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Abstract: Electrocardiogram (ECG) heartbeat classification plays a vital role in early diagnosis and
effective treatment, which provide opportunities for earlier prevention and intervention. In an effort
to continuously monitor and detect abnormalities in patients’ ECG signals on portable devices, this
paper present a lightweight ECG heartbeat classification method based on a spiking neural network
(SNN), a relatively shallow SNN model integrated with a channel-wise attentional module. We
further explore the best-optimized architecture, which benefits from leveraging the full advantages
of the SNN potential with the attention mechanism to process the classification task at low power
and capture prominent features concerning the time, morphology, and multi-channel representations
of the ECG signal. Results show that our model achieves overall classification accuracy of 98.26%,
sensitivity of 94.75%, and F1 score of 89.09% on the MIT-BIH database, with energy consumption of
346.33 µJ per beat and runtime of 1.37 ms. Moreover, we have conducted multiple experiments to
compare against current state-of-the-art methods using their assessment strategies to evaluate our
model implementation on FPGA. So far, our work achieves comparable overall performance with all
the literature in terms of classification accuracy, energy consumption, and real-time capability.

Keywords: electrocardiogram (ECG) classification; spiking neural network (SNN); channel atten-
tional mechanism; portable devices; MIT-BIH database

1. Introduction

Cardiovascular disease (CVD) is currently the leading cause of morbidity and mortal-
ity worldwide, accounting for approximately 17.3 million deaths annually [1]. It can remain
latent in the body for extensive periods and tends to start with occasional asymptomatic
arrhythmia, which is characterized by a set of erratic heartbeats. The electrocardiogram
(ECG) signal is the most commonly used diagnostic object to examine abnormal heartbeats,
as it enables a non-invasive, almost radiation-free, and immediate interpretation of the elec-
trical state generated by the heart beating [2]. However, it is difficult to capture abnormal
heartbeats in a short interval, resulting from cardiac arrhythmias with the characteristics of
sudden and episodic occurrences. Accordingly, automatic continuous diagnosis of real-time
ECG signals is extremely critical to improve the efficiency of CVD care in daily routines.
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In recent years, wearable devices for continuous ECG monitoring have sprung up and
drawn great interest in the scientific community, as they are easy-to-use, portable, low-cost,
and do not require experienced experts [3]. Most works with a lack of further regard to
ECG auxiliary diagnosis [4–7] have paid intensive attention to recording the ECG signals
or detecting the QRS complex, which contains a Q wave, an R wave, and an S wave, as
shown in Figure 1. In addition, some work sent obtained ECG data to remote servers in
order to perform a huge amount of calculations that analyze the signal, due to the limited
storing and computing abilities of wireless sensor nodes [8,9]. Such solutions introduced
new problems associated with transmission speed, data security, and device reliability. To
avoid these issues, our approach proposes that the heartbeat classification algorithm is
directly implemented on low-power wearable devices for automatic continuous diagnosis
in real time.

Figure 1. The structure of an ECG signal.

Nonetheless, ECG signal recorded by wearable electronic devices is low-frequency
and low-amplitude and is inevitably contaminated by a variety of noises and artifacts, such
as muscle shaking, electrical interfaces, and even external disturbances caused by poor
contact. These noises could cause morphological discrepancies and mask key characteristics,
whose reduction is an essential preprocessing step. Presently, available denoising methods
for the ECG signal mainly fall into three main categories: conventional digital filtering,
adaptive filtering, and morphological filter algorithms dominated by wavelet transform.
The effects of these methods on the arrhythmia classification remain unknown [10]. In
addition, multiple filter application can reduce the characteristic peak of the ECG signal
markedly, and even digital filters for non-stationary signal denoising could cause distorted
morphology and loss of significant detailed information [11]. For this issue, we perform
wavelet threshold denoising during signal preprocessing. As well, we observe that this
method facilitates the subsequent class-imbalanced ECG classification task by means of
t-distributed stochastic neighbor embedding (t-SNE) representation.

Arrhythmia classification algorithms in most previous work were typically based on
artificial neural network (ANN), recurrent neural network (RNN), or deep convolutional
neural network (CNN) with multiple layers and complex recursion structures to improve
classification accuracy [12–16]. These approaches result in dramatic increases in hardware
costs, deployment complexity, power consumption, and assessment time. Unlike the infor-
mation processing of CNN, binary event-driven spiking neural network (SNN) neurons
are only active when receiving and generating spikes, in contrast to remaining idle at the
free event time [17]. The SNN with binary information (0 or 1) transmission consumes
energy only when generating spikes, which is well suited for low-power hardware. In
addition, SNN processes information with sparse asynchronous spikes, and it makes use
of fewer operational quantities than the convolution operation via floats. With respect to
this issue, our network model is based on SNN layers with leaky integrate-and-fire (LIF)
neurons to achieve higher energy efficiency, as this takes advantage of simple structure,
high performance, and reliability.

Paradoxically, prior deployment work based on SNN for arrhythmia classification
extracted features without a comprehensive analysis of ECG signal [18–20], which may
impede accurate diagnosis. For periodic ECG signals as generalized in Figure 2, there are
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substantial variations within each class and great similarities between different classes.
As such, extracting heartbeat features requires investigating ECG data thoroughly and
systematically. Inspired by [21], the channel attentional module (CAM) cast into the classifi-
cation task aims to introduce the channel dimension into the feature through automatically
learning the weight of each channel, which allows using extracted ECG features with tem-
poral, morphological, and channel characteristics. To alleviate the issue of relatively lower
accuracy in previous SNN-based work, we exploit a lightweight CAM to integrate with rel-
atively shallow SNN layers and compensate for the hidden ECG channel information and
local pattern extraction in layers. Beyond that, we also consider the embedding location,
the type of layer, and hyper-parameter value inside the channel attentional architecture to
adopt the best integration strategy, therefore preventing increases in network complexity
and power consumption.

(a) N

(b) S

(c) V

(d) F

(e) Q

Figure 2. Different classes of heartbeats after segmentation. (a) Samples in class N. (b) Samples in
class S. (c) Samples in class V. (d) Samples in class F. (e) Samples in class Q.

The entire workflow of our proposed solution is exhibited in Figure 3. The main
contributions of our work are summarized as follows:

1. We propose a lightweight SNN-based model integrated with an attentional mod-
ule to incorporate the key channel information into morphological features of time-
correlated ECG signals from a global receptive field so as to highlight more discrimi-
native features. In this way, automatic diagnosis of ECG arrhythmia can be achieved
at efficient performance with great accuracy and low power consumption.
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2. We investigate prevalent noise reduction proposals, among which wavelet threshold
denoising is appropriate and effective for ECG signals. Moreover, t-SNE visualization
provides great insight to verify the effectiveness of this denoising algorithm for the
subsequent automatic classification task, as shown in Figure 4.

3. We conduct extensive experiments under corresponding different assessment strategies
to perform ablation studies and select the optimal parameters. Furthermore, our novel
algorithm for automatic arrhythmia classification was implemented on FPGA, which
accomplishes promising results in contrast with previous state-of-art methods concerning
classification accuracy, energy consumption, and real-time capability.

Figure 3. System framework of automatic diagnosis for ECG arrhythmia. The last component selects
the neuron with maximum spike frequency as the heartbeat’s class.

(a) (b)

Figure 4. The t-SNE visualization for different types of ECG data; different colors represent samples
from different types. Denoised ECG data are more easily distinguishable than raw ECG data,
especially for V and F types. (a) Raw ECG data. (b) Denoised ECG data.
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2. Materials and Related Work
2.1. ECG Data

ECG is a low amplitude signal ranging from 10 µV to 5 mV, and its frequency is mainly
distributed between 0.5 Hz and 40 Hz. A heartbeat is mainly composed of a P wave, a QRS
complex wave, and a T wave, as shown in Figure 1. The P wave reflects atrial contraction,
the QRS complex characterized by R-peak represents ventricular depolarization, and the T
wave denotes ventricular repolarization gradients.

We employ the Massachusetts Institute of Technology–Beth Israel Hospital (MIT-BIH)
arrhythmia database as our clinical ECG signal database. It is one of the most authoritative
standard ECG databases in the world, with a total of 48 ECG records annotated by two or
more experts. These records contain two-channel ECG signals from 47 different patients
with a sampling rate of 360 Hz and a duration of 30 min [22]. According to the Association
for the Advancement of Medical Instrumentation (AAMI) recommended practice, four ECG
records (102, 104, 107, 217) containing the paced beats are not taken into consideration. For
all records, we only use the remaining 44 ECG records by the modified-lead II (MLII). As
summarized in Table 1, there are 15 separate classes of heartbeats in the MIT-BIH database,
which can be divided into five groups, designated as N (normal), S (supraventricular ectopic
beats (SVEBs)), V (ventricular ectopic beats (VEBs)), F (fusion beats), and Q (unknown
beats).

Table 1. AAMI heartbeat classes and corresponding MIT-BIH heartbeat types.

AAMI MIT-BIH MIT-BIH Number of
Heartbeat Class Heartbeat Annotation Heartbeat Types Heartbeats

N

’N’ Normal beat 74,546
‘L’ Left bundle branch block beat 8075
‘R’ Right bundle branch block beat 7259
‘e’ Atrial escape beat 16
‘j’ Nodal (junctional) escape beat 229

S

‘A’ Atrial premature beat 2546
‘a’ Aberrated atrial premature beat 150
‘J’ Nodal (junctional) premature beat 83
‘S’ Supraventricular premature or ectopic beat 2

V ’V’ Premature ventricular contraction 6903
‘E’ Ventricular escape beat 106

F ‘F’ Fusion of ventricular and normal beat 803

Q
‘/’ Paced beat 0
‘f’ Fusion of paced and normal beat 0
‘Q’ Unclassifiable beat 15

2.2. Signal Denoising

Generally, the dominant noises in ECG signals are power line interference, muscle
contractions, and baseline wander, which are in different frequency ranges. Power line
interference is a low amplitude signal with an approximate frequency of 50 Hz that hinders
the detection of the P wave and the T wave. Muscle contraction is an irregular interference,
and its frequency is mainly distributed between 30 Hz and 300 Hz. This kind of noise
coincides with ECG signals and causes subtle changes in useful ECG signals to be ignored.
Baseline wander is a low-frequency (0.15 Hz up to 0.3 Hz) noise, which affects the PR and
ST segments. Therefore, the first step for heartbeat classification is to reduce noises and
artifacts in the ECG signal.

For these noise types in ECG signals at different undetermined frequency bands,
the most widely used denoising solutions are filter methods and wavelet threshold [23].
Recursive digital filters of the finite impulse response (FIR) [24] has an excellent outcome in
attenuation of the known frequency bands, rather than the unknown ones. ECG denoising
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requires multiple low-pass and high-pass filters, which could distort the morphology of
the ECG signal. Even when using architectures with adaptive filters, this technique has
certain constraints and no great advantages for such ECG signals.

With the rapid development of wavelet technology, a range of wavelet transform
methods have been applied to obtain pure morphological signal excluding noise [25]. Con-
forming the frequency distribution of ECG signal and noise at different scales, wavelet
transform is applied to the signal, and then the wavelet coefficient of each layer is sub-
jected to thresholding; finally, noise reduction is realized through signal reconstruction.
Wavelet transform is a reasonable method when processing non-stationary signals such
as ECG signal, as it retains characteristics of the signal and prevents the loss of important
physiological details with simple computations. Considering these, we exploit the wavelet
threshold method during the denoising process.

2.3. Spiking Neural Network

Serving as a low-power alternative to ANN, spiking neural networks (SNN) more
closely emulate the biological process with pulse-driven calculation. It is the third gen-
eration of neural networks with more biological interpretability that performs numerical
simulation and quantitative analysis on biological neural systems [17]. Thus, SNN has
been one of the major approaches for neuroscience research, and its applications have
become prevalent in medical diagnosis fields [26], such as the medical image analysis,
electrogastrogram (EGG) signal recognition [27], electroencephalogram (EEG) signal analy-
sis [28], etc. This is primarily because the spiking neuron model is a valid tool to construct
a computational model for detecting and processing signals.

The leaky integrate-and-fire (LIF) model is the most utilized neuron for SNN, and
incoming signals have a direct influence on its membrane potential, as generalized in
Figure 5. Clearly, the LIF neuron model transmits information effectively by exciting
non-differentiable discrete spikes, which is why it cannot train the network by means of
standard backpropagation [29].

Figure 5. The dynamics of an LIF spiking neuron.

Focusing on this problem, Lee et al. [30] proposed a solution that ran a gradient
descent algorithm with multiplicative update rules. In addition, Panda et al. [31] built
a hierarchical spiking convolutional autoencoder with backpropagation. Similar to the
ANN-to-SNN conversion, another popular approach converted the trained CNN model
into a spiking architecture, so that SNNs can be exempt from backpropagation during
training [26]. These methods used neural membrane potential to approximate differential
activation function to run the backpropagation algorithm. Many studies have demonstrated
that the converted spiking CNNs have high performance (close to regular CNNs) with
fewer operations and less energy consumption, with the aid of which deep CNN is able to
be implemented on hardware [26].
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3. Methology
3.1. Wavelet Transform Threshold Denoising

ECG is an unstable weak signal accompanied by a variety of noise and interference in
known or unknown frequency bands. Thereby, it is inappropriate to employ the original
ECG signal directly. Figure 6 displays the main process of denoising via the wavelet
transform method combined with soft thresholding.

Figure 6. The denoising process of an ECG signal.

We selected the Daubechies 5 (db5) wavelet as the wavelet function with a decomposi-
tion level of 9 to transform noisy ECG signals into the frequency domain and obtained a
set of wavelet decomposition coefficients [23]. If the obtained wavelet coefficient exceeded
the soft threshold, it was determined as noise and needed to be discarded. In contrast, if
the wavelet coefficient was greater, it could be assumed as the signal and needed to be
retained. Based on the soft thresholding of [32], the setting threshold was calculated by the
following formula:

λ =
MAD
0.6745

√
2 ln N, (1)

where λ is the threshold, MAD is the median amplitude of the wavelet coefficients from
the first layer, 0.6745 is the adjusted coefficient for standard variance of the Gaussian noise,
and N is the length of the signal.

Unlike the hard thresholding, the soft-thresholding function is continuous at the
threshold. Thereby, the reconstructed signals are relatively smoothed through the soft
thresholding. The amplitude of each wavelet coefficient |x| is compared with the set
threshold λ, as described in the following equation:

f (x) =

{
sgn(x)(|x| − λ) if |x| > λ

0 if |x| ≤ λ
(2)

The return value sgn(x) reflects the plus or minus sign of the parameter x, according
to the following equation:

sgn(x) =

{
1 if x > 0
−1 if x < 0

(3)

Finally, through the inverse wavelet transformation, the ECG signal is reconstructed
with these processed wavelet coefficients to obtain the denoised signal.

3.2. Segmentation ECG Heartbeat

Segmentation of the successive ECG signals is indispensable for extracting morpho-
logical features and classifying abnormal heartbeat. In most work, segmenting the ECG
signal first requires identifying the R-wave peak [7,25]. At first, the position of the R-wave
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peak in each heartbeat can be located by reading the entire annotation provided by the
MIT-BIH dataset; it is the strongest peak in each heartbeat. Alongside this, we also adjust
the peak values in the annotation file, as several signal points are offset after denoising.
Accordingly, there is no need to propose another algorithm for acquiring QRS complexes
and detecting the R peak. Second, we remove the first 10 and last 5 consecutive beats to
ensure that our analyzed data are from the steady state. Finally, for the sake of extracted
feature vectors with the same length and containing P, QRS, and T wave information, based
on the determined R-wave peak, we take 100 points forward and 200 points backward as a
heartbeat. Figure 2 shows different types of heartbeats after segmentation. Table 1 describes
the number of final obtained heartbeats from the 44 ECG records in the MIT-BIH database.

3.3. Model Design
3.3.1. SNN-Based Module

For the LIF neurons [29], as detailed in Figure 5, the synapse is a connection between
the presynaptic neuron i and the postsynaptic neuron j. Within the time constant τ, the
membrane potential Uj(t) accumulates the leak currents and the input spikes generated by
different pre-synaptic neurons i. The potential Uj(t) could store the temporal information
and is calculated with the following equation:

τ
dUj(t)

dt
= −Uj(t) + RI(t), (4)

where τ represents the time constant for the leak current, and R and I(t) represent the
input resistance and drive current in the LIF circuit, respectively.

As digital simulation measures continuous current and voltage, differential Equation (4)
is converted into a difference equation for computation. From a difference perspective, the
membrane voltage is represented as

Uj(t) = λUj(t− 1) + ∑
i

wijUi(t), (5)

where Uj(t) is the membrane voltage of postsynaptic neuron j at the time t and wij is
synaptic weight, which weights the inputs of presynaptic neuron i. As the SNN layer with
LIF neuron encodes incoming numerical signals into binary spikes, the multiplication of
Ui(t) and wij is turned into addition.

When the membrane voltage Uj(t) exceeds the voltage threshold vth, an action poten-
tial is fired, and neuron j generates a spike. The output spike at time t is calculated by:

Output(t) =

{
1, if Uj(t) > vth

0, otherwise
(6)

Immediately afterwards, the membrane potential Uj(t) is dropped to the reset potential
vr and neuron j enters the refractory period. To simplify the calculation, we set the reset
voltage vr to 0 without affecting the biological neuron model. During the refractory period,
the membrane voltage of postsynaptic neuron j stays constant and does not respond to
new stimulation until the next cycle.

In the SNN layers, the membrane potential of the LIF neuron approximates the original
activation function in convolution, which similarly supports other network layers in CNN,
such as the pooling layer and the fully connected layer.

3.3.2. The Channel Attentional Mechanism

After the first SNN layer, the input ECG data are reshaped into the local feature
F =

[
f 1, f 2, . . . , f c] ∈ R1×W×C with a size of 1 ×W and a channel number of C (here

W = 140 and C = 4), where f s denotes the feature vector for the channel s. The value of F
is the product from all channels, but its channel relationship is ignored and implicit in the
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local spatial feature due to the convolution operation. Beyond that, our simple network
structure only contains two convolution operations, which cause the receptive field to be
relatively small, and the contextual information outside the local region is not available.
Inspired by the SE block in [21], we approach the following operations for the limitations
of a shallow network, as presented in Figure 7.

Figure 7. The architecture of the channel attentional mechanism, where different colors indicate the
importance level of different channels.

First, the vector F enters into the global max-pooling (GMP) layer, so that its output
dimension is matched with its own channel number to refine global information and obtain
the vector Fp =

[
f p1, f p2, . . . , f pc

](
Fp ∈ R1×C). In a way, the GMP operation squeezes

feature vector F into the one-dimensional feature Fp that represents the importance of each
channel within a global perspective, as follows:

f pi = max( f i
j ), j ∈ [1, N], (7)

where f i
j denotes the jth element in the ith channel of the feature F and N is the number of

the elements in f i.
After that, the feature vector Fp is fed into a bottleneck structure for better utilization of

aggregated information produced by the GMP layer. This bottleneck structure is composed
of two convolution layers with a kernel size of 1 with a hidden layer between them. With the
reduction ratio r (here r is 4), the number of neural units in the hidden layer is first reduced
to C

r of the input convolution layer, and then the output convolution layer adopts the
same number of neural units as the input convolution layer to obtain a new channel-wise
feature Fc with a size of 1 and channel number of C. The rectified linear unit (ReLU) layer
follows the first convolutional layers, which can introduce sparsity to control overfitting
and speed up computing time [33]. After the last convolutional layer, the sigmoid activation
layer is utilized, so that Fc contains non-mutually exclusive multiple channel information
and is normalized between 0 and 1. These operations are calculated according to the
following formula:

Fc = σ(g(Fp, W)) = σ(W2δ(W1Fp)), (8)

where δ is the ReLU function, σ is the sigmoid function, W1 ∈ R
C
r ×C and W2 ∈ RC× C

r .
Finally, the final feature vector F̃ =

[
f̃ 1, f̃ 2, . . . , f̃ c

]
∈ R1×W×C is obtained by the

channel-wise multiplication of the feature Fc and the previous feature vector F, which
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accomplishes adaptive recalibration with the learned channel information to represent the
heartbeat, using the following equation:

F̃ = Fc · F (9)

This CAM is incorporated between two SNN layers, and its integration strategy is
discussed in detail in Section 4.2. The specific values corresponding to all aforementioned
parameters are shown in Figure 7.

4. Experiments and Discussion
4.1. Performance Metrics

Our model is trained for 30 epochs under Pytorch 1.7.1, using mean squared error
(MSE) loss, a batch size of 32, and the Adam optimizer with a learning rate of 0.001.
Following the AAMI recommendations, the evaluation metrics for ECG classification
performance in our paper are accuracy (Acc ), sensitivity (Sen), precision (Pre), and F1 score
(F1). These metrics are defined as follows [19]:

Acc =
TP + TN

TP + TN + FP + FN
(10)

Sen =
TP

TP + FN
(11)

Pre =
TP

TP + FP
(12)

F1 =
2

1/Sen + 1/Pre
(13)

Here, TP means true positives, TN means true negatives, FP means false positives,
and FN means false negatives. F1 score comprehensively considers the precision and the
recall of the classification model, which is frequently taken as the final evaluation metric.

4.2. Model Construction

1. The t-SNE visualization of denoised ECG data: The dataset for training and testing
consists of 44 ECG recordings: 100, 101, 103, 105, 106, 108, 109, 111, 112, 113, 114,
115, 116, 117, 118, 119, 121, 122, 123, 124, 200, 201, 202, 203, 205, 207, 208, 209, 210,
212, 213, 214, 215, 219, 220, 221, 222, 223, 228, 230, 231, 232, 233, and 234. Five major
groups (N, S, V, F, and Q) of heartbeat data are all taken into account, so that our
classification method can be extensively implemented in clinical arrhythmia diagnosis.
We select the concise F1 score in Equation (13) as the main indicator to assess each
class. In addition, to make the most of available ECG data to design the optimal
model, all extracted heartbeat data are randomly split into a training set (70%) and a
testing set (30%). In Figure 4, we carry out t-SNE visualization to compare the feature
separability of the denoised data with the raw data that are selected from records 208
and 232 in the MIT-BIH arrhythmia database.

2. SNN parameters: The optimization of the converted SNN is implemented in the Spik-
ingJelly framework under Pytorch, which provides four basic modules for SNN deep
learning: Neuron, Layer, Functional, and Encoding. The SNN-based model contains
the LIF neuron from the Neuron module and represents each input sample as binary
spikes at each timestep (from 1 to T). The timestep T determines the computational
amount of each sample with an impact on accuracy and latency. To trade off latency
and maximum accuracy by setting the optimal timestep, we explore the effect of the
timesteps in LIF neurons on the classification accuracy. As indicated in Table 2, the
maximum classification accuracy 98.26% is obtained when the value of the timestep
is 7.
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Table 2. SNN maximum accuracy with respect to the number of timesteps.

Timesteps Overall-Acc (%) N-F1 (%) S-F1 (%) V-F1 (%) Q-F1 (%)

1 97.45 98.69 76.14 91.73 80.56
2 97.49 98.71 71.16 92.97 68.82
3 97.74 98.82 72.46 94.44 78.13
4 98.09 99.06 79.33 94.74 77.07
5 97.42 98.66 69.55 93.02 70.74
6 97.71 98.83 72.45 94.17 75.32
7 98.26 99.13 80.67 95.40 81.16
8 97.59 98.74 73.42 93.45 71.29
9 98.06 99.01 76.86 95.42 80.85

10 98.17 99.08 80.68 94.87 81.34
11 97.85 98.88 73.25 95.04 77.97
12 97.83 98.90 74.15 94.56 75.89
13 97.94 98.97 76.10 94.39 79.02
14 97.56 98.72 71.88 93.59 70.43
15 98.16 99.07 77.24 95.59 80.85
16 98.19 99.08 78.99 95.50 81.82

3. Ablation study for the CAM: We perform ablation experiments on different configu-
rations of module components to design the optimal structure that integrates our
channel attention mechanism into the SNN module.
First, we exploit different squeeze operators in the heartbeat classification tests to
investigate the significance level of global average pooling (GAP) and the GMP
layer, as well as all of them together. Table 3 suggests that the global max pooling
serves as the squeeze operator to perform the best with the fewest parameters for all
ECG classes.

Table 3. Effect of different squeeze operators in the CAM.

Squeeze Operator Overall-Acc (%) Params N-F1 (%) S-F1 (%) V-F1 (%) F-F1 (%)

GAP 98.08 435,336 99.01 79.80 94.71 80.00
GMP 98.26 435,336 99.13 80.67 95.40 81.16

GAP + GMP 98.19 435,344 99.10 79.77 95.31 78.93

Next, we explore the location choice of the channel attention mechanism integrated
into the existing SNN-based architecture. The integrated CAM is generic to build
blocks, but it is not necessarily appropriate for all of them. To adequately model
channel-wise dependencies in features, the CAM requires a relatively high number of
channels to be processed. Apparently, it is undesirable to place the CAM before SNN
Layer1. We consider three variant designs, as shown in Figure 8: (1) CAM-Between,
in which the attentional module is placed between SNN Layer1 and SNN Layer2;
(2) CAM-After, in which the attentional module is placed after SNN Layer2, and
(3) CAM-All, in which the attentional module is placed both between the two SNN
layers and after SNN Layer2. Relative to the CAM-After block in which the CAM
is followed by the fully connected classifier, the CAM-Between block excites more
features with channel information. In the CAM-All block, the effects produced by the
CAM between the two SNN layers and after SNN Layer2 are complementary.
It currently remains challenging to report a rigorous theoretical analysis for multi-
channel representations learned by deep neural networks [21]. Thence, we conduct
a series of ablation experiments to examine the practical function of the integrated
CAM position, and the experimental results are listed in Table 4. The CAM-Between
block performs the best with the least increase of model parameters, whereas the
CAM-After integration leads to dramatically worse performance and even drops
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below the baseline module (containing only two SNN layers). The CAM-All block is
not quite as accurate as the CAM-Between block due to the effect of the CAM after
SNN Layer2. This demonstrates that a careful integration strategy is quite significant
for the channel attention module to bring more performance benefits.

(a) (b) (c)

Figure 8. Three integration designs for the CAM. (a) CAM-Between block. (b) CAM-After block.
(c) CAM-All block.

Table 4. Effect of the CAM with different integration strategies.

Integration Design Overall-Acc (%) Params N-F1 (%) S-F1 (%) V-F1 (%) F-F1 (%)

Baseline (SNN) 98.09 435,328 99.05 78.35 94.99 77.00
CAM-Between 98.26 435,336 99.13 80.67 95.40 81.16

CAM-After 97.70 435,360 98.84 71.15 94.10 76.47
CAM-All 98.16 435,368 99.06 80.05 95.39 80.47

For the final step, based on the current construction with the known integrated
location and squeeze operator, we conduct experiments on a range of different values
for hyperparameter r, which is the channel reduction ratio defined in Equation (8).
The comparison in Table 5 shows that tuning the value of r to 4 performs better with
the fewest model parameters, although setting it to 2 is effective.

Table 5. Effect at different reduction ratios.

Ratio r Overall-Acc (%) Params N-F1 (%) S-F1 (%) V-F1 (%) F-F1 (%)

2 98.22 435,344 99.10 80.97 95.22 79.90
4 98.26 435,336 99.13 80.67 95.40 81.16

In Figure 9, we observe that the integrated CAM could improve the feature extraction
ability and achieve a better outcome in contrast to the original. In particular, the CAM-
Between block has the optimal integration strategy to prevent increases in model
complexity and the highest classification accuracy, and it takes almost negligible
computational cost to maximize efficacy. Additionally, the F1 score for each type of
heartbeat is indeed greatly improved, as displayed in Table 4. However, similar to
most other work [13,18,34], class Q is poorly classified. This is due to many variations
within class Q and few training samples of class Q, as generalized in Figure 2 and
Table 1.
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(a) (b)

Figure 9. The confusion matrix heatmaps of heartbeat classification: (a) confusion matrix for the
original SNN-based model; (b) confusion matrix for the SNN-based model integrated with the CAM.

4.3. Comparison with Previous Work

For the sake of a comprehensive and fair evaluation in specific details when com-
pared with seven state-of-art methods, we adopt their corresponding evaluative strategies.
Against these previous methods, our work performs comparably under most strategies,
as indicated in Table 6. These different evaluative strategies include the “70:30” strategy,
Inter-patient strategy, and Patient-specific strategy. Particularly, the work marked with an
asterisk is assessed for seven types of heartbeats, so we do not adopt its corresponding
strategy. In addition, for a detailed view of the results on the hardware, we implement the
classification model on Artix-7, which provides high performance in power consumption
and packaging miniaturization.

The “70:30” strategy intends that all heartbeats from 44 ECG records are randomly
divided into a training set (70%) and a testing set (30%). Table 6 shows that our overall
performance for identifying five types of heartbeats is nearly close to [15] with an 11-layer
deep CNN structure.

Referring to the Inter-patient strategy to make similar proportions for each type of
heartbeats, the training dataset contains 22 ECG records (101, 106, 108, 109, 112, 114, 115,
116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, and 230) and the testing
dataset contains the remaining ECG records (100, 103, 105, 111, 113, 117, 121, 123, 200, 202,
210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, and 234). Relative to [19], despite our
work producing a slightly higher power consumption, there are higher scores in terms of
the overall accuracy and F1 scores for class N and class V.

Conforming to the Patient-specific strategy, the ECG dataset is partitioned into two
groups, and they are referred to as the DS1 group and the DS2 group. The DS1 group
consists of the first 20 ECG records (100, 101, 103, 105, 106, 108, 109, 111, 112, 113, 114,
115, 116, 117, 118, 119, 121, 122, 123, and 124), which include typical ECG abnormalities in
routine clinical practice. The DS1 group consists of the remaining 24 records (200, 201, 202,
203, 205, 207, 208, 209, 210, 212, 213, 214, 215, 219, 220, 221, 222, 223, 228, 230, 231, 232, 233,
and 234), which include complex arrhythmias, such as ventricular arrhythmias, junctional
arrhythmias, and conduction abnormalities. Under the Patient-specific strategy, all ECG
signals in DS1 plus the first five minutes of ECG signals in DS2 are utilized as the training
dataset to train a model for the patient’s own ECG data. The rest of ECG data serve as
the test data. In particular, [13,14,20] are software-based solutions, and [18] provided their
implementation on ARM Cortex A53.
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Table 6. Performance comparison of our proposed approach with other previous work. The values in
parentheses denote comparisons with our approach. And the work marked with an asterisk classified
seven types of heartbeats.

Approach Evaluative Strategy Acc (%) Sen (%) Pre (%) F1 (%)
Energy per Time per

Beat Beat (s)

Pandey et al. [15] “70:30”
98.30 (+0.04)

Average: 95.51 Average: 86.06 Average: 89.87
- -(11-layer deep CNN) (N, S, V, F, and Q class) (+0.76) (+1.37) (+0.78)

Yan et al. [19] Inter-patient Average: 90 N: 92 (−6.37) N: 97 (+3.77) N: 94.43 (−1.3) Power: 181 mW -(SNN) (N, S, V, and F class) (−2.07) V: 77 (+7.96) V: 59 (−17.46) V: 66.81 (−5.75)

Hu et al. [12] Patient-specific 94.8 (−3.4) 78.9 (−9.4) 75.8 (−17.86) 77.3 (−13.6) - -(MLP) (V class)

Kiranyaz et al. [14] Patient-specific 98.6 (+0.4) 95 (+6.7) 89.5 (−4.16) 92.2 (+1.3) 37 mJ [18] 41 ms [18](FFT, CNN) (V class)

Ince et al. [13] Patient-specific 97.6 (−0.6) 83.4 (−4.9) 87.4 (−6.26) 85.4 (-5.5) 4 mJ [18] 4.5 ms [18](Wavelet, MLP) (V class)

Kolagasioglu et al. [20] * Cluster seven 95.5 (−2.7) - - - 614 µJ [18] 994 ms [18](Wavelet, SNN) beat types

Amirshahi at al. [18] Patient-specific 97.9 (−0.3) 80.2 (−8.1) 97.3 (+3.64) 88 (−2.9) 1.78 µJ 200 ms(SNN) (V class)

“70:30” Overall-Acc: 98.26 Average: 94.75 Average: 84.69 Average: 89.09 346.33 µJ 1.37 ms(N, S, V, F, and Q class)

Proposed Inter-patient Overall-Acc: 92.07 N: 98.37 N: 93.23 N: 95.73 Power: 246 mW 1.32 ms(SNN+CAM) (N, S, V, and F class) V: 69.04 V: 76.46 V: 72.56

Patient-specific
98.2 88.3 93.66 90.9 324.51 µJ 1.32 ms(V class)

More specifically, our classification accuracy for class V is 3.4% higher than [12] and
0.6% higher than [13], and its F1 score is 13.6% higher than [12] and 5.5% higher than [13].
Although just below 0.4% for the accuracy of class V, our work is superior to [14] in
terms of energy consumption and precision, in which the energy consumption is lower by
two orders of magnitude, and the precision of class V is 4.16% higher. Compared to the
similar SNN-based solution [20], there is better performance in classification accuracy and
energy consumption. In contrast to [18] built by the simulations circuit, despite no good
result in energy consumption, our work performs well, with higher accuracy and F1 score.
Regarding time consumption, our classification for each heartbeat requires the shortest
time among all work. In other words, our proposed arrhythmia diagnosis architecture
takes the shortest time to accomplish high accuracy relative to other methods with multiple
convolutional network layers and low power consumption compared with other SNN-
based work.

As indicated in Figure 10, we can conclude that our proposed arrhythmia diagnosis
approach has overall comparable performance in terms of classification accuracy, energy
consumption, and real-time capability. This primarily benefits from the SNN are the po-
tential to process the classification task at low power, the wavelet threshold denoising to
strengthen feature separability and promote subsequent ECG classification, and the integra-
tion design for the CAM to maximize efficacy with almost negligible computational cost.
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Figure 10. The performance comparison with other methods adopting the “70:30” strategy, Inter-
patient strategy, and Patient-specific strategy.

5. Conclusions

In this paper, we proposed a suitable and effective heartbeat classification algorithm
for implementation on low-power hardware composed of the CNN-to-SNN conversion
ensemble with the channel attentional mechanism. Furthermore, we performed a range
of ablation studies to search for the optimal solution for tuning hyper-parameters and
configuration within the SNN-based module and the CAM. On the whole, a wide range
of experiments illustrated the effectiveness and feasibility of our classification algorithm,
which achieves comparable performance versus previous state-of-the-art work under
different evaluative strategies. As a result, our model is appropriate to be implemented on
low power and portable devices to diagnose ECG abnormalities automatically in real time.
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