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Abstract: It is quite challenging to stitch images with continuous depth changes and complex textures.
To solve this problem, we propose an optimized seam-driven image stitching method considering
depth, color, and texture information of the scene. Specifically, we design a new energy function to
reduce the structural distortion near the seam and improve the invisibility of the seam. By additionally
introducing depth information into the smoothing term of energy function, the seam is guided to
pass through the continuous regions of the image with high similarity. The experimental results show
that benefiting from the new defined energy function, the proposed method can find the seam that
adapts to the depth of the scene, and effectively avoid the seam from passing through the salient
objects, so that high-quality stitching results can be achieved. The comparison with the representative
image stitching methods proves the effectiveness and generalization of the proposed method.

Keywords: image stitching; image depth; seam-cutting

1. Introduction

Image stitching [1] refers to the use of a set of images of the same scene taken from
different perspectives to create a single fused image with a wider field of view. It is
widely used in multimedia content generation, image analysis/understanding, industrial
inspection, and other fields (such as panoramic imaging [2], aerial image generation [3],
medical synthetic image generation [4,5], virtual reality [6], remote visual inspection [7],
and so on).

Image stitching methods have been applied to more and more scenarios. In order
to adapt to these scenarios, many methods have been proposed or improved. Currently,
image stitching is mainly implemented in two ways: the spatially varying warping method
and the seam-driven method.

For the first way, Brown et al. [8] carried out image stitching with spatially varying
warping, which aligns the input images by estimating the optimal homography matrix of
the entire images. When the input images have only translation or rotation transformation,
or the image scene is coplanar, this type of method can obtain visually acceptable stitching
results. However, such a method may introduce visual artifacts or misalignment to the
stitched image when the input images are of large parallax. In order to alleviate the prob-
lems caused by parallax, Gao et al. [9] proposed a dual homography matrix model to stitch
images, and assumed that the scene can be modeled by two depth planes; however, when
the scene has more than two depth planes, the quality of stitched image will decrease. To
solve the adaptability of the method to small parallax scenes, Zaragoza et al. [10] proposed
an as-projective-as-possible image stitching (APAP) model to improve the accuracy of im-
age alignment and reduce the ghosting effect through flexible local deformation. Although
the local deformation method provides accurate alignment, serious perspective distortion
will occur in the non-overlap regions. Therefore, Lin et al. [11] proposed the adaptive
as-natural-as-possible (AANAP) warping method for the images with unnatural rotations.
Li et al. [12] proposed a parallax-tolerant image stitching method based on robust elastic
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warping (REW). Liao et al. [13] designed single-perspective warps (SPWs) for natural image
stitching, which introduces point and line features to further improve the naturalness of the
stitched image while ensuring image alignment. Shi et al. [14] pointed out that the warping
methods used to regard stitching as the construction of a geometric transformation model,
which limits the deformation effect in areas where the depth of field changes dramatically,
and few studies focused on post-processing to further eliminate these projection biases
after image warping. For this reason, they proposed a misalignment-eliminated warping
image stitching based on grid-based motion statistics matching.

Different from spatially varying warping, the seam-driven method tries to find a seam
in the overlapping region of the aligned images. In the stitched image, the contents on both
sides of the seam come from different aliened images, respectively. This type of method
does not need to strictly align the entire overlapping region, but only the regions near the
seam. Therefore, the seam-driven image stitching method can handle the parallax problem
well if a suitable seam is found, which means that the search for a suitable seam is crucial to
the stitching result. Gao et al. [15] first proposed a seam-driven image stitching method, and
defined a seam quality metric to measure the effectiveness of the seam. Huang et al. [16]
proposed a seam planning method, aiming to maximally preserve the visual content while
eliminating inconsistency in the overlapping region. Lin et al. [17] proposed a seam-guided
local alignment (denoted as SEAGULL) method for parallax-tolerant image stitching, in
which the final stabilized warp is accomplished through iteratively computing the seam
location and the structure-preserving warping. Li et al. [18] proposed a perception-based
seam cutting method for image stitching which takes into account the non-linearity and
non-uniformity of human perception in energy minimization, and obtained a substantial
improvement over the traditional seam-cutting approach. Herrmann et al. [19] used an
object detection technique to extract the center of the object, and modified the energy
function at the seam search stage to improve the anti-occlusion ability of the method.
Wang et al. [20] used curve transformation to detect seam in images to be stitched and
improve the stitching quality of images. Generally, for overlapping region of given aligned
images, different energy functions will result in different seams, and finally lead to different
stitching results. Therefore, in order to obtain reasonable image stitching results, it is
necessary to find an suitable seam to complete the image stitching.

Although the above methods have achieved good results in solving the misalignment
caused by parallax, it is still a challenge when the scene has continuous depth changes
and the image texture is complex. To solve this problem, we propose an optimized seam-
driven image stitching method considering depth, color, and texture information of the
scene. Specifically, in view of the structural distortion of the existing seam-driven image
stitching methods, we design a new energy function to reduce the structural distortion
near the seam and improve the invisibility of the seam. By additionally introducing depth
information into the smoothing term of energy function, the seam is guided to pass through
the continuous regions of the image with high similarity, so as to avoid the seam passing
through the protruding objects. Experimental results show that by using the improved
energy function additionally integrating depth information, the proposed seam-driven
image stitching method can effectively deal with large parallax scenes with continuous
depth changes.

The remainder of this paper is organized as follows. Section 2 presents the motivation
of this work and describes the proposed method in detail. Section 3 provides the experi-
mental results and analysis, and the effectiveness of the proposed method is additionally
proved through objective evaluation indicator. Finally, the conclusion is given in Section 4.

2. Seam-Driven Image Stitching Based on Depth, Color, and Texture Information

In this section, we first describe the principle of the seam-driven image stitching
method and the motivation of this work. Then, we propose an optimized seam-driven im-
age stitching method based on depth, color, and texture information of the scene. Different
from the existing methods, the proposed method additionally considers the scene depth
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information in the energy function for seam search, so as to guide the seam bypassing the
protruding objects and improve the invisibility of the seam.

2.1. Motivation

Different from the spatially varying warping methods, the seam-driven image stitch-
ing methods can handle the parallax problems well in many cases, and they can avoid
misalignment by finding suitable seam in regions with simple or well-arranged textures.
This type of method does not require strict alignment of the entire overlapping region, but
only the region near the seam.

Taking the stitching of two images as an example, let I0 and I1 be a pair of aligned
images, P represent the overlapping region of I0 and I1, and L = {0,1} be a label set, where
“0” and “1” are related to I0 and I1, respectively. Then, the seam search problem can be
described as a segmentation problem, which is equivalent to a binary label problem. The
process of seam-driven image stitching is to assign a label lp ∈ L to each pixel p ∈ P. lp = 0
means that the value of the pixel p should be copied from the image labeled with “0”, while
lp = 1 indicates that the value of the pixel p will be copied from the image labeled with “1”.
The goal of the seam cutting is to find suitable label l that minimizes the energy function E(l).

E(l) = ∑
p∈P

Ed(p, lp) + ∑
(p,q)∈N

Es(lp, lq) (1)

where N is the set of pixels in the overlapping region, the data term Ed(p, lp) is the cost of
assigning a label lp to the pixel p (p ∈ P), and the smoothing term Es(lp, lq) is the cost of
assigning a label (lp, lq) to a pair of pixels (p, q) ∈ N.

The data item Ed(p, lp) treats the pixels in the overlapping region equally, and penalizes
the pixels in the non-overlapping region, so that the seam can only fall in the overlapping
region of the images. According to the formula in [21], the data item Ed(p, lp) can be
computed as

Ed(p, lp) =

{
0, if p ∈ overlaping region

λm, otherwise
(2)

where λm represents a large penalty.
The smoothing term Es(lp, lq) represents the cost of discontinuity between pixel p and

other pixels in its neighborhood. The smaller the difference between the pixels p and q,
the better the invisibility of the seam passing through them, and hence the smaller the
corresponding cost should be. Es(lp, lq) can be computed as

Es(lp, lq) =
1
2

∣∣lp − lq
∣∣ · (I∗(p) + I∗(q)) (3)

I∗(·) = ‖I0(·)− I1(·)‖2 (4)

where I*(·) denotes the Euclidean metric difference.
Through the graph cut optimization algorithm [22], the energy function in Equation (1)

is minimized and the seam corresponding to the minimal cost can be determined. Usually,
the color and texture differences are taken into account in the energy function. However, in
the face of consumer-level shooting environments, the depth of the scene often changes
greatly, and the texture of the overlapping region is complex and changeable. In this case,
it is not enough only to consider the color and texture difference in the energy function.

Figure 1 shows two images to be stitched, and the stitching results obtained with
different methods. It is seen that there are regions of continuous depth variation in the
pair of images. As shown in Figure 1b, the spatially varying warping method in [13]
achieves good alignment at the background where the parallax changes are not obvious,
but misalignment occurs in the regions of traffic separation columns where the parallax
changes greatly, resulting in artifacts in this region. However, for the perception-based
seam-driven method in [18], even though it can avoid most artifacts in the overlapping
region, structural distortion still appears in the overlapping region with continuous depth
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changes, leading to scene fracture [23] at the first traffic separation column, as shown
in Figure 1c.
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Figure 1. Failure cases of two types of stitching method. (a) Two images to be stitched. (b) Image
stitching result of the method in [13]. (c) Image stitching result of the method in [18]. (d) Image
stitching result of the proposed method.

Therefore, an energy function that integrates depth, texture, and color information of
the scene is proposed in this paper, so that the found seam can achieve the image stitching
results adapting to the depth of the scene, consistent with the human eye perception.
Figure 1d shows relatively better stitching result using the method proposed in this paper,
since the used seam bypasses the traffic separation columns with continuous depth change.
However, Figure 1d still shows unnatural blending along the curb of the paved road. The
reason is that the brightness of the two images to be stitched is inconsistent, as shown
in Figure 1a. This kind of artifact can be reduced by pre-processing such as brightness
correction of the images to be stitched.

2.2. The Proposed Method

In this subsection, we propose an optimized seam-driven image stitching method
that additionally integrates depth information of the scene in the energy function, and its
framework is shown in Figure 2. Firstly, the input images are pre-aligned through image
alignment, and then depth estimation and texture map generation are performed to obtain
the depth value and texture feature of the overlapping region of the images to be stitched,
based on which the energy function of the overlapping region can be calculated. After that,
the graph cut optimization algorithm is used to obtain the seam through minimizing the
energy function. Finally, the aligned images are fused with the Poisson fusion method to
generate the final stitched image.
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Figure 2. The framework of the proposed method.

For the two images to be stitched, let IL and IR denote the left and right images,
respectively. In this paper, we use the SPW method [13] to pre-align the input images,
because it has good alignment capabilities, while ensuring the naturalness of the non-
overlapping region of the image, reducing projection distortion, and maintaining strong
flexibility and robustness. Through the SPW method [13], two aligned images can be
obtained in the same coordinate system, denoted as I0 and I1. It should be noted that even
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though the IL and IR are aligned, simply fusing I0 and I1 may result in ghost or artifacts
in the overlapping region of the fused image due to misalignment and moving objects. It
is a good alternative to find a suitable seam in the overlapping region of the two aligned
images and then copy parts of the two images to both sides of the seam, respectively. Of
course, in this way, it is expected that the image contents on both sides of the seam are well
stitched, i.e., the seam should be invisible as much as possible.

Obviously, energy function is critical to finding the suitable seam. The early methods
usually consider color feature of images in the energy function, but ignore the salience of
the object. Therefore, more complex features are included in difference cost of the energy
function, and the most commonly used is the combination of color and gradient features,
which tries to enhance color consistency while avoiding the seam passing through promi-
nent objects. However, when the scene depth changes continuously, the method combining
color and gradient features may have the problem of finding too single seam—for example,
the seam found is approximately a straight line and does not bypass the prominent fore-
ground, leading to structural distortion in the stitched image [23]. A perceptually pleasing
seam should be usually along some specific regions [24], such as roads, woodlands, and
the sky, and it is hoped that the seam can bypass prominent foreground objects. Therefore,
a new difference cost is proposed in this paper so as to measure the similarity between the
overlapping regions of I0 and I1. Since depth information is usually well associated with
objects in the scene, in addition to the color and texture features, we also introduce the
depth information into the energy function to improve the understanding of the scene and
avoid the signal discontinuity on both sides of the seam as much as possible.

In this work, the advanced monocular depth estimation method in [25] is used to
obtain the depth map of the images to be stitched, and in order to obtain reliable texture
structure, the method in [26] is utilized to extract the texture map of the images to be
stitched. Figure 3 shows the examples of the obtained depth maps and texture maps of the
input images, where the texture map is shown in the form of a heat map for clear display.
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maps are used for clear display.
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Let D0, D1, T0, and T1 denote the depth map and texture map of the images I0 and I1
respectively. Then, we define a new difference cost S of the overlapping region of the two
images to be stitched, which combines color, texture, and depth information of the scene,
and is expressed as follows

S(·) = ‖Ccolor(·)‖2 + ‖Ctexture(·)‖2 + ‖Cdepth(·)‖2 (5)

where Ccolor(·) represents the cost term of color difference, Ctexture(·) is the cost term of
texture difference, and Cdepth(·) denotes the cost term of texture–color difference combined
with depth information.

The cost term of color difference Ccolor(·) is computed by

Ccolor(·) = I0(·)− I1(·) (6)

where I0(·) and I1(·) represent the color of pixels corresponding to each other in the over-
lapping region of I0 and I1. The cost term of color difference is used to guide the seam to
pass through regions with similar color as much as possible so as to hide the seam.

The cost term of texture difference Ctexture(·) is computed by

Ctexture(·) = T0(·)− T1(·) (7)

where T0(·) and T1(·) are the texture value of pixels corresponding to each other in the
overlapping region of T0(·) and T1(·). The cost term of texture difference makes the seam
bypass the regions with complex texture which are prone to structural distortion.

The cost term of the texture–color difference combined with depth information Cdepth(·)
is defined as

Cdepth(·) = T0(·)D0(·)e−T0(·)I0(·) − T1(·)D1(·)e−T1(·)I1(·) (8)

where D0(·) and D1(·) denote the depth value of pixels corresponding to each other in the
overlapping region of D0 and D1, respectively. Due to the integration of depth information,
Cdepth(·) can optimize the seam-driven image stitching method to keep away from the region
of significant depth change at object boundaries, so that the obtained seam can better adapt
to image stitching of scenes with large parallax or scenes with continuous parallax changes.

Thus, Equation (3) can be rewritten as

Es(lp, lq) =
1
2

∣∣lp − lq
∣∣(S∗(p) + S∗(q)) (9)

The final energy function is defined by

E(l) = ∑
p∈P

Ed(p, lp) + ∑
(p,q)∈N

Es(lp, lq) (10)

The seam can be obtained through minimizing the energy function E(l) with the graph
cut optimization algorithm [22], and then the aligned images can be fused with the Poisson
fusion strategy [27] to obtain the final stitched image.

3. Experimental Results and Analysis

At present, the image stitching is mainly implemented in two different ways [17]: the
spatially varying warping method and the seam-driven method. Therefore, the proposed
method will be compared with these two types of representative methods in this section.
For the sake of fairness, these comparative experiments are conducted on the two public
datasets [17,28].
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3.1. Comparison with Spatially Varying Warping Methods

In order to demonstrate the effectiveness of the proposed seam-driven method for
large parallax scenes, it is firstly compared with four spatially varying warping methods,
namely APAP [10], AANAP [11], REW [12], and SPW [13].

The pair of input images shown in Figure 4a,b comes from the literature [17]. It is
seen that there are prominent foreground and objects with continuous parallax changes
in the input images; hence, they are used to evaluate the effectiveness of the methods.
Figure 4d–g show the stitching results of APAP [10], AANAP [11], REW [12], and SPW [13]
methods, respectively. As foreground objects, the close-range objects in the red and green
boxes have large parallax, which can be used to test the different methods’ ability to process
objects with large parallax. From the partial enlargement in Figure 4d–g, it can be seen
that there are obvious ghosts in the results of APAP [10], AANAP [11], REW [12], and
SPW [13] methods. By contrast, Figure 4c shows the difference cost of the overlapping
region calculated with the proposed method, and Figure 4i shows the seam found under
the guidance of the proposed energy function. Since the seam bypasses the prominent
foreground objects, there is no artifact in the stitched image obtained with the proposed
method, as shown in Figure 4h, indicating that the proposed method can effectively process
objects with large parallax.
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used for clear display. (d) Results of APAP [10]. (e) Results of AANAP [11]. (f) Results of REW [12].
(g) Results of SPW [13]. (h) Results of the proposed method. (i) The seam obtained with the
proposed method.

3.2. Comparison with Seam-Driven Methods

In order to verify the rationality of the proposed method for introducing depth infor-
mation into the difference cost in seam search, it is also compared with the image stitching
method based on perceptual seam-cutting [18] and the traditional seam-driven method
based on color and texture information. In order to ensure the fairness of the comparison,
the alignment approach used in the SPW method [13] is utilized to pre-align the input
images for all comparison methods. Since the dataset in [17] only provides the final stitched
image, the final results in [17] are used as the benchmark in the comparison experiment,
focusing on comparing the locally enlarged details of the corresponding regions. Moreover,
as the regions through which the seam passes may have structural distortion, we will focus
on comparing the final stitching results of such regions.

The perceptual seam-cutting method in [18] takes into account the non-linearity and
non-uniformity of human eye perception in the energy minimization. Compared with
the traditional seam-driven method based on color and texture information, there is great
improvement, but still has some problems. From the results in the second row of Figure 5a,
it can be found that the structural distortion still appears at the top of the pool fence where
the seam passes through, since the depth of this region (water and pool fence) changes
significantly, compared with the partial enlargement of the result obtained with the method
in [17], as shown in the third row of Figure 5a. In addition, because the perceptual seam-
cutting method in [18] only considers the perception of color discrimination and salient
objects, the used seam is more inclined to pass through the region where the image color
change is not obvious, leading to the white clouds in the sky above the tallest building
being cut off in the final stitched image, as shown in the first row of Figure 5a.
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to the three different methods. The second row shows partial enlargements of the region through
which the seam passes. The third row shows the partial enlargements of the region in the final
stitched image of the SEAGULL dataset [17] which correspond to that shown in the second row. The
third row is used as the comparison for the second row.

Figure 5b shows the image stitching result of the traditional seam-driven method
based on color and texture information, in which the seam tends to pass through regions
with similar colors. Due to the constraint of texture information, the seam will bypass
the regions with complex texture. However, because of the lack of understanding of the
depth of the scene, the finally found seam directly passes through the boundary of the
overlapping region of the image (see the first row of Figure 5b and the input image shown
in Figure 4b), causing serious structural distortion in the stitched image. Compared with
the third row of Figure 5b obtained with the method in [17], it can be seen that the chair
legs in the foreground are malposed, and the pool fence is also broken, as shown in the
second row of Figure 5b.

Figure 5c is the result of the proposed method. Since the color, texture, and depth
information of the scene are comprehensively considered, the understanding ability of the
stitching method to the scene is prompted. Therefore, the proposed method can find the
seam according to the depth of the scene and bypass the prominent foreground regions. As
shown in the second row of Figure 5c, the proposed method does not produce structural
distortion in the edge regions where the depth changes significantly. By contrast, the result
of the method in [17] has a stitching error. There are two duplicated black dots appearing
in the center right of the stitched image, as shown in the third row of Figure 5c.

Figures 6 and 7 give an example of image stitching where the parallax between the two
input images is extremely large. The two input images to be stitched and the corresponding
difference cost map calculated by the proposed method are given in Figure 6. Figure 7
shows the comparison of the stitching results of the scene in Figure 6. Compared with
the partial enlargement of the region in the final stitched image in dataset [17] shown in
the third row of Figure 7a, the result of the perceptual seam-cutting method in [18] has
serious structural distortion at the building, as shown in the second row of Figure 7a,
because the seam passes through this background building. However, for the traditional
seam-driven method based on color and texture information, as shown in the second row
of Figure 7b, there are obvious stitching errors, the upper part of the green stick disappears,
and the tower crane behind also shows geometric distortion. By contrast, benefiting from
the introduction of scene depth information in the energy function, the seam found by the
proposed method bypasses the building and tower crane at the background, avoiding the
structural distortions, as shown in Figure 7a,b, and the pontoon at the foreground is also
well stitched, as shown in the second row of Figure 7c.
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3.3. Objective Quality Evaluation

In seam-driven image stitching, an unsuitable seam will produce visual artifacts,
which is resulted from the structure inconsistency between the two side of the seam [23].
Here, a seam quality metric is used to quantitatively measure the effectiveness of a seam.
Specifically, for each pixel pi on a seam, a 15 × 15 local patch centered at pi can be deter-
mined. Then, let SZNCC denote the zero-normalized cross-correlation score between the
local patch in the left image and the corresponding patch in the right image. Then, it can be
calculated as follows

SZNCC =
1
n∑

x,y

1
σLσR

(L(x, y)− µL)(R(x, y)− µR) (11)

where L(x,y) and R(x,y) represent the pre-aligned left and right images, i.e., I0 and I1,
respectively. n is the number of pixels in the local patches. µL and µR are the mean value of
local patches in the pre-aligned left and right images, while σL and σR denote the variance
of local patches in the pre-aligned left and right images, respectively.

Finally, along the seam, the quality of the seam is calculated by

Q =
1
m

m

∑
i=1

(
1− SZNCC(pi) + 1

2

)
(12)
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where m is the total number of pixels on the seam. The smaller the quality score Q is, the
more reasonable the seam position is, and the better the final stitching effect is.

Here, Equation (12) is used to quantitatively measure the performance of the percep-
tual seam-cutting method in [18], as well as the traditional seam-driven method based on
color and texture information and the proposed method. There are totally 24 sets of test
images, all of which are from the public datasets [17,28]. Table 1 shows the quality score Q
of the proposed method in comparison with the other two methods, where the best results
are in bold.

Table 1. Objective quality scores Q of seams obtained with different methods.

Scene No. 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12.

Perceptual [18] 0.121 0.356 0.338 0.378 0.253 0.445 0.290 0.376 0.354 0.360 0.418 0.351
Traditional 0.236 0.527 0.366 0.435 0.332 0.433 0.352 0.320 0.426 0.353 0.409 0.318
Proposed 0.082 0.308 0.346 0.281 0.263 0.421 0.258 0.273 0.352 0.345 0.321 0.239

Scene No. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.

Perceptual [18] 0.318 0.232 0.401 0.360 0.330 0.383 0.248 0.294 0.341 0.306 0.397 0.212
Traditional 0.305 0.262 0.379 0.387 0.355 0.418 0.259 0.434 0.445 0.287 0.348 0.312
Proposed 0.232 0.213 0.371 0.345 0.287 0.389 0.195 0.308 0.431 0.251 0.334 0.276

From Table 1, it is found that the proposed method is superior to the traditional seam-
driven method based on color and texture information and the perceptual seam-cutting
method in [18] for most of the test images. The five rows of Figure 8 show the stitched
images and the used seams of the 1st, 2nd, 6th, 11th, and 19th scenes in turn, including
indoor scenes as well as outdoor scenes with different contents. Figure 8b shows that
the proposed method can find the seam according to the depth of the scene to bypass
prominent objects, and in the face of a scene with complex texture, it will also search for
the seam based on the edge of the object’s texture, finally obtaining the seam passing
through the regions that are not sensitive to human eyes. In comparison with the results
of the SEAGULL dataset [17] shown in Figure 8c, the subjective quality of the stitched
images obtained by the proposed method is basically the same, and no obvious structural
distortion can be seen by human eyes. In comparison with the results of the method in [18],
the location of the seam found by the proposed method is more reasonable because it
reduces the situation that the seam extends along the boundary of the overlapping region
of the two input images, which often leads to the structural distortion of the stitched image.

3.4. Discussion

As mentioned above, even though there is no obvious structural distortion, Figure 1d
still shows unnatural blending along the curb of the paved road resulted from inconsistent
image brightness on both sides of the seam. Brightness/color correction can reduce such
phenomenon to a certain extent. In the following experiments, the method in [29] is used to
correct the brightness of the two original images shown in Figure 9a, and then the corrected
images shown in Figure 9b are pre-aligned with the alignment approach used in the SPW
method [13]. After that, the perceptual seam-cutting method [18] and the traditional seam-
driven method based on color and texture information and the proposed method are used
to stitch the two corrected images. The experimental results are given in Figure 9c–e.
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It can be found that there are obvious blur regions at the tree top in the red boxes,
derived from the inappropriate position of the used seam in the process of Poisson fusion.
Compared with the other two methods, the proposed method produces much less blurring.
For the regions in the blue boxes, there exist obvious structural distortion at the bottom
of the wall, as shown in partial enlargements of Figure 9c,d. The proposed method also
produces some structural distortion in the region enclosed by the blue box, but the distortion
is not obvious in subjective perception because the background here is thick leaves and
the distance is relatively far. As shown in the green boxes, although the regions of paved
road generated by the three methods are slightly different on both sides of the seam, the
brightness difference is relatively small compared with that without brightness correction,
so the naturalness of the paved road is improved. This indicates that brightness/color
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correction helps to hide the seam and improve the quality of the stitched image when the
brightness/color of the images to be stitched is inconsistent.
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4. Conclusions

For images with large parallax, image misalignment and ghosting are the most chal-
lenging problems in their image stitching. In this paper, an optimized seam-driven image
stitching method that additionally integrates scene depth information is proposed. Firstly,
the input images to be stitched are aligned by using the single-perspective warps method
so as to reduce the projection distortion on the basis of ensuring the accuracy of image
alignment. Then, an energy function that integrates the depth information of the scene
with the color and texture differences is defined so as to make the seam pass through the
high similarity regions and bypass the prominent objects as much as possible. Based on the
improved energy function, the graph cut optimization algorithm is used to find the seam.
Finally, the Poisson fusion strategy is used to fuse the images and hide the seam. Experi-
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mental results have shown that the proposed method has a certain ability to understand
the scene and finally generate more natural image stitching results, benefitting from the
defined energy function which integrates the color, texture, and depth information of the
scene. Moreover, when the brightness/color of the input images are inconsistent, the bright-
ness/color correction of the images to be stitched can not only enhance the invisibility of
the seam, but also improve the alignment accuracy. However, what kind of image features
should be introduced into the energy function and how to effectively weighting the effect
of different kinds of image features in the energy function is needed to be further studied,
so as to improve the robustness of the proposed method, such as the cases of large depth
of field scenes and small depth of field scenes. In the future, deep-learning-based image
stitching will also be studied to further improve the generalization of the seam-driven
image stitching method.
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