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Abstract: Electrical capacitance tomography (ECT) is a technique of imaging the distribution of
permittivity inside an object under test. Capacitance is measured between the electrodes surrounding
the object, and the image is reconstructed from these data by solving the inverse problem. Although
both sinusoidal excitation and pulse excitation are used in the sensing circuit, only the AC method
is used to measure both components of complex capacitance. In this article, a novel method of
complex capacitance measurement using pulse excitation is proposed for ECT. The real and imaginary
components are calculated from digital samples of the integrator response. A pulse shape in the
front-end circuit was analyzed using the Laplace transform. The numerical simulations of the electric
field inside the imaging volume as well as simulations of a pulse excitation in the front-end circuit
were performed. The calculation of real and imaginary components using digital samples of the
output signal was verified. The permittivity and conductivity images reconstructed for the test object
were presented. The method enables imaging of permittivity and conductivity spatial distributions
using capacitively coupled electrodes and may be an alternative measurement method for ECT as
well as for electrical impedance tomography.

Keywords: complex capacitance; admittance measurement method; electrical impedance tomography;
capacitive coupling; pulse analysis technique

1. Introduction

Electrical capacitance tomography (ECT) is an imaging technique in which the spatial
distribution of electric permittivity in a domain is reconstructed from capacitance values
measured between the electrodes surrounding the domain [1].

Although ECT offers images with low spatial resolution, this technique found applica-
tion in chemical engineering for process monitoring due to its high frame rate capability,
installation flexibility, and relatively low cost [2]. A typical application is the imaging of
multiphase flows or mixing processes [3–6]. ECT is mainly used to visualize flows with a
non-conductive continuous phase. Electrical resistance (or resistivity) tomography (ERT)
is used for imaging mixtures with a continuous conductive phase [7,8]. The possibility of
adapting the hardware to measure both permittivity and conductivity and work in both
cases would be a great advantage.

ECT can be potentially used in medicine, similarly to electrical impedance tomography
(EIT) [9,10]. Possible medical applications are lung monitoring for accumulating fluid and
heart function and blood flow monitoring [11]. To be an alternative to EIT, the ECT should
measure both real and imaginary components due to the complex admittivity of biological
tissues [12]. Unlike EIT, ECT uses capacitively coupled electrodes that are comfortable for
the patient but challenging in real measurements. The main issue is to ensure a constant
and equal coupling capacitance for all electrodes [13,14]. ECT can also be used for spatially
resolved impedance measurement techniques applied to cell and particle research [15].
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Various circuits for capacitance measurements in an ECT system were proposed. The
alternating current (AC) method and charge–discharge method are standards in this tech-
nique [2], although many modifications are known [16–21]. Both sinusoidal excitation
and pulse excitation are used in the sensing circuit in ECT systems; however, the meth-
ods with sinusoidal excitation have only been proposed to measure both components of
complex capacitance.

Pulse excitation was studied in impedance measurement [22,23] and impedance spec-
troscopy [24]. Examples of impedance measurement with excitation in the form of a
rectangular pulse can be found in [25]. In impedance spectroscopy, the use of pulse exci-
tation of a short duration gives a shorter measurement time. Broadband test signals with
a spectrum covering a wide frequency range are used together with the discrete Fourier
transform to obtain spectral information about the test object [26]. The excitation signals can
have various shapes [24], e.g., rectangular [27], Gaussian functions [28], chirp signals [29],
sinc signals [30], and multi-sine signals [31]. Although the idea of application of pulse
excitation in impedance measurement is known, it has not been explored in ECT so far.

In this paper, a novel method of complex capacitance measurement using pulse
excitation is proposed for ECT. The real and imaginary components are calculated from
the digital samples of the integrator’s response to the rectangular pulse excitation. The
advantage of the method is that it obtains a broadband response of the examined medium
in one stimulation without the necessity to repeat it. The disadvantage of the method is the
inability to obtain spectral information.

The proposed method uses a two-electrode measurement as opposed to the four-
electrode measurement used in the EIT. The electrodes are capacitively coupled with the
measured medium without ohmic contact. Similarly, two-electrode measurement is used
in capacitively coupled impedance tomography (CCIT), which was proposed for medical
or biological imaging [12,32], but sinusoidal excitation was used in that method.

Laplace analysis of the rectangular excitation in the front-end circuit was used to
derive the analytical formulas for the components of complex capacitance. The numerical
simulations of integrator response, including digital sampling, were performed to verify
the validity of the method. The tomographic data were simulated, and the images were
reconstructed to show the possibility of permittivity and conductivity imaging.

2. Materials and Methods
2.1. Admittance Measurement with Capacitive Coupling

The capacitance between electrodes is measured in ECT. Its value results from medium
electric permittivity. When the medium is also conductive, both real and imaginary compo-
nents of so-called complex capacitance are measured. The complex capacitance, defined as

C = C′ − iC′′ , (1)

results from complex permittivity of medium given by the following formula:

ε = ε′ − i
σ

ω
, (2)

where ε′ is the electric permittivity of a tested medium, σ is the conductivity, and ω is the
angular frequency. The imaginary part of capacitance is directly related to conductance G.

C′′ =
G
ω

(3)

Admittance of capacitance is defined by

Y(ω) = iωC, (4)
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which for complex capacitance takes the form

Y(ω) = G + iωC′. (5)

The equivalent circuit model for a complex capacitance measurement is shown in
Figure 1a, where Cx and Gx are the tested medium capacitance and conductance, respec-
tively. Cc is the total coupling capacitance of two electrodes. If Rx = 1/Gx denote the
resistance of the medium, the admittance of the circuit can be expressed by the follow-
ing formula:

Y(ω) =
iωCc(1 + iωRxCx)

1 + iωRx(Cx + Cc)
. (6)
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Figure 1. (a) Equivalent circuit for a model of complex capacitance measurement with capacitive
coupling. (b) Integrator-based measurement circuit.

In the basic method of capacitance measurement, the voltage is applied to the mea-
sured capacitance, and the capacitance charging current is integrated. The charge Q
collected on the capacitor plate is proportional to the applied voltage U and the capacitance
value C. The circuit with the integrator, built using an operational amplifier with a neg-
ative feedback loop, is shown in Figure 1b. The integrator, also called a charge amplifier,
produces the output voltage proportional to the charge transferred through the capacitor
during the charging process. Resistor R f in the feedback loop is used to prevent saturation
of the realistic integrator caused by the input bias current and leakage currents. We as-
sumed that R f value is very high and does not influence the integration. Analog switches
are used to connect/disconnect the measured capacitance to the pulse generator output
and the input of the integrator in the tomographic hardware.

2.2. Pulse Shape Analysis in the Measurement Circuit

The integrator’s response to the rectangular pulse excitation (Figure 2a) was calculated
using Laplace transform for the model of measured admittance. The analysis was split into
two parts as the Laplace transform of the rectangular pulse of duration T can be separated
into two transforms of the step functions.

L(1I(t1)− 1I(t2 − T)) =
1
s

e−st1 +
1
s

e−st2 , (7)

where T = t2 − t1. First, the rising edge of the pulse was analyzed. The step function with
the amplitude k and the rising edge at the time t1 can be described by

uIN(t) = k · 1I(t− t1). (8)

The signal representation in s-domain is given by

UIN(s) =
k
s

e−st1 . (9)
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The Laplace transform of the integrator input admittance Y(s) is given by the follow-
ing formula:

Y(s) = sCc||(Gx + sCx) =
sCc(Gx + sCx)

Gx + s(Cx + Cc)
, (10)

where Gx + sCx is a tested admittance and Cc is a coupling capacitance. The current on the
input impedance resulting from the step function in s-domain is given by

I(s) = UIN(s)Y(s) = k
[

Cc(Gx + sCx)

Gx + s(Cx + Cc)

]
e−st1 . (11)
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Taking inverse Laplace’s transform of the above equation, the current in function in
time can be calculated. After substituting Rx = 1/Gx, the formula takes the following form:

i(t) = k

[
CxCc

Cx + Cc
δ(t− t1) +

C2
c

Rx(Cx + Cc)
2 e−

t−t1
Rx [Cx+Cc ]

]
for t ∈ (t1, t2). (12)

The response of the ideal integrator uO1 with the gain K to the step function can be
derived by integrating the current (Figure 2b).

uO1(t) = m
[

CxCc

Cx + Cc
+

C2
c

Cx + Cc

(
1− e−

t−t1
Rx [Cx+Cc ]

)]
for t ∈ (t1, t2), (13)

where m = kK.
Similarly, using the Laplace analysis, the trailing edge of the integrator response was

analyzed (Figure 2b). The voltage at the integrator output after the falling edge of the
exciting rectangular pulse, i.e., after the time t2, is described by the following formula:

uO2(t) =
[

uO1(t2)−m
CxCc

Cx + Cc

]
e−

t−t2
Rx [Cx+Cc ] for t > t2. (14)

The plots of the voltage response at the integrator output calculated using
Equations (13) and (14) to rectangular pulse for different values of measured capacitance,
conductance, and coupling capacitance are shown in Figures 3 and 4. The excitation pulse
with the amplitude k = 2.5 V and duration T = 14 µS was used. The duration of the pulse
corresponds to the duration of the excitation pulse used in our EVT4 tomographic device.
In this device, a high voltage is used to measure non-conductive objects. A voltage of 2.5 V
is sufficient to obtain a good signal in the case of conductive mixtures or biological tissue.
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The circuit simulations for different parameters were performed using Simulink
(Figure 5). The rectangular pulse, with the parameters as above, was used. The plots
of the voltage at the integrator output calculated analytically and obtained in the Simulink
are presented in Figure 6 for a comparison. As an integrator built using an op-amp inverts
the signal, the presented integrator output plots are inverted for ease of interpretation.
Calculation based on analytical formulas and Simulink simulation gave the same result.

2.3. Admittance Component Estimation Using Digital Samples of Integrator Response

The proposed method of complex capacitance measurement is based on the analysis
of integrator response shape. Let us assume that the pulse response of the integrator
is sampled using an analog-to-digital converter. The sampling interval is divided into
three phases of the same duration: before the pulse, during the pulse, and after the pulse
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(Figure 7). At each phase, N signal samples are collected. The samples collected in the first
phase from the time t0 = 0 to t1 allow estimating the baseline

h0 =
1
N

N−1

∑
n=0

un, (15)

where un is a value of the n-th sample. At the time t1, the pulse front appears with a voltage
surge of the value h1 resulting from capacitance charging. The pulse ridge is sampled in
the second phase between t1 and t2. Two parameters can be calculated from these samples.
The area under the pulse ridge is calculated using the following formula:

A1 =
T
N

2N−1

∑
n=N

un − h0T. (16)
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The height of the pulse ridge h2, resulting from charging through the medium resis-
tance, is calculated using the following formula:

h2 =
2N−1

∑
n=N

(un+1 − un). (17)
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The third sampling phase corresponds to the discharge phase after the excitation is
turned off. The area under the pulse tail is calculated using the following formula:

A2 =
T
N

3N−1

∑
n=2N

un − h0T. (18)

The value by which the voltage drops in the time interval from t2 to t3 is determined
using the following formula:

h3 = −
3N−1

∑
i=2N

(un+1 − un). (19)

h0 =
1
N

N−1

∑
n=0

un, (20)

where un is a value of the n-th sample. At the time t1, the pulse front appears with a voltage
surge of the value h1 resulting from capacitance charging. The pulse ridge is sampled in
the second phase between t1 and t2. Two parameters can be calculated from these samples.
The area under the pulse ridge is calculated using the following formula:

A1 =
T
N

2N−1

∑
n=N

un − h0T. (21)

The height of the pulse ridge h2, resulting from charging through the medium resis-
tance, is calculated using the following formula:

h2 =
2N−1

∑
n=N

(un+1 − un). (22)

The third sampling phase corresponds to the discharge phase after the excitation is
turned off. The area under the pulse tail is calculated using the following formula:

A2 =
T
N

3N−1

∑
n=2N

un − h0T. (23)

The value by which the voltage drops in the time interval from t2 to t3 is determined
using the following formula:

h3 = −
3N−1

∑
i=2N

(un+1 − un). (24)
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The height of the voltage spike at the front of the pulse resulting from capacitance
charging can be calculated using the Equation (13) by substituting t = t1:

h1 = m
CxCc

Cx + Cc
. (25)

Similarly, setting t = t2 in Equation (13) and subtracting h1, the height of the output
pulse ridge h2 can be calculated.

h2 = m
C2

c
Cx + Cc

(
1− e−

T
τ

)
, (26)

where τ = Rx[Cx + Cc] and T = t2 − t1. The value by which the voltage drops in the
discharge phase can be derived using the Equation (14) and is given by

h3 = h2

(
1− e−

T
τ

)
. (27)

The area under the pulse ridge can be calculated analytically by integrating Equation (13)
in the range from t1 to t2:

A1 = h1T + m
C2

c
Cx + Cc

(
T + τe−

T
τ − τ

)
(28)

Similarly, the area under the pulse tail can be calculated analytically by calculating a
definite integral of (14) in the range from t2 to t3:

A2 = h2τ
(

1− e−
T
τ

)
(29)

Using Formulas (26)–(29) and having the values of h2, h3, A1, and A2 calculated from
the signal samples, formulas for the capacitance and conductivity of the medium can be
derived. Since the voltage spike h1, at the front of the output pulse, results from a capacitive
divider, capacitance Cx is expressed using the ratio of the height of the pulse ridge and the
pulse tail. Conductance Gx is calculated using the area under the pulse ridge and pulse tail.

Cx = mC2
c

h3

h2
2
− Cc (30)

Gx =
mA2C2

c

(mTCc − A1)
2 (31)

In this derivation, it is assumed that the amplitude of the excitation square pulse, the
integrator gain, and the value of the coupling capacitance are known. The analysis of the
formulas shows that the method can be used only in a certain range of permittivity and con-
ductivity values. This range depends on the value of the coupling capacitance, the assumed
pulse duration, and the sampling frequency. The range of linearity of measurement of one
component depends on the value of the other component. For both components, there are
areas where the method is not sensitive to changes in the measured value. Figure 8 shows
the dependence of the estimated value as a function of the true value for both capacitance
and conductivity. The value of coupling capacitance was equal to 100 pF, the pulse duration
was 14 µS, and the sampling frequency was 9 MHz. Under these conditions, the range over
which the proposed method is sensitive to the change in permittivity and conductivity is
respectively from 1 pF to 100 pF and from 10 µS to 1 mS.
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The proposed method requires analyzing the values of parameters determined from
samples to protect against extreme values outside the assumed range. If any of the values
of h2, h3, A1, or A2, particularly A2 or h2, is lower than the assumed level, the result must
be rejected. We assume here that the values of capacitance and conductivity are within the
assumed range, and we omit the analysis of the extreme cases.

The numerical simulations were performed to evaluate the method of admittance
component estimation using the samples of the integrator’s response. The white additive
Gaussian noise was used in the generation of digital samples. The simulation of the
integrator’s response for given values of parameters was repeated several times to obtain
different realizations of the random process. The mean value and standard deviation were
calculated for conductance and capacitance. The analysis was performed in a selected range
of capacitance and conductance values and for selected values of coupling capacitance.
The measurement uncertainty, relative error, linearity, and sensitivity were calculated in a
selected measurement range. Standard uncertainty represents a measure of the variation of
a variable from its average. The relative standard uncertainty is defined as

urs =
σ

yavg
× 100% (32)

where yavg is a mean value and σ is a standard deviation. The accuracy of measurement
describes a closeness of the measurement value to the true value and can be expressed by
relative error, defined as

er =
|y− ytrue|

ytrue
× 100% (33)

where y is a measured value and ytrue is a true value. The linearity error is defined as the
deviation of a function from a linear relationship and is given by the following formula:

el =
|∆ymax|

xmax − xmin
× 100%, (34)

where ∆ymax is the maximum difference between the measured value and the fitted line;
xmin and xmax are the lower and upper range limits, respectively [33]. The sensitivity
of the measuring device can be defined as the derivative of the response curve using
an approximation:

s =
∆yest

∆ynom
, (35)
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where ∆yest is the change in instrument response and ∆ynom is a change in the mea-
sured quantity.

2.4. Numerical Simulations of Tomographic Measurements

Numerical simulations of two-dimensional (2D) tomographic measurements were car-
ried out. In 2D ECT, a cross-section of the volume of interest is obtained from measurements
carried out using one ring of electrodes.

To simulate tomographic projections, it is necessary to solve a forward problem in
which the electric field and the so-called sensitivity matrix are determined. Knowing the
sensitivity matrix, it is possible to determine the capacitance value between the electrodes
for the assumed spatial distribution of complex permittivity.

In a real application, the response of the medium to the broadband excitation includes
frequencies from a certain band. For some materials, electric parameters significantly vary
in function of frequency. For example, biological tissues show a variable response over the
frequency range from a few hertz to several megahertz. In the case of broadband excitation,
the realistic simulation of tomographic measurement requires the integration of results over
a wide frequency range. The frequency range depends on the shape of the used signal [34].
When a rectangular pulse is used, the spectrum is composed of odd frequencies and is
limited to a certain range. The lower limit of this range results from the pulse duration,
and the upper limit results from the rise time of the excitation pulse edge in the real
measuring system. To reduce the complexity of the experiments, we assumed that complex
permittivity was constant in the function of frequency. This simplified model, although not
very realistic, remains valid for the verification of the proposed measurement method.

Solving a forward problem allows obtaining complex capacitances of the object with-
out taking into account the parameters of the measuring electrodes and connecting leads.
Such data cannot be observed in a real system. The data generated in the forward problem
solver served as the reference data in the experiment. The second dataset was generated
using the front-end circuit model and the proposed method of processing digital samples.
The first dataset represented the ideal case, whereas the second represented the proposed
measurement method.

2.4.1. Test Object

The admittance of biological tissues is a complex quantity combining conductivity
and capacitance. Thus, the 2D numerical model of the human thorax was used for the
experiments (Figure 9). We defined the elements of the numerical phantom using standard
geometrical primitives: ellipses and rectangles. As in other articles, the phantom geometry
is based on a computed tomography cross-section of the chest [35]. The geometrical and
electrical parameters of the phantom elements are given in Table 1. In the simulations, we
assumed that the complex permittivity was constant within the frequency range, and we
used the values specified for 500 kHz.

Table 1. Parameters of thorax numerical phantom (Figure 9) for 500 kHz. Permittivity and conductiv-
ity values are taken from [36].

Tissue Object Position
xc, yc [mm]

Size
a, b [mm]

Tilt
[deg] εr σ[ mS

m ]

left lung LL 59.0, −7.8 43.4, 71.0 70.9
1029 123right lung RL1 −64.4, 0.6 54.4, 77.5 95.4

RL2 −53.6, 68.6 9.8, 33.2 176.44
heart H 14.2, 38.2 46.3, 39.4 21.3 3260 281
spine S −6.9, −47.6 11.4, 11.4 90 175 22.2
aorta A −0.9, −23.7 9.9, 9.7 90 3260 281

body
LBO 65.0, 2.7 67.3, 98.22 90

56.8 43.8RBO −71.8, 4.7 69.7, 100.2 90
BR 0, 0 143.6, 191.1 90
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Figure 9. (a) Computed tomography cross-section of the human chest with marked regions. (b) The
geometry of the numerical phantom of the human thorax. H—heart, A—aorta, S—spine. Thirty-two
electrodes used in the measurement and the outer screen are shown.

2.4.2. Forward Problem

ECTsim toolbox for Matlab developed in our laboratory was used for forward problem
solving [37]. A finite volume method (FVM) and non-uniform square mesh are used to
calculate electric field distribution in this toolbox [38].

The geometrical model of a test object was defined using geometrical elements and
algebraic operations on these elements. Thirty-two measurement electrodes surrounding
the object were added to the model (Figure 9). The size of the electrodes was 15 mm in width
and 60 mm in height. The electric parameters given in Table 1 were used for the model
elements. In the 2D simulation, it is assumed that the geometry and electrical properties are
not changing in the Z-axis direction. Integration over a range corresponding to the height
of the electrode in the Z-axis is performed to calculate the sensitivity or capacitance value
for the electrode pair.

When using a multi-channel device, a measuring strategy is possible in which all
but one selected electrode are simultaneously measuring electrodes. These electrodes
measure current. The selected electrode is used to force voltage in the tested domain.
During tomographic scanning, each electrode becomes a stimulating electrode, which gives
N(N − 1) measurements, where N is the number of electrodes. In fact, only N(N − 1)/2
measurements are linearly independent since one electrode pair is measured twice in
this sequence.

The potentials on the stimulating and measuring electrodes constitute the boundary
conditions for the electric potential equation. The potential was equal to 2.5 V for the
excitation electrode and 0 V for the measuring electrodes. The current measuring electrodes
are at zero potential due to the connection to the virtual ground of the op-amp.

The electric field for all voltage excitations, the sensitivity matrix, and capacitance
between electrode pairs were calculated using the toolbox (Figure 10). As the electric param-
eters of material, i.e., conductivity and permittivity, were defined as complex values, the
complex electric field and complex sensitivity maps for electrode pairs were calculated [39].
The inverse problem was solved for a frequency equal to 500 kHz.

2.4.3. Simulations of the Measurements Using Pulse Excitation

Having the complex capacitance values determined by solving a forward problem, it
is possible to simulate the integrators’ responses during tomographic scanning. The model
of measurements with capacitive coupling was used. Additive Gaussian noise was added
to the generated digital samples. On the basis of the signal samples, the capacitance values
for all electrode pairs were determined using Formulas (30) and (31).
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Figure 10. Sensitivity maps for selected pairs of electrodes for known permittivity and conductivity
distribution: (a,b) opposite electrodes (1–16); (c,d) near electrodes (1–4); (a,c) maps for capacitance
measurement; (b,d) maps for conductance measurement. The so-called “windowing” is applied to
increase image contrast and show sensitivity distribution in the center of the thorax phantom.

2.5. Image Reconstruction

The reconstruction can be performed with and without the separation of two com-
ponents. In the first case, real parts of complex voltage data are used to reconstruct
conductivity images and their imaginary parts to reconstruct permittivity images. Since
this approach neglects the mutual influence of conductivity and permittivity values on the
electric field distribution in the examined space, we chose the second approach, in which
the reconstruction algorithm is performed on complex measurements of capacitance and
reconstructs complex permittivity. Reconstruction in a complex domain becomes important
when ε values increase to be comparable with σ/ω, for example, for biological tissues at a
frequency above 1 kHz.

The inverse problem was solved using a modified Levenberg–Marquardt (LM) algo-
rithm. LM algorithm is an iterative algorithm in which, in each step, the sensitivity matrix
is recalculated using a current estimate of the solution. To reduce the computational cost,
the Jacobian matrix was computed only a few times every certain number of iterations. The
value of the regularization parameter was selected experimentally.
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3. Results
3.1. Admittance Estimation Using Simulated Integrator Response

The numerical simulations were carried out to evaluate the uncertainty of the admit-
tance component estimation using the proposed method. The measured admittance was
excited using the rectangular pulse whose amplitude was 2.5 V and duration was 14 µS.
The range of integrator’s output voltage was <0; −10 V>. The output signal was sampled
with a frequency equal to 9 MHz. White Gaussian noise was added to the samples of the
integrator’s output with the magnitude 5 mV root-mean-squared (rms). In the experiment,
the values of the parameters were selected that correspond to the values of the signals
present in the tomographic device designed by our group. This allowed us to numerically
verify the proposed method in the context of its potential implementation in our hardware.

The examples of noisy integrator output are shown in Figure 11. The values of
conductance and capacitance were calculated from the samples using the Formulas (30)
and (31). The simulations were repeated for the value of conductance in the range from
10 µS to 1 mS and the value of capacitance in the range from 1 pF to 100 pF.
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Figure 11. Integrator’s response at the noise level of the magnitude 5 mV rms: for various measured
capacitance Cx and conductance Gx at the value of coupling capacitance Cc = 100 pF.

The estimation quality parameters for the proposed measurement method were de-
termined, assuming the measurement range from 1 pF to 100 pF for capacitance and from
10 µS to 1 mS for conductance. The circuit response curves for capacitance and conductance
are presented in Figures 12 and 13. The response curve is a plot of an estimated versus a
nominal value. The estimated value is the mean from 100 measurements. The standard
uncertainty bars are plotted with the width corresponding to three-sigma. The relative
error and sensitivity for three selected values from the measurement range are given in
Tables 2–5. The linearity error for capacitance measurement is 0.24% for conductance
Gx = 0.01 mS and 0.02% for conductance Gx = 1 mS (Figure 12). The linearity error for
conductance measurement is 16.80% for capacitance Cx = 1 pF and 33.56% for capacitance
Cx = 100 pF (Figure 13). The precision for conductance measurement is better, whereas the
linearity is better for capacitance measurements.

Table 2. Capacitance estimation parameters for Gx = 10 µS, Cc = 100 pF, and 5 mV rms noise.

Nominal Cx
[PF]

Estimated Cx
[PF]

Relative Error
[%]

Uncertainty
[%] Sensitivity

1 1.23 23.09 19.70 0.97
10 10.25 2.53 3.08 0.97

100 100.67 0.66 1.88 1.28
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3.2. Image Reconstruction from Simulated Data

Two sets of thorax phantom tomographic data were used for the comparison. The
first set was generated in a numerical simulation describing the complex capacitance of the
object itself without taking into account the admittance of the electrodes or leads. These
data, the so-called unobservable data, were generated without adding noise. The second
dataset contained measurements simulated by the proposed method, taking into account
the coupling capacitance of the measuring electrodes and the noise of the measuring
electronics. Additive Gaussian noise was added to the generated digital samples with a
magnitude of 5 mV rms.

The capacitance and conductivity measurements simulated for a 32-electrode sensor
are shown in Figure 14. For each excitation electrode, 31 measurements can be made using
the sensing electrodes. Only 496 measurements, not being a linear combination, were
used for the reconstruction. The figure shows only a part of the simulated results for
the readability of the charts. The measurement data arranged according to the excitation
electrodes form a characteristic graph with a repeating U-shape. In this U-shape graph,
the maximum values correspond to measurements from the adjacent electrodes, and the
minimum values correspond to measurements with pairs of opposite electrodes. The values
of real capacitance and conductance of the object are plotted to illustrate the performance
of the proposed method. The conductance values obtained using the proposed method fit
well with the real values in almost the whole measurement range. Small discrepancies can
be observed for high conductance values, which is related to the relative error at the upper
limit of the measurement range (Figure 8). The 5 mV rms noise has a minimal influence
on conductance estimation. The impact of noise on capacitance estimation is significant
because the capacitance values for the thorax phantom are very close to the lower limit of
the measurement range, where the relative standard uncertainty is high (Table 2).

The images of permittivity and conductivity were reconstructed from both datasets:
ideal data and data simulated using the numerical model of the proposed method with
noise and coupling capacitance. The results of image reconstruction, together with true
distributions of permittivity and conductivity in the phantom, are shown in Figure 15.

The normalized L2 norms were calculated to measure the quality of the reconstructed
images. The residuum describes how well the algorithm fits the solution to the minimized
norm and is given by the formula

res
(

xi
)
=
‖D− Jkxk‖2

2
‖D− Jkxtrue‖2

2
, (36)

where D is the vector of measurements, Jk is the Jacobian matrix at the k-th iteration, xk is
the estimate at the k-th iteration, and xtrue is the true spatial distribution. The L2 distance
between the estimate and the phantom describes the discrepancy between the reconstructed
and true distributions and is given by

dis
(

xk
)
=
‖xk − x0‖2

2
‖xtrue − x0‖2

2
(37)

where x0 is the initial distribution in the iterative algorithm. The image quality errors
obtained for both datasets are presented in Table 6.
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Figure 14. Numerical simulated values of capacitance (a) and conductance (b) for ideal case (blue)
and measurement using the pulse excitation (red). Measurements simulated for the thorax phantom.
The data for the measurements for three excitation electrodes are shown only.

Table 6. Image reconstruction error.

Component Ideal Data Data Obtained
Using the Proposed Method

Residuum ε 6.6 × 10−4 3.4 × 10−2

σ 6.3 × 10−5 5.2 × 10−4

Discrepancy ε 0.125 0.389
σ 0.580 0.711
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(c) permittivity, (f) conductivity.

4. Discussion

The paper presents a novel method of capacitance measurement using pulse excitation,
which can be an alternative to the commonly used sinusoidal excitation. The advantage of
pulse excitation may be the speed of the measurement as well as the broadband stimulation
of the examined object. The proposed method uses a simpler two-electrode measurement
compared to the four-electrode measurement used in the EIT, where it is necessary to use
a current source with high output impedance. The proposed method uses non-contact
electrodes, which may be an advantage in the case of medical use due to the patient’s
comfort and ease of use.

Experiments have demonstrated that on the basis of digital samples of the integrator
response, the values of both complex capacitance components can be determined. The per-
formed analysis of the measurement method showed that it could be used in the measuring
range from 1 pF to 100 pF for capacitance and from 0.01 mS to 1 mS for conductivity.

The value of the coupling capacitance must be selected so that its susceptance is
high in comparison with the measured capacitance and conductivity. Pulse duration and
sampling should also suit the measuring range. In the numerical experiment, we used a
pulse with a duration of 14 µS and a sampling frequency of 9 MHz. These values made
it possible to obtain acceptable measurements and can be easily used in our tomography
device in a future hardware implementation of the proposed method. In order to extend
the sensitivity range, it is necessary to provide the possibility of changing the pulse width
in the measuring system and increasing the sampling frequency. Oversampling will also
reduce measurement uncertainty.

In the assumed measurement range, the relative standard uncertainty of measurement,
the relative error, and the linearity are acceptable, although the measurement range itself is
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limited. The disadvantage of the method is that in case of occurrence of values outside the
measuring range, it is necessary to control the data and discard the results.

The conducted numerical experiments have shown that with the proposed measure-
ment method, it is possible to obtain data from which the reconstruction of tomographic
images is possible. The reconstructed images do not differ much in quality from the images
reconstructed from ideal data (data without noise and the influence of coupling capaci-
tance). For biological tissues, the value of the component related to electric permittivity is
much lower than the conductivity component in the range of the frequencies used, which
means that the capacitance values are very small compared to the conductivity values. The
conductivity images are of better quality than the permittivity images due to the difference
in measurement uncertainty for conductivity and permittivity.

5. Conclusions

The proposed method of complex capacitance measurement using pulse excitation
may be an alternative measurement method for ECT as well as for electrical impedance
tomography. It enables imaging of permittivity and conductivity spatial distributions using
capacitively coupled electrodes. Thus, it can extend the capability and potential of ECT.
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