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Abstract: The energy generated by a photovoltaic power station is affected by environmental factors,
and the prediction of the generating energy would be helpful for power grid scheduling. Recently,
many power generation prediction models (PGPM) based on machine learning have been proposed,
but few existing methods use the attention mechanism to improve the prediction accuracy of gen-
erating energy. In the paper, a PGPM based on the Bi-LSTM model and attention mechanism was
proposed. Firstly, the environmental factors with respect to the generating energy were selected
through the Pearson coefficient, and then the principle and implementation of the proposed PGPM
were detailed. Finally, the performance of the proposed PGPM was evaluated through an actual data
set collected from a photovoltaic power station in Suzhou, China. The experimental results showed
that the prediction error of proposed PGPM was only 8.6 kWh, and the fitting accuracy was more
than 0.99, which is better than existing methods.

Keywords: Bi-LSTM; artificial neural networks; generating energy prediction

1. Introduction

The daily generating energy of a photovoltaic power station affects the power con-
sumption of the local area [1–3], while the photovoltaic power generation has a relationship
with environmental factors, such as sunshine duration, temperature, etc. Thus, the predic-
tion of the generating energy helps the local power grid system to improve foreseeability
and to create a proper generating schedule [4–7]. Since the main facility of a photovoltaic
power station works outdoors, the environmental factors would affect the device’s work-
ing state, making it meaningful to study this effect. For example, the characteristics of
temperature changes on the quality of output current in solar power plants are studied in
Indonesia [8]. In the global viewpoint, temperature and sunshine duration vary in different
countries around the world, which makes the characteristics of solar plants generation
different. It is a research focus to predict the generation based on environmental variation.

Generally, prediction is essentially a regression problem, the purpose of which is to
build the relationship between environmental factors and generating energy. Hence, the
machine learning-based methods have been widely used to achieve power generation
prediction, such as outage forecasting, wind power prediction, stability forecasting, peak
load prediction, etc.

The machine learning algorithm can treat big data efficiently [9], which can obtain
the optimal parameters for PGPMs based on a lot of historical data, as well as make a
prediction to generating energy through a trained model. Recently, the PGPMs based on
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machine learning have been proposed for different types of power stations, such as wind
power, thermal power, solar power, nuclear power, etc. Moreover, in order to achieve
accurate prediction of daily generating energy of power stations, the input data set of
existing PGPMs based on machine learning algorithm usually adopt all the environmental
parameters that affect the power generation, which makes the computational complexity of
such PGPM very high.

A PGPM based on support vector machine (SVM), one of the most commonly used
algorithms in machine learning, was proposed in ref. [10], which applied an improved
grid search method to optimize the parameters of C and g to improve the accuracy in
forecasting wind power generation. The experimental results showed that the model was
able to predict the real-time (15 min) wind power, and the accuracy was up to 78.49%.
However, since the computational complexity is very high in scenarios with larger training
samples, the SVM-based prediction model is only suitable for small-sample scenarios that
can obtain the global optimization parameters.

In order to solve the limitations of the SVM-based PGPM in the large-sample condition,
a lightweight PGPM based on ensemble decision tree haswas proposed in ref. [11], which
can predict a power system’s operating states in a real-time and in an on-line environment.
In the proposed solution, an ensemble security predictor (ENSP) was developed and trained
to predict and classify power system’s dynamic operating states into secure, insecure,
and intermediate transitional classes. Finally, the performance was evaluated with two
different case studies performed on IEEE 118-bus and IEEE 300-bus test systems, and
the experimental results showed that the prediction accuracy was up to 94.4%. However,
in some circumstances, for the ensemble decision tree model, it is a challenge to find
appropriate pruning schemes to remedy the decision tree due to the overfitting problem,
which means the proposed model is only optimized for the existing data, namely, the
proposed model is not quite suitable for unknown, new data.

Moreover, to improve the performance of the decision tree-based power generation
prediction model, the random forest-based PGPM [12] is developed to forecast medium–
long-term power load. In the proposed model, the total load is decomposed into the basic
load affected by the economy and meteorological sensitive load affected by meteorological
factors, and the prediction results are intelligently corrected by the wavelet neural network
algorithm. The experimental results showed that the mean absolute percent error (MAPE)
of the random forest-based PGPM was up to 1.43%, which is much better than decision tree-
based model proposed in ref. [11]. However, the random forest-based model is equivalent
to running multiple decision trees at the same time, which will inevitably have higher
computational complexity than decision trees.

Apart from the above-mentioned statistical learning methods, the artificial neural
network (ANN), which can simulate the human brain, has been widely used in the power
generation prediction field in the recent years [13]. To improve the power production
prediction for solar power stations, a PGPM based on the optimized and diversified
artificial Neural Networks was proposed in ref. [14]. The method is optimized in terms of
the number of hidden neurons and improved in terms of diverse training datasets used
to build ANN. The simulation results showed that the proposed approach outperformed
three benchmark models, with a performance gain reaching up to 11% for RMSE (root-
mean-square error) metric, and the confidence level reaches up to 84%. However, such
methods employ classical neural networks, which may not be suitable for some time-
varying sequence data of environmental factors.

Generally, for time-varying sequence data, the model based on recurrent neural net-
work (RNN) can provide higher prediction accuracy [15]. The Long Short-Term Memory
(LSTM) [16], an improved RNN, could solve the problems of gradient disappearance and
gradient explosion when training long sequence data in RNN, making it superior in time
sequence forecasting problems [17]. The LSTM network has a strong memory function,
which can establish the correlation between the data before and after, thereby improving
the prediction accuracy. Based on the above advantages of LSTM, a PGPM based on the
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high-performance K-Means-long-short-term-memory (K-Means-LSTM) was proposed to
predict the power point of wind power in ref. [18], and the simulation results showed
that the prediction error (RMSE) of the proposed PGPM reached 62 kW, achieving higher
accuracy than RNN-based methods.

However, the LSTM-based PGPM can only capture the data features of the former
part of the time sequence, which in turn leads to very limited performance of such methods
in some scenarios. As an improved version of LSTM, the Bidirectional LSTM (Bi-LSTM)
has better performance via adding a reverse-calculation module. Hence, a Bi-LSTM-based
PGPM, which is used to predict the abnormal electricity consumption in power grids, was
proposed in [19]. In the Bi-LSTM-based PGPM, the framework of Tensorflow was used
to achieve feature extraction and power generation prediction. Final experimental results
showed that the accuracy of the Bi-LSTM-based PGPM reached up to 96.1%, which is better
than that of the LSTM-based PGPM proposed in ref. [18] (94.5%).

Generally, the Bi-LSTM model can enhance the mining of correlation information of
time series feature to some extent; however, it can only extract local features, and it is
difficult to obtain global correlation, resulting in the loss of feature correlation information.
Simultaneously, such a model only focuses on the inherent relationship between the input
features and the target feature, so the input features of each time are assigned the same
weight. Nevertheless, the correlation between the input and target characteristics of
electricity consumption varies with time, which puts forward higher requirements for the
mining of time series correlation of input features.

Hence, in order to improve the performance of PGPMs based on Bi-LSTM, an Attention-
Bi-LSTM PGPM based on attention mechanism and Bi-LSTM is proposed in this paper,
which adequately employs the advantages of the attention mechanism and Bi-LSTM net-
work. The main contribution of this paper is the way in which the attention mechanism is
introduced. To solve this, appropriate attention layers have to be selected and designed to
efficiently utilize historical data.

Moreover, existing machine learning-based PGPMs usually use all environmental
parameters that affect power generation as input data sets, which can inevitably increase
the computational burden of computers. In order to improve computational efficiency, the
feature selection algorithm based on Pearson correlation theory [20] is proposed before
constructing the proposed PGPM.

The remaining of this paper is organized as follows. Section 2 details the principle
of environmental factors selection method based on Pearson coefficient theory. Section 3
presents the methodology of the prediction method. Section 4 elaborates data processing
procedures. Section 5 shows experimental layout and relative results. Section 6 concludes
the paper and looks forward to future work.

2. Feature Selection

According to the previous analysis, the daily generating energy is related to envi-
ronmental factors for photovoltaic power stations, and there are correlations between the
above-mentioned environmental factors. Therefore, finding the correlation between various
environmental factors and selecting appropriate environmental factors as the input dataset
can inevitably reduce the computational complexity of prediction models.

Generally, the environmental factors such as daily average temperature, maximum
temperature, minimum temperature, daily sunshine duration, average cloud cover, average
humidity, minimum humidity, precipitation from 8:00 a.m. to 8:00 p.m., etc., can affect
power generation. Under normal circumstances, the more environmental factors, the larger
the processing of high-dimensional vectors, as these factors would constitute the input
feature vector, and the complexity of calculations will be improved greatly. To reduce the
calculation complexity, these environmental factors should be properly selected, and the
Pearson correlation coefficients that can evaluate the correlation between environmental
factors and generating energy are introduced into the paper.
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Pearson correlation coefficient is a value between −1 and 1 that denotes the similar
trend between two datasets. For two random variables X and Y, the Pearson correlation
coefficient can be expressed by:

ρXY =
cov(X, Y)

rXrY
=

E(XY)− E(X)E(Y)√
E(X2)− E2(X)

√
E(Y2)− E2(Y)

(1)

where cov(X, Y) means the covariance between X and Y; ρX and ρY are the standard
deviation of X and Y respectively; E(.) function means the random variable’s expectation.

In the paper, the Pearson correlation coefficient between environmental factors and
generating energy can be calculated by:

r =
N∑ xiyi −∑ xi∑ yi√

N∑ xi
2 − (∑ xi)

2
√

N∑ yi
2 − (∑ yi)

2
(2)

where r is the Pearson coefficient; xi and yi are the environmental factors and corresponding
generating energy respectively; N is the amount of historical data samples.

Hence, in order to select the optimal environmental factors to construct the input
dataset, the Pearson coefficients between environmental factors and generating energy
obtained from a photovoltaic power station in Suzhou, China (Supplementary Materials),
were used and the results are shown in Table 1.

Table 1. Pearson coefficients between environmental factors and generating energy.

Environmental Factors Pearson Coefficient

Daily average temperature 0.42551
Maximum temperature 0.54173
Minimum temperature 0.27529

Average humidity −0.69062
Minimum humidity −0.74763

Precipitation from 8:00 a.m. to 8:00 p.m. −0.33582
Daily sunshine duration 0.83609

Average cloud cover −0.59997

According to Pearson coefficient theory, factors with positive Pearson coefficients
have good correlation with the generating energy, which means they are suitable to be
regarded as the input data features to predict the generating energy. As can been found
in Table 1, some factors such as average humidity, minimum humidity, precipitation from
8:00 a.m. to 8:00 p.m., and average cloud cover could be filtered because they have a
weak correlation with generating energy. Hence, the remaining four environmental factors
are taken to compose the input feature vector, which means the data feature vectors are
four-dimensional.

3. The Methodology
3.1. Bi-LSTM Model

Generally, Bi-LSTM is composed by two LSTM models of the forward and backward
direction, which can capture long-term dependencies in one direction. Hence, the Bi-LSTM
allows more information to be preserved by capturing long-term dependencies in both
directions, which is suitable for power generation forecasting scenarios that require big
data processing. The architecture of Bi-LSTM model can be shown as Figure 1.
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Figure 1. Architecture of the Bi-LSTM model.

From Figure 1, it can be found that the forward directional LSTM is used to produce
the past information of input sequences, while the backward directional LSTM can gain the
future information of input sequences. Finally, the final output is obtained by combining
the corresponding time output of forward directional LSTM and backward directional
LSTM at each time, which can be expressed by:

ht = f (w1xt + w2ht−1) (3)

h′t = f
(
w3xt + w5h′t+1

)
(4)

ot = g
(
w4ht + w6h′t

)
(5)

where ht and h′t are current node outputs of the forward and backward direction respec-
tively; ot is the output of current cell; w1, w2, w3, w4, w5 and w6 are the weight coefficients.

According to Equations (3)–(5), w1 and w3 are the weights of the input to the forward
and backward hidden layers, w2 and w5 are the weights between the same hidden lay-
ers, while w4 and w6 are the weights of the forward and backward hidden layers to the
output layers. Compared with LSTM, Bi-LSTM improves the globality and integrity of
feature extraction.

3.2. Feature Attention Mechanism

Generally, the feature attention mechanism can improve the performance of Bi-LSTM
by dynamically assigning the attention weight to input features, as well as the correlation
between hidden layer and target features being mined, which can effectively reduce the
loss of feature correlations. The architecture of the feature attention mechanism is shown
in Figure 2.
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Figure 2. Architecture of feature attention mechanism.

From Figure 2, the input feature vector of time sequences with K hidden layer features
can be described as Xt = [X1,t, X2,t, . . . , Xk,t]. Then, a single layer neural network is used to
calculate the attention weight vector, which can be expressed by:

ek,t = σ(WeXt + be) (6)

where t is the time length of input sequences depending on sampling rates, and ek,t =
[e1,t, e2,t, . . . , ek,t] is regarded as the combination of attention weight coefficients correspond-
ing to the input characteristics of current moments. We is the trainable weight matrix, be is
an offset vector, and σ(.) is a sigmoid activation function.

The data sequence generated by the sigmoid activation function is normalized by the
softmax function, which is denoted as:

αk,t =
exp(ek,t)

k
∑

i=1
ei,t

(7)

where αk,t is the attention weight of character k, and the resulting attention weight αk,t and
hidden layer feature vector X′t are recalculated as a weighted feature vector X′a_t, which
can be expressed by:

X′a_t = at � X′t = [a1,tx1,t, a2,tx2,t, · · · , ak,txk,t] (8)

3.3. Temporal Attention Mechanism

Apart from the feature attention mechanism, the temporal attention mechanism can
allocate attention weight to the temporal information carried by each historical moment of
the input sequence to distinguish its influence on the output of the current time. At the
same time, the time sequence of each historical moment can be extracted independently
and the information expression of the critical moment can be enhanced; the architecture of
the temporal attention mechanism is shown in Figure 3.
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From Figure 3, it can be found that the input is the hidden layer state of the Bi-LSTM
network iterated to time, which can be expressed by ht = [h1,t, h2,t, . . . , hn,t], where n is the
time window length of input sequences. The temporal attention weight vector lt of the
current moment corresponding to each historical moment can be described as:

lt = ReLU(WdXt + bd) (9)

where lt = [l1,t, l2,t, . . . , lk,t]; Wd is a trainable weight matrix; bd is a bias vector; and ReLU(.)
is an activation function to increase feature differences and make the weight distribution
more centralized.

Moreover, from Figure 3, it can be seen that the input sequence generated by the
activation function is normalized by the softmax function to obtain the temporal attention
weight, which can be expressed by βt = [β1,t, β2,t, . . . , βk,t], where βk,t is the attention
weight of character k, which can be denoted as:

βk,t =
exp(lk,t)

k
∑

i=1
li,t

(10)

Hence, the weighted feature vector h′t can be recalculated via data feature vector ht
generated by the hidden layer, which can be expressed by:

h′t = βt ⊗ ht =
k

∑
i=1

βi,thi,t (11)

3.4. The Proposed Attention-Bi-LSTM PGPM

In the paper, the Attention-Bi-LSTM PGPM based on the attention mechanism and
Bi-LSTM network is proposed, which consists of an input layer, feature attention layer,
Bi-LSTM layer, temporal attention layer, residual connected layer, and fully connected layer,
and the architecture of the Attention-Bi-LSTM PGPM is shown in Figure 4.

From Figure 4, it can be found that a Bi-LSTM network is built to extract the hidden
temporal correlation information from the input sample Xt, which is composed of the
history sequence and related four-dimensional input feature vector extracted from environ-
mental factors. The sample is fed into first Bi-LSTM network and the hidden layer feature
X′t is obtained.
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Then, the feature attention mechanism was used to explore the potential correlation
between hidden layer features X′t. The features X′t extracted from the first Bi-LSTM were
sent to the feature attention layer. In order to extract the hidden layer features X′t, the
attention weight of features was allocated dynamically. Based on the above statements, the
weighted hidden layer feature X′a_t was obtained by dynamic distribution of the feature
attention weight.

Next, the weighted feature X′a_t was residually linked to the original feature X′t, which
was fed into the second Bi-LSTM to obtain the hidden layer feature ht. Moreover, the
correlation between the historical sequence and the feature ht was mined in the second
Bi-LSTM’s hidden layer, as well as the weighted feature vector h′t being mined in the
temporal attention layer. Finally, the power generation was predicted in the fully connected
layer with the above-mentioned parameters.

4. Data Processing
4.1. Data Cleaning

In this paper, a historical dataset collected from a photovoltaic power station with a
sampling rate of 1 day, which includes daily average temperature, maximum temperature,
minimum temperature, daily sunshine duration, and daily generating energy, was intro-
duced into the experiment [SM]. The input data sample is a 4-dimensional vector, which
denotes the above-mentioned four environmental features, and every input feature vector
corresponds to a daily generating energy, as the output value.

For data cleaning, firstly, the data sample with missing or invalid features was prepro-
cessed. In this paper, the data sample with invalid features was eliminated directly.

Secondly, different features have values of different ranges, making it necessary to
normalize the feature data. The normalized value could be calculated by:

x = 1
n

n
∑

i=1
xi

std(x) =

√
1
n

n
∑

i=1
(xi − x)2

yi =
xi−x

std(x)

(12)

where xi is the i-th original feature value; yi is the i-th normalized feature value; n is the
amount of data samples.

4.2. Division of Dataset

To train the prediction model parameters, which are mainly some structural weight
values, 75% of historical data samples were recognized as the training dataset, and the
remaining 25% of data samples were taken as the testing dataset to examine the prediction
efficiency. The ensemble division of dataset is shown in Figure 5.

As shown in Figure 5, the training process adopts a cross validation mechanism,
composed by many epochs. In each epoch, 90% of the training samples are regarded as a
sub-training set, and the remaining 10% of the training samples are regarded as the sub-
testing dataset. The partition scheme of the sub-training dataset and sub-testing dataset
is to divide them randomly. From Figure 5, it can be found that the optimal parameters
are obtained through multiple cross-validation, which was used to provide a basis for the
subsequent experiments.
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5. Experimental Results and Analysis
5.1. Parameter Tuning and Statistical Analysis

In order to illustrate the advantages of the proposed PGPM, the performance of
existing PGPMs based on Support Vector Regression (SVR) [21], Decision Tree [22], Random
Forest [23], LSTM [24], and Bi-LSTM [25] were compared with the Attention-Bi-LSTM
PGPM proposed in the paper, and the main experimental parameters of PGPMs based on
SVR, Decision Tree, and Random Forest were tuned, as shown in Tables 2–4, respectively.

Table 2. Parameter tuning of PGPM based on SVR.

Penalty C RBF Gamma Prediction Error
(kWh)

100 1 238.9
1 0.01 479.3

0.1 0.01 489.1

Table 3. Parameter tuning of PGPM based on Decision Tree.

Max Depth Prediction Error
(kWh)

4 255.9
5 243.6
6 236.0
10 291.7
90 305.6

Table 4. Parameter tuning of PGPM based on Random Forest.

Number of Estimators Minimum Samples of Subtree Minimum Samples of Leaf Prediction Error
(kWh)

200 2 1 231.8
200 2 4 232.1
100 2 1 232.9
400 4 1 232.9
400 4 2 232.8
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From Tables 2–4, the best parameters of each algorithm could be determined, for the
best prediction accuracy was achieved.

Moreover, the essence of proposed Attention-Bi-LSTM PGPM is an improved version
of PGPMs based on LSTM and Bi-LSTM. In order to ensure the comparability and accuracy
of subsequent experimental results, the experiments parameters of the above three LSTM-
based PGPMs are the same in the paper, and the related parameters are shown in Table 5.

Table 5. Related parameters of LSTM-based PGPMs.

Category Parameter

Length of Time Sequence 4
Bi-LSTM Hidden Layer Neurons 350

Learning Rate 0.01
Batch Size 64

Optimization Algorithm Adam
Loss Function Mean Squared Error (MSE)

Neuron Loss Rate 0.1

Furthermore, the statistical analysis was performed for the selected parameter con-
figurations, the way of which is to run the model training and prediction 50 times. Each
time, the training dataset and testing dataset were partitioned randomly to evaluate the
statistical stability of these models, and the results are shown in Table 6.

Table 6. Statistical analysis on the studied methods.

Method Average of RMSE
(kWh)

Standard Deviation of
RMSE
(kWh)

SVR 238.9 2.3
Decision Tree 236.0 2.7

Random Forest 231.8 1.9
LSTM 29.7 1.5

Bi-LSTM 18.3 1.8
Attention-Bi-LSTM (Ours) 8.6 1.2

Table 6 shows the standard deviation for each algorithm is only 1~2 kWh, which
means the prediction result is stable when the parameters are determined. Therefore, the
subsequent comparison of parameter-dependent results could reflect the performance gaps
of different methods from the statistical viewpoint.

Moreover, in order to evaluate the performance of the above algorithms, the Python
scikit-learn library was employed to implement the PGPMs based on SVR, Decision Tree,
and Random Forest algorithms, while the Tensorflow library was employed to implement
the PGPMs based on LSTM, Bi-LSTM, and the proposed Attention-Bi-LSTM.

5.2. Experimental Results

According to above-mentioned relevant experimental parameters shown in Table 2 to
Table 5 and experimental layouts, the visualized experimental results within half a year
output by six PGPMs mentioned above are shown in Figure 6.
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Decision Tree; (c) PGPM based on Random Forest; (d) PGPM based on LSTM; (e) PGPM based on
Bi-LSTM; (f) Ours.

As shown in Figure 6, it can be found that the deviations between the true data and
experimental results of PGPMs based on SVR, Decision Tree, and Random Forest were
more obvious than that generated of PGPMs based on LSTM, Bi-LSTM, and Attention-
Bi-LSTM. Summarily, the LSTM-based PGPMs are very suitable for power generation
forecasting scenarios. However, according to Figure 6d–f, it can be seen that from the
visualization point of view, the performance of Attention-Bi-LSTM PGPM proposed in this
paper is basically the same as that of the other LSTM-based PGPMs. Therefore, to further
illustrate the advantages of the proposed PGPM, this paper evaluates the performance of
above-mentioned PGPMs from a quantitative perspective.

Besides, in the training procedure of the proposed PGPM, the model converges very
quickly, as presented in Figure 7.
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As Figure 7 shows, the loss function of the model decreased quickly, and converged
nearly to zero within the first 100 epochs, which means in the practical training procedure
it could be finished very fast.

5.3. The Quantitative Comparison of Results

To evaluate the performances of above-mentioned PGPMs more precisely, Mean
Absolute Error, Root of Mean Square Error (RMSE), and Mean Absolute Percentage Error
(MAPE) of each PGPM were evaluated and compared. Moreover, a R-square coefficient [26]
is also introduced into the paper to calculate the fitting accuracy, which can be expressed by

MAE =
1
n

n

∑
i=1
|ŷi − yi| (13)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (14)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (15)

R− square =
∑n

i=1 (ŷi − yi)
2

∑n
i=1 (yi − yi)

2 (16)

where yi is the generating energy (true data) of the i-th sample; ŷi is the prediction of the
i-th sample; R− square is a coefficient with a range of [0 1], and the closer this value is to 1,
the higher the fitting accuracy.

According to Equations (13) to (16), the prediction errors and fitting accuracy of
above-mentioned PGPMs are shown in Table 7.

Table 7. Comparison of different PGPMs.

Method MAE
(kWh)

RMSE
(kWh)

MAPE
(%)

Fitting Accuracy
(R-Square)

SVR 166.7 238.9 40.7 0.7617
Decision Tree 160.3 236.0 37.9 0.7675

Random Forest 160.6 231.8 38.8 0.7591
LSTM 25.5 29.7 5.7 0.9959

Bi-LSTM 13.7 18.3 3.6 0.9984
Ours 10.2 8.6 2.8 0.9997

As Table 7 shows, the prediction errors of the proposed PGPM were 10.2 kWh, 8.6 kWh,
and 2.8%, which were the smallest among these six algorithms. Moreover, from Table 6,
taking RMSE as an example, it can be found that the prediction errors of the PGPMs based
on SVR, Decision Tree, and Random Forest were 238.9 kWh, 236.0 kWh, and 231.8 kWh,
respectively, which are generally more than 200 kWh, as well as that of the PGPMs based
on LSTM and Bi-LSTM being less than 30 kWh. Hence, the performances of LSTM- and Bi-
LSTM-based PGPM are better than that of SVR-, Decision Tree-, and Random Forest-based
PGPMs. Simultaneously, with the introduction of the attention mechanism, the proposed
PGPM also achieved better prediction accuracy than that of LSTM- and Bi-LSTM-based
PGPMs. The metrics of MAE and MAPE showed similar results.

Additionally, the fitting accuracy was also evaluated in this paper. Fitting accuracy
is another indicator for evaluating prediction efficiency, which represents the relative
prediction error and can be used as a sign of the similarity between the predicted value and
the true value. From Table 6, it can be found that the fitting accuracy of the proposed PGPM
was 0.9997, slightly more than that based on LSTM and Bi-LSTM, but obviously more than
that of SVR-, Decision Tree-, and Random Forest-based PGPMs. Therefore, in the metric of
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fitting accuracy, the proposed Attention-Bi-LSTM PGPM achieves the best performance,
and is consequently very suitable for application in power generation forecasting scenarios.

5.4. Comparison of Multi-Step Prediction Results

Moreover, in order to evaluate the influence of proposed PGPM with the input time
sequences of various step lengths, an experiment was also implemented based on different
time steps, and the experimental results are shown in Table 7.

From Table 8, it can be found that there was a positive correlation between the predic-
tion error and step size; in other words, the prediction error increased with respect to step
length increases. Synchronously, the fitting accuracy had a negative correlation with step
length, that is, the fitting accuracy decreased as the step length increased. The reason for
the above phenomenon is that the dependence between the power generation and time
sequences is weakened with the increase of step length. In summary, when the time step of
input time sequences is four, the PGPM proposed in this paper can meet the demand for
power generation forecasting.

Table 8. Comparison of multi-step prediction results.

Time Step

Evaluation Criteria

Prediction Error
(kWh)

Fitting Accuracy
(R-Square)

4 8.6408 0.9997
8 15.2754 0.9989
10 18.0235 0.9985
14 23.8192 0.9974

6. Conclusions

The contribution of this paper was to propose a generating energy prediction model
based on the attention mechanism and Bi-LSTM, which improve the prediction accuracy,
and the experimental results showed that the performance of the proposed PGPM is much
better than that of PGPMs based on SVR, Decision Tree, Random Forest, LSTM, and Bi-
LSTM. The challenge of this work was how to employ attention mechanism efficiently. To
solve this, feature attention layer and temporal attention layer were introduced to enhance
the prediction performance, because these attention layers could help the algorithm to
utilize the most important features and the most critical moments.

Moreover, compared with the existing PGPMs, this paper mines the correlation of
environmental factors that affect photovoltaic power generation before implementing the
proposed PGPM, and thereby the calculation efficiency can be improved by eliminating
environmental factors that are weakly related to power generation.

However, the data features of the proposed PGPM are few, and only the meteorological
factors are considered as the input source. In the future, to further optimize the accuracy of
the prediction method, other data features can be introduced to construct a more accurate
input source.
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