the FC layer. The three-directional attention mechanism is

expressed as follows:{
f xi

f c = FC(xi), xi ∈ X ∈ RN×D

f xi
e = Conv1×1(HA( f xi

f c), VA( f xi
f c), DA( f xi

f c))
(1)

where f xi
f c indicates the output features of fully connected layers; FC(·) indicates the fully

connected operation; Conv1×1 indicates a convolution operation with a kernel size of 1× 1;
HA(·), VA(·), DA(·) indicates the horizontal, vertical, and depth attention operation; xi
indicates the i− th emotional sentence in the corpus.

3.2. Establishment of Heterogeneous Graph

In order to obtain the details of the global and contextual semantics, we construct
two topological graphs, i.e., the multi-scale affective dependency graphs ζs=k and the
constructional relational graphs ζc, which can be used to explore effective dependencies
and constructional relationships that facilitate effective interaction.

According to Equation (1), we encode the features of sentiment sentences as f xi
e ∈

RN×D , and we calculate the correlation between emotional words in each sentence by
their feature similarity, where each sentiment word is regarded as a node vj, and the
edge εj between any two nodes is considered as a dependency. Then, we can construct a
dependency topology graph ζs=k(vj, εj) that contains multiple scales. The corresponding
adjacency matrix As of ζs=k can be represented by the following equation:

As
j,u =


Cos(vj, vu) , vj 6= vu

1 , vj = vu

0 , otherwise

(2)

where vjandvu can be any two nodes in ζs=k, As
j,u = 1 indicates a self-looping, and As

j,u = 0
indicates that there is no edge between vj and vu.

For a connected relational graph ζc that includes all words, the construction of a
sentence (e.g., “The battery doesn’t last long but I’m sure an upgrade battery would solve
that problem.”) can be defined as “NP -1 CC -1 NP -1” and “NP -1 DT -1 NN -1”, where
“but” is “CC” and “upgrade” is “DT”. The polarity of the first “battery”, represented by
“CC”, is opposite to the polarity of the second “battery”, represented by “DT”, i.e., the
first “battery” is negative and the second “battery” is positive. This means that the same
emotional word may have opposite polarity by some specific modifications. Subsequently,
we can infer the polarity of the emotion by using this particular construction. After that,
we can build a construction-based relational graph ζc, with the corresponding aspect word,
such as “CC” and “DT” in the construction, as the root node. Then, the adjacency matrix
Ac of graph ζc can be represented by the following equation:

Ac
t,r =

{
‖vt − vr‖ , vt 6= vr

1 , vt = vr (3)

where, vt, vr indicates the node of graph ζc, Ac
t,r = 1 indicates that the node is self-looping,

and ‖‖ indicates the normal formulas.
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Based on the weighted edge reduction strategy, the graphs ζs=k and ζc can be used to
form the final multi-scale heterogeneous graph ζ∗cs. This process can be represented by the
equation below:

ζ∗cs = WERS(ζc; ζs=k), k = 1, 2, 3 (4)

where WERS(·) indicates the operation of weighted edge reduction, and s = k indicates
the scale of sentiment dependency graph ζs=k. The adjacency matrix A∗ for the weighted
reduction strategy can be described as follows:

A∗ = ψAs + ϕAc =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψAs
11 + ϕAc

11 · · · ψAs
1u + ϕAc

1r · · · ψAs
1n + ϕAc

1n
...

...
...

...
...

...
... ψAs

ju + ϕAc
tr

...
...

...
...

...
...

...
ψAs

n1 + ϕAc
n1 · · · ψAs

nu + ϕAc
nr · · · ψAs

nn + ϕAc
nn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5)

where ψ = 0.6, and ϕ = 0.4. n indicates the number of nodes. Then, the fused adjacency
matrix A∗ can be represented by the following equation:

A∗ =


ϕ‖vt − vr‖+ ψCos(vj, vu) , vt 6= vr, vj 6= vu, vt = vj, vr = vu

1 , vt = vr, vj = vu

0 , otherwise

(6)

In summary, the heterogeneous graph can capture the dependencies between senti-
ment words and strengthen their interactions by the sentiment constructions. It helps the
graph reasoning networks sense the emotional details in changing statements.

3.3. Graph Reasoning Module

In order to accurately predict the polarity of emotional sentences, we input the con-
structed heterogeneous graph into the dynamically aggregated graph convolution [24,25]
for interactive learning. The learning process can be described as follows:oζ = D̃−

1
2 Ã∗D̃−

1
2 XζΘ

o(l)ζ = D̃−
1
2 Ã∗σ(∑(l−1)

m=1
˜(A∗)(m))D̃−

1
2 X(l−1)

ζ Θ(l−1)
(7)

where m ∈ l and ol are the outputs of the l-th layers.
After that, we feed the detailed semantics obtained by the dynamically aggregated

graph convolution into a fully connected layer FC, which can be described as follows:

OOUT = So f tMax(FC(o(l)ζ ) (8)

where OOUT indicates the prediction by the softmax classifier, and FC(·) indicates the
operation of the full connection layer.

To be able to use weighted loss during training to obtain better performance for our
proposed ConAs-GRNs framework during training, we use the weighted loss as follows:{

τTotal = λmceτmce + λdiceτdice + λ f lτf ocall

λdice + λmce + λ f l = 1
(9)

where τmce indicates multiclass cross-entropy loss, τdice indicates dice loss, τf l indicates
focal loss, and λmce, λdice, λ f l indicates the weights factor.

Moreover, we use the “Adam” to optimize the learning model, as shown in Algorithm 1.
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Algorithm 1 Sentiment classification processing by the ConAs-GRNs frameworks.

Input: the feature matrix of the ConAs-GRNs input is XN×D, the number of graph
layers l, the feature of initial low-level f xi

f c, the adjacency matrices A∗ of the

heterogeneous graph according to Equation (6), where X(0) = XN×D;
for l=0 to L do

Calculate the output O(l)
ζ by Equations (6) and (7);

The output of the multi-scale graph is by calculating as ζ∗cs according to
Equation (4);

where the graph of the adjacent matrix A∗ is optimized according to
Equations (2)–(5);

achieve the feature of output OOUT by graph reasoning module (GRM)
according Equation (8);

end
output: optimization of the training by reconstruction of τTotal and recognition of
the results of sentiment classification according to Equation (9).

4. Experimental Results

In our experiments, we use the SemEval 2014 and ACL-14 datasets to verify the
validity of ConAS-GRN. Moreover, we discuss the needs of different components used
in the proposed ConAS-GRN. In the following sections, we describe the details of our
experimental setup.

4.1. Datasets Preparation

SemEval 2014: This dataset includes two parts, “Restaurant” and “Laptop”, where
each part consists of three categories: positive, negative, and neutral.

ACL-14: This dataset includes negative, neutral, and positive comments about celebri-
ties, products, and companies. In order to be fair, the negative, neutral, and positive
emotion texts in the dataset were divided into 25%, 50%, and 25%. More specifically, the
number of training and test samples were set to 6248 and 692, respectively. The details of
the dataset are shown in Table 1.

Table 1. Details of the SemEval2014 and ACL-14 datasets; “Restaurant” and “Laptop” represent
the SemEval2014 dataset, and “Construction” indicates construction grammar, namely important
situations relevant to the human experience.

Datasets
Restaurant Laptop ACL-14

Training Testing Training Testing Training Testing

Positive 2164 728 994 341 3142 346
Negative 807 196 870 128 1562 173
Neutral 637 196 464 169 1562 173

Construction 100,043 1,105,665 241,546 992,438 819,242 286,552

To verify the reliability and effectiveness of ConAs-GRNs, we use Accuracy (Acc) and
F1 as performance evaluation metrics.

4.2. Experiment Settings

Datasets processing. Firstly, the emotional sentence corresponding to each construc-
tion is mapped into a low-dimensional space, and a specific keyword is used as the root
node. Then, we construct a large topology map of the entire statement. Finally, all topo-
logical graphs are fused with the use of an edge weight reduction strategy to form a
heterogeneous graph that can be directly input to the graph reasoning network that learns
their emotional relationships.
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Training parameters. In our experiments, some important training details are as
follows: (i) the learning rate is set to 1e-4, the number of iterations is set to 300; (ii) the
batch is set to 32, and (iii) the word vector dimension is set to 300. More specifically, our
framework is optimized by the “Adam”.

Environment configuration. We implement our ConAs-GRNs model by using the
Pytorch platform, and all codes are developed based on python3.7. To ensure fairness, all
experiments were carried out on two RTX3090 GPU cards.

4.3. Comparison with Other Sentiment Classification Methods

Taking SemEval2014 and ACL-14 as evaluation samples, we conducted extensive
experiments to demonstrate the effectiveness of the proposed ConAS-GRN sentiment
classification framework. The specific evaluation results are shown in Table 2.

Table 2. Experimental information of different sentiment classification methods. (Bert) indicates
the use of bert for a general word vector. Other methods use gloves for word vector mapping.
ConAs-GRNs (Glove) and ConAs-GRNs (Bert) are the proposed sentiment classification frameworks.

Datasets
Laptop Restaurant ACL-14

Acc F1 Acc F1 Acc F1

SVM 70.13 62.44 77.22 68.61 78.59 70.98
LSTM 70.48 63.92 78.44 70.02 80.33 72.08

BiLSTM 71.87 64.96 79.06 70.28 80.62 71.17
IAN 72.58 63.08 79.64 71.09 81.92 71.46

PBAN 74.22 64.77 81.99 72.41 82.42 72.04
ASCNN 72.64 63.78 80.94 71.61 83.21 73.06

TSN 73.07 63.96 80.87 71.29 81.55 71.73

GCNs 73.44 67.91 79.99 70.08 81.47 71.13
Text-GCNs 75.35 70.11 80.08 70.12 82.54 71.85

DGCNs [26] 78.51 76.15 81.79 73.88 83.62 73.58
AEN(Bert) 78.66 70.30 82.46 72.69 84.02 74.07

ASGCN(Bert) 75.65 71.60 80.87 70.18 82.87 72.53
SDGCN(Bert) 80.35 78.44 83.34 75.69 84.56 75.03

ConAs-GRNs (Glove) 79.42 77.08 82.41 73.99 83.92 74.86
ConAs-GRNs (Bert) 81.43 79.11 84.46 76.92 86.22 76.66

From the evaluation results shown in Table 2, we can draw the following conclusions:
(1) Compared with other sentiment classification methods, using the graph structure

to model sentiment semantics can significantly improve the classification accuracy. For
example, in the Laptop dataset, the Acc of Text-GCNs are 3.48% and 1.13% higher than
that of BiLSTM and PBAN, respectively. The main reason may be that the graph con-
volutional network strengthens the dependencies between emotional words (nodes) by
aggregating the semantic information from the neighboring nodes. Moreover, the use of
three-directional attention reduces the use of redundant information.

(2) The ConAs-GRNs (Glove) method can achieve the best performance on the two
baseline datasets, SemEval2014 (Restaurant and Laptop) and ACL-14. For example, the
classification performance of the ConAs-GRNs (Glove) method on the ACL-14 dataset
is higher than that of the ASGCN (Bert) method. The main reason is that multi-scale
information can better represent sentiment words and context nodes. Furthermore, multi-
scale structural and heterogeneous information can describe the emotional relationships
from multiple levels.

(3) The proposed ConAs-GRNs (Bert) method achieved good performance. As we
expected, the ConAs-GRNs (Bert) outperformed the SDGCN (Bert) on the SemEval2014
(Restaurant) datasets. Moreover, ConAs-GRNs (Bert) used the weighted edge reduction
strategy to prune the primary graph structure; it also used the triple attention mechanism
with a positional encoding module to extract the useful features.
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Finally, we can see that ConAs-GRNs (Bert) gives give the best performance and is
better than ConAs-GRNs (glove) on the two baseline datasets.

4.4. Ablation Experiments

To demonstrate the effectiveness of different components used in the proposed ConAs-
GRNs, we conducted a set of ablation experiments on the two baseline datasets, Se-
mEval2014 and ACL-14. The experiment results are shown in Table 3, where “BERT”
indicates the BERT method that generates the word vectors. Similarly, “Glove” indicates
the glove method. For example, ConAs-GRNs (NoAtt,Glove) indicate that ConAs-GRNs
do not use the attention mechanism, and “ss” indicates that there is a single-scale heteroge-
neous graph.

Table 3. The experimental results of ConAS-GRNs internal components. “Bert” indicates the use of
BERT for a general word vector. Other methods use glove for word vector mapping. ConAs-GRNs
(NoAtt,Glove) indicates the methods where no attention mechanism is involved in the operation. “ss”
indicates the use of a single scale heterogeneous graph.

Datasets
Laptop Restaurant ACL-14

Acc F1 Acc F1 Acc F1

GRNs (NoAtt,Glove) 76.19 71.98 78.54 73.57 76.98 71.06
GRNs (Glove) 77.57 72.11 79.51 74.88 77.71 71.93

GRNs (NoAtt,Bert) 77.37 72.24 79.24 74.19 77.85 72.29
GRNs (Bert) 78.31 72.40 79.75 74.97 78.46 72.06

ConAs-GRNs (NoAtt,Glove) 77.42 73.08 80.11 74.09 78.02 73.86
ConAs-GRNs (NoAtt,Bert) 78.84 74.11 81.46 75.02 82.12 74.16

ConAs-GRNs (ss,Glove) 77.02 71.18 78.49 70.99 77.62 70.77
ConAs-GRNs (ss,Bert) 77.99 71.44 79.85 71.84 79.22 72.06

From Table 3, we can draw the following conclusions:
(1) Different word vectors have different impacts on the classification performance.

For example, the Acc and F1 values of GRNs (Bert) are 0.74% and 0.29% higher than those
of GRNs (Glove) on the Laptop dataset. Furthermore, the attention mechanism has a
great impact on classification performance. For example, the Acc and F values of GRNs
(Glove) are 0.97% and 1.31% higher than those of GRNs (NoAtt,Glove) on the Restaurant
baseline dataset. This is because the attention mechanism can effectively reduce redundant
information by focusing on salient features.

(2) From Table 3, we can clearly see that the sentiment classification performance is
poor when using a single-scale heterogeneous graph. For example, the Acc and F1 values
of ConAs-GRNs (ss, Glove) on the ACL-14 dataset are 77.62% and 70.86%, respectively,
which are 0.40% and 2.09% lower than those of ConAs-GRNs (NoAtt,Glove). The main
reason may be that the heterogeneous graph with a single structure cannot capture the
deep multi-scale information in the emotional text, thus resulting in insufficient feature
representation. This leads to a lack of emotional dependencies in different aspects within
the neighborhood scale. When context semantics and global semantic information are
passed across graphs, a lot of detailed information is lost, therefore reducing the interaction
between them.

In conclusion, all the components used in the proposed ConAs-GRNs greatly improved
the classification performance.

4.5. The Effectiveness of Different Scales and Dimensionality

To verify the effectiveness of heterogeneous graphs and embedding dimensions (Bert),
we evaluated the proposed ConAs-GRNs on the ACL-14 dataset. The results are shown in
Figure 3, where d = 100, 200, 300, 400 indicates the embedding dimensions of a word vector.
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Figure 3. The experimental results of different embedding dimensionalities on our proposed ConAs-
GRNs. d = 100, 200, 300, 400 indicates the embedding dimensionality of a word vector.

In Figure 3, we can clearly see that as the number of embedding dimensionalities in-
creases, and the classification performance of ConAs-GRNs has a rising trend. For instance,
d = 200 outperforms d = 100 by 1.54% on the two datasets. However, the accuracy is
reduced when d = 400. The main reason is that when the dimension of the word vector
is large, the features are sparse, and the correlation between emotional words is reduced,
which makes it difficult to describe the emotional semantics.

Moreover, we selected the values s = {1, 2, 3} to investigate the influence on the scale
of the heterogeneous graphs.

In Figure 4, we can clearly see that as the number of heterogeneous graph scales
increases, the classification accuracy is significantly improved. For example, the Acc
of s = 1, 2, 3 significantly outperforms that of s = 1, 2, s = 1, 3, and s = 2, 3 on the
Laptop dataset, which improved by 1.12%, 1.24%, and 2.49%, respectively. When the
scale of the heterogeneous graph is small, it is difficult to obtain rich contextual semantics.
Moreover, when the scale is larger, more redundant information is utilized, thus reducing
the correlation between different sentiment words.

Figure 4. The experimental results of different scales on our proposed ConAs-GRNs, where
s = {1, 2, 3} indicates the number of heterogeneous graph scales in our proposed classification
frameworks.
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In addition, we can see that ConAs-GRNs achieved the best performance on the
Restaurant datasets when using s = {1, 2, 3}. This means that multi-scale heterogeneous
graphs can strengthen the dependencies between features with different sentiment words
and contexts. The experimental results demonstrate the effectiveness of our method.

4.6. The Effectiveness of Different Loss

To demonstrate the effectiveness of our model, we consider the impact of different
loss functions on classification performance. The results are shown in Figure 3, where
τmce represents the multi-class cross-entropy, τFocall aims to suppress the impact of data
imbalance, τdice represents the multi-class dice loss, and τTotal indicates the loss used in our
ConAs-GRNs. Then, we can draw the following conclusions:

According to the experimental results of different losses in Table 4, we can see that:
(1) Compared with τdice and τmce, τFocall achieved the best performance on the Laptop

and Restaurant datasets. For the Laptop dataset, τFocall outperforms τmce by 0.39% and
0.11% respectively. The main reason is that tauFocall effectively suppresses the imbalance
of samples. As a result, the proposed ConAs-GRNs can focus on the difficult-to-classify
sentiment samples during training.

(2) Compared with τFocall and τdice, the proposed ConAs-GRNs uses the special de-
signed loss function τTotal to achieve the best classification performance. For example,
the F values are 1.4% and 1.82% higher than τFocall and τdice on the Restaurant dataset,
respectively. The main reason may be that the weighted τTotal loss function can suppress
the data imbalance and keep the loss value in a relatively stable range, thus enabling the
network to better learn complex emotional text data.

Table 4. Results of the loss function on the Laptop and Restaurant datasets. τTotal indicates our
proposed loss on ConAs-GRNs.

Loss
Laptop Restaurant

Acc F1 Acc F1

τmce 79.82 78.31 82.84 74.75
τFocall 80.21 78.42 83.47 75.52
τdice 80.06 78.15 82.91 75.1

τTotal 81.43 79.11 84.46 76.92

4.7. Experimental Results on Different Amounts of Datasets

We also conducted an additional study to investigate the impact of the number of
training samples. More specifically, for simplicity, all examples were taken from the ACL-14
dataset. We divided the training sample sizes into 10%, 20%, 30%, and 40%. Figure 5
illustrates the accuracy of ConAs-GRNs with respect to the number of training samples.

As can be seen in Figure 5, with the increase in the number of training samples, the
classification accuracy of all models also improves. The main reason may be that when
the number of training samples is large, the classification model can learn more useful
knowledge from the samples to obtain more powerful discriminative features. Note that
our ConAS-GRNs can achieve the best classification performance even on 10% of the
training samples, which indicates that ConAS-GRNs has a strong competitive advantage
on small-sample datasets.
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Figure 5. Experimental results of different sizes of datasets on ACL-14.

5. Conclusions and Next Research

In this paper, we developed a sentiment classification algorithm called ConAS-GRN
that combines construction information. This framework uses a multi-scale heterogeneous
graph and an edge weight reduction strategy to aggregate the context and global semantics
of sentiment words in sentiment sentences from multiple levels and scales. Then, we
designed a three-directional attention mechanism to emphasize the salient features in
sentences from different perspectives, which reduces the use of redundant information and
improves the ability of emotional words to express sentences. In order to strengthen the
interaction between different topological graphs, a related relational topology was estab-
lished to avoid the semantic ambiguity of the same sentiment words in different sentences.
The extensive experiments validated the effectiveness of our framework. Future research
will focus on developing new graph structures to help build a more robust sentiment
classification framework.
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