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Abstract: The visual quality of endoscopic images is a significant factor in early lesion inspection
and surgical procedures. However, due to the interference of light sources, hardware, and other
configurations, the endoscopic images collected clinically have uneven illumination, blurred details,
and contrast. This paper proposed a new endoscopic image enhancement algorithm. The image
decomposes into a detail layer and a base layer based on noise suppression. The blood vessel
information is stretched by channel in the detail layer, and adaptive brightness correction is performed
in the base layer. Finally, Fusion obtained a new endoscopic image. This paper compares the algorithm
with six other algorithms in the laboratory dataset. The algorithm is in the leading position in all five
objective evaluation metrics, further indicating that the algorithm is ahead of other algorithms in
contrast, structural similarity, and peak signal-to-noise ratio. It can effectively highlight the blood
vessel information in endoscopic images while avoiding the influence of noise and highlight points.
The proposed algorithm can well solve the existing problems of endoscopic images.

Keywords: endoscopic images; image decomposition; image enhancement; noise suppression;
gamma correction

1. Introduction

Medical endoscopy is of great significance in early lesion screening and improving the
success rate of surgical operations. Whether it is the tracking detection of wireless capsule
endoscopy [1] or the high-precision surgical navigation of AR (Augmented Reality) [2], it is
closely related to the endoscopic image. The visual quality of endoscopic imaging is often
affected by the intricacies of the internal structure of the human body, plus factors such as
light source interference [3] and hardware limitations during endoscopic image acquisition,
while the cost of access to the underlying image processing side of the hardware is vast [4],
so we can improve the results of conventional endoscopic imaging.

Under normal circumstances, uneven illumination and low contrast are the most
critical factors affecting the clinical diagnosis of endoscopy [5]. At the same time, further
lesion inspection and polyp diagnosis are inseparable from high-quality endoscopic images.
To improve image quality, early researchers made a series of improvements based on
gamma correction [6] and a single-scale retinex [7] algorithm. Huang et al. [8] proposed
weighted adaptive gamma correction (AGCWD), which adaptively modifies the function
curve by normalizing the gamma function to achieve the effect of adaptive correction of
luminance. Jobson et al. [9] proposed Multi-Scale Retinex (MSRCR) with a color recovery
function to solve the phenomenon of color distortion and saturation loss arising in the
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enhanced images. However, it is difficult to maintain the brightness and color fidelity of
endoscopic images alone when these methods are applied to endoscopic images.

Image enhancement algorithms based on multi-exposure fusion are also widely used
in image processing [10]. Hayat et al. [11] proposed a multi-exposure fusion technology
based on multi-resolution fusion, which effectively solved the problem of image artifacts.
Ying et al. [12] proposed an accurate image contrast enhancement algorithm to solve the
problem of insufficient contrast in some areas of the image and excessive contrast in some
areas, to use illumination estimation technology to design a fusion weight matrix, and to
synthesize multi-exposure images through the camera response model.

Histogram equalization (HE) [13] is commonly used for image contrast enhancement
due to the ease and straightforwardness of implementation. Still, its application to endo-
scopic images can lead to noise amplification and over-enhancement problems. To solve
the defects of histogram equalization, researchers proposed some algorithms based on
histogram equalization improvement. Zuiderveld et al. [14] proposed restricted contrast
adaptive histogram equalization (CLAHE) using threshold clipping histogram to prevent
over enhancement. Chang et al. [15] proposed quadruple histogram equalization by divid-
ing the image into four sub-images through the mean and variance of the image histogram.
However, these methods cannot handle the luminance error and have certain limitations.

More and more algorithms for medical image enhancement have been developed in
recent years. Al-Ameen et al. [16] proposed a new algorithm to improve the low contrast of
CT images by adjusting the single-scale Retinex and adding a normalized Sigmoid function
to improve the contrast of CT images. Palanisamy et al. [17] proposed a framework for
enhancing color fundus images by improving luminance using gamma correction and
singular value decomposition and local contrast using contrast-limited adaptive histogram
equalization (CLAHE), which adequately preserves detail while improving visual percep-
tion. Wang et al. [4] proposed an endoscopic image brightness enhancement technique
based on the inverse square law of illumination and retinex to solve problems such as
overexposure and color errors arising from endoscopic image brightness enhancement. An
initial luminance weighting based on the inverse square law of illuminance is designed.
A saturation-based model is proposed to finalize the luminance weighting, effectively
reducing image degradation caused by bright spots. These algorithms cannot solve the
defects of endoscopic images in a multifaceted way.

To ensure the outstanding effect of the underlying blood vessel details without color
distortion, this paper proposes a new endoscopic image enhancement framework. Global
enhancement with noise suppression, brightness correction by adaptive bilateral gamma
function for the base layer separated by weighted least squares based, the separated
detail layer is subjected to sub-channel selective adaptive stretching with high highlight
suppression to achieve the effect of detail enhancement. The main contributions of this
paper are as follows:

1. This paper proposes a novel framework for endoscopic image enhancement to
avoid the interference of high brightness and noise in endoscopic imaging by separating
the noise layer and high brightness mask.

2. According to the characteristics of endoscopic images, an adaptive brightness
correction function based on bilateral gamma is proposed, which enhances the brightness
of light and dark areas while preventing excessive enhancement of high-light areas.

3. According to the color characteristics of endoscopic images, this paper proposes a
detail layer sub-channel processing method, which uses different image weights for each
channel for scaling. Then, the detail layer enhancement factor was designed according to
the connection before and after the base layer enhancement. It achieves the effect of detail
enhancement while highlighting the color features of endoscopic images.

2. Dataset Introduction

We collected 200 endoscopic images jointly with Hefei Deming Electronics Co., Ltd.
(Hefei, China) and the First Affiliated Hospital of Anhui Medical University. Create a
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dataset named LEI_D, as shown in Figure 1. The LEI_D dataset is used to carry out real
minimally invasive surgeries in the relevant departments of the hospital through the CMOS
image sensor dedicated to endoscopy and the endoscopy system developed by the company.
The video is stored in MP4 format on the endoscopy device side to the mobile hard disk
without communication through network encoding to ensure the video’s original quality.
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Figure 1. Dataset overview diagram (a) Correlation diagram of human tissue (b) Correlation diagram
of animal tissue.

The LEI_D dataset is collected from different departments such as urology, thoracic
surgery, oncology, cardiovascular surgery, cardiovascular surgery, otolaryngology, nephrol-
ogy, obstetrics and gynecology, and hepatobiliary and pancreatic surgery. The collected
endoscopic images cover different organ tissues and lesions in the human body, including
oral cavity, nostril, bladder, liver, intestine, gallbladder, uterine fibroids, urinary tumors,
pituitary adenomas, recurrent maxillary sinus tumors, gastric cancer, rectal cancer, etc. In
addition, the dataset also covers some animal tissue images, such as chicken guts, intestines,
bronchial tubes, etc.

3. Proposed Algorithm

The framework flow of the algorithm is shown in Figure 2. which is inspired by the
different absorption characteristics of human tissues for different spectra and the multipath
processing mechanism. First, to prevent the effect of noise on microvascular imaging, the
input map was decomposed into structural and noise layers according to a modified total-
variation method for endoscopic image design and enhancement of structural layers with
noise suppression. Secondly, to improve the image brightness and highlight local vascular
information, the structural layer is divided into base and detail layers by the weighted
least squares method. The main brightness information exists in the base layer, and the
detail information such as blood vessels exists in the detail layer. In terms of brightness, the
proposed adaptive bilateral gamma function is used to correct the brightness of the base
layer; In terms of details, since the gain of the green and blue channels are more beneficial
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to highlight the detailed information of blood vessels and the highlighted area will affect
the channel stretching effect, the three channels are selectively stretched on the premise of
removing the highlight information. Finally, the improved base, detail, and noise layers are
fused to obtain a result map with a better visual effect.
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Figure 2. Framework Flowchart, k_TV stands for total variation method based on noise suppression
factor, WLS stands for weighted least squares method, and canny_guided filter is the abbreviation for
weighted guided filtering based on the improvement of the canny operator.

3.1. Modified Total-Variation to Extract the Noise Layer

In endoscopic images, there is usually some noise [18] that affects the image’s visual
quality, the enhancement of the image will lead to noise amplification, and the removal of
noise may cause the loss of information in particularly small blood vessels, so this paper
adopts the method of noise suppression. Before the endoscopic image is enhanced, the
corresponding noise layer is extracted by applying the improved global noise estimation of
the endoscopic image to the total-variation method.

The image edge structure has strong second-order differential properties [19], so the
image is sensitive to the noise statistics of the Laplace mask. We use a kernel consisting of
two Laplacian masks to participate in the convolution operation (Equation (2)). Conven-
tional noise estimates may contain vascular details since endoscopic images differ from
conventional images. We add a noise suppression factor k to the arithmetic mean-based
image noise estimation [20] algorithm to control the level of extracted noise. The set global
noise parameter θc is obtained from Equation (1).

θc =

√π

2
1

6(W − 2)(H − 2) ∑
(x,y)
|(Ic ∗ Ns)(x, y)|

 ∗ (1/k) (1)

NS =

 1 −2 1
−2 4 −2
1 −2 1

 (2)

where ∗ represents the convolution operator, W and H represent the width and height of
the image, Ic is the input image, and k is 40 in this paper (the value analysis of k is explained
in the experimental analysis).

In the total-variation structure texture method [21], the input image consists of a
superposition of a structural layer and a noise layer; The model is shown in Equation (3).
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Combined with TV (total variation) regularization, the structural layer is obtained by mini-
mizing the objective function. This objective function (4) consists of two components. The
first is a different term adapted to the texture components. The second is a regularization
term based on the total amount of variation used to limit the details of the image.

Ic(x, y) = Ic
structure(x, y) + Ic

noise(x, y), c ∈ {R, G, B} (3)

min ∑
(x,y)

(Ic
structure(x, y)− Ic(x, y))2 + λc|∇Ic

structure(x, y)| (4)

where ∇ denotes the ladder segment operator and λc is the parameter θc obtained by the
set endoscopic global noise estimation.

3.2. Weighted Least Squares Decomposition of Images

Perform the weighted least squares (WLS) [22] method on the structural layer to obtain
the base layer, and then subtract the base layer from the structural layer to obtain the detail
layer. The extraction of detail layers based on weighted least squares can extract good
detail information while maintaining the original graph architecture. Compared to the
artifacts that tend to appear with bilateral filtering and the complexity of bootstrap filtering
to guide image selection, the weighted least squares method is applied to the endoscopic
enhancement to smooth as much as possible in the areas with small gradients and keep as
much as possible in the edge parts with strong gradients. After processing, we get a base
layer with background brightness information of the subject and an avascular layer with
minute detail information.

Decomposition Model:

Ic
structure(x, y) = Ic

base(x, y) + Ic
detail(x, y), c ∈ {R, G, B} (5)

WLS Model:

minIbase ∑
((

up − gp
)2

+ λ

(
ax,p(Istructure)

(
∂Ibase

∂x

)2
+ ay,p

(
∂Ibase
∂Ibase

)2
))

(6)

where p represents the position of the pixel point, and ax and ay control the degree of
smoothing at different positions. The first term represents that the input and output images
are as similar as possible. The second term is a common term that smoothes the output
image by minimizing the partial derivative. λ is used as a regularization parameter to
balance the two weights.

3.3. Adaptive Bilateral Gamma Correction Brightness

After observing a series of endoscopic images, it is found that there is a problem
of uneven illumination in the endoscopic images, especially the dark area information
cannot be well highlighted. To ensure that the brightness area is not over-enhanced and
improve the brightness of the dark area without changing the color. In this paper, we
use the bilateral gamma function to correct the luminance channel of the base layer and
propose adaptive weighting of the image pixel positions. Figure 3 shows the flow chart of
luminance correction.

Bilateral gamma functions:

V1(l) = lmax

(
l

lmax

)1/γ

(7)

V2(l) = lmax − lmax

(
1− l

lmax

)1/γ

(8)

V′(l) = αV1(l) + (1− α)V2(l) (9)
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where V is the base layer luminance channel in HSV color space, V′ is the corrected
luminance channel. The internationally recommended γ value is 2.5.
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Figure 3. Brightness Correction Flowchart.

As shown in Figure 4, Above y = x is the graph of V1 with γ, and below y = x is
the graph of V2 with γ. As the value of γ increases, the function curve becomes steeper
and steeper, indicating that the degree of change becomes more and more drastic. The
images of V channels are corrected separately by bilateral gamma functions (V1 and V2)
to get two images, V1 and V2. V1 is a brighter image by simple gamma correction and
V2 is a darker image by negative gamma correction. So, when two images are fused, the
brighter the region should have less weight, and the darker the region should have more
weight. Combined with the curve change trend of the sigmoid function, this paper proposes
adaptive weights α1.

α1 = 1− 1(
1 + e(7∗(0.5−V))

) (10)
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The obtained functions, weights, and stretching effects are plotted in Figure 5. It can be
seen that the brightness of the image deviates considerably, and the brightness is enhanced,
but the enhancement is much more than the expected guesses. Some areas of the image
appear too bright and too dark, which can blur the frame of the subject of the base layer.
Therefore, functions of the sigmoid type are not suitable for stretching here, and α1 will be
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improved. Using the arctan curve transformation trend in the function, this paper proposes
adaptive weights α2.

α2 = ϕ−
(

1
π

)
arctan(V) (11)
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By comparing the base layer obtained by the α2 function with the original base layer,
it can be seen that this rendering has achieved a satisfactory result, and the brightness of
the light and dark areas has been improved, while the brightness of the bright areas has
not undergone excessive enhancement.

To reduce the algorithm’s complexity while optimizing its accuracy, the value of γ is
obtained more precisely by the following steps.

Step1: m = 15 endoscopic images of different sites were selected (5 images each of
bright, medium, and dark brightness) with γ ε (2.0–3.0).

Step2: Define a new comparison metric, which is a combination of two performance
metrics (MSE (Mean Squared Error) [23] and SSIM (structural similarity index) [24]).

F =

√
(MSE/10)2 + (SSIM)2

2
(12)

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

(
I′base − Ibase

)2 (13)

Step3: The images are subjected to adaptive bilateral gamma correction according to
the above method, and the indicator value F of each γ value is recorded when γ varies at a
spacing of 0.1, and the average indicator Fave corresponding to each γ value is calculated (i
corresponds to the image serial number).

Fave =
m

∑
i=1

F(i)/m (14)

Step4: The optimal parameter of γ is selected after comparison.
The optimal parameter of γ is 2.2 when applied to the endoscopic image dataset,

obtained by computational comparison.
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It can be obtained from the above design process of this module. The adaptive bilateral
gamma correction function we designed performs a reasonable scaling transformation of
each pixel value of the base layer image by assigning corresponding weights to each pixel
point for bilateral fusion. This method avoids the phenomenon of over-enhancement and
over-compression in the local image area during the brightness correction process so that
the problem of uneven brightness in endoscopic images is effectively solved.

3.4. Highlight Detail Layer Information

To prevent the high bright spot area in the endoscopic image from contrast enhance-
ment in the detail layer, we decided to bring up the high bright spot before the detail
layer processing and restore the high bright spot area after the processing is completed.
Before making a highlight mask, the original image is pre-processed for enhancement
(16). The purpose of enhancement is to make the reflective areas more visible and reduce
the associated interference factors. This paper adopts the theory [25] that the reflective
pixel’s brightness Y (luminance) is greater than its color brightness y (chromatic luminance).
Convert the image from RGB to CIE-XYZ space to get Y, and then find y according to the
formula. The area where Y is greater than y is extracted as the highlighted area.

y =
Y

X + Y + Z
(15)

Pre-processing enhancement model.R′

G′

B′

 =
min(R, G, B)
max(R, G, B)

R
G
B

 (16)

As shown in Figure 6, the extracted mask is the high brightness areas of the image. If
the high brightness mask does not separate these areas, they will be overly enlarged in the
detail layer, thus blurring the edges and thus affecting the visual quality of the image.
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For the endoscopic images, separation of the three-channel images shows that the
R-channel has minor distinct vascular features and the G and B-channel planes have visible
margins and lesion borders. Blue light is most suitable for enhancing superficial mucosal
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structures and detecting minor mucosal changes. Greenlight is relatively more suitable for
enhancing thick blood vessels in the middle layer of the mucosa [26]. Therefore, the blue
component and the green component are more advantageous for extracting endoscopic
image information. To ensure the consistency of the image structure while highlighting the
vascular details, a stretch factor wc is set based on the connection between the enhanced
base layer and the foundation layer. R channel remains unchanged, and the following
stretching model enhances G and B channels.

IR
detail

′(x, y) = IR
detail(x, y) (17)

Ic
detail

′(x, y) = Ic
detail(x, y) + wc Ic

detail(x, y) ∗ Z(x, y)c, c ∈ {g, b} (18)

wc = 1−
(
norm

(
std
(

I′base
c))− norm(std(Ibase

c))
)1/2, c ∈ {g, b} (19)

where norm is the normalization and std is the variance of the image, Z(x, y) is a weighted
guided filter based on the improved canny operator.

Conventional filtering [27] in processing edge information will perform excessive
smoothing operations for endoscopic images, i.e., the image’s texture and vascular detail
information is lost. This paper proposes an improved weighted guided filter based on the
canny operator. The main operation uses the edge (CWGIF) weight calculated by the canny
operator to replace the local variance calculated by the window in the original weighted
guided filter (WGIF).

Original edge weighting factor calculation formula:

ΓG
(

p′
)
=

1
N

N

∑
p=1

σ2
G,1(p′) + ε

σ2
G,1(p) + ε

(20)

where σ2
G,1(p) is the variance of a 3 × 3 window with p as the center of radius 1, ε is a

constant taking the value of (0.001L)2.
Canny operator improves the calculation of edge weight calculation factor:

ΓG(p) =
1
N

N

∑
p=1

C(p′) + ε

C(p) + ε
(21)

where C(p) is the value of the canny operator detection of pixel p.
The weighted bootstrap filtering model based on the canny operator is as follows.

Z(i) = akG(i) + bk (22)

where ak and bk are the parameters to be solved, and G(i) is the bootstrap image (correspond-
ing to the G and B single-channel maps). According to the edge weights (Equation (22)), the
cost function is as follows.

E(ak, bk) = ∑
iεWk

{
(akGi + bk − pi)

2 +
λ

ΓG(i)
ak

2
}

(23)

The parameters ak and bk can be calculated using the least-squares method on the
Formula (24).

ak =

1
|w| ∑iεwk

piGi − uk pk

σ2
k + λ

ΓG(i)

(24)

bk=pk − akuk (25)

where uk and σ2
k are the mean and variance are corresponding to the single-channel boot-

strap image G within window Wk. |w| is the total number of pixels within the window Wk,
pk is the grayscale mean of the input single-channel image p within the window Wk.
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As shown in Figure 7, both WGIF and CWFGIF smooth the gradient in the normal
area (Standard tissue areas of the human body in the endoscope), but the blue line is closer
to the red line in the areas with large gradients (Vascular and arterial texture areas in the
endoscope). These indicate that CWGIF has better retention in this region.
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WGIF method, and blue is the resulting map of the CWGIF method.

4. Experimental Analysis
4.1. Experimental Environment

The experiment’s environment is as follows: the CPU is an 11th Gen Intel (R) Core
(TM) i5-11400F @ 2.60 GHz 2.59 GHz, Windows 10 is the operating system, and Matlab
R2019b is the test algorithm platform.

4.2. Parameter Setting
4.2.1. Noise Rejection Factor k

When a global noise estimation technique is applied to endoscopic images, vascular
detail information can be wrongly treated as noise. Add a noise rejection factor k to
maximize noise separation while protecting vascular detail information. Initially, we set k
to ten. Based on the canny operator [28] and a combined examination of edge retention
(EPI) [29] and peak signal-to-noise ratio (PSNR) [23]. Figure 8a shows the structure layer
canny operator detection plots for image1 and image3 at k at 40 and 50, and Figure 8b
represents the PSNR values of the structure layer and the EPI values of the structure layer
relative to the original image (in the case of image1). As shown in Figure 8, the EPI and
PSNR of the resulting structural layer and the original map gradually increase as k increases.
Some noise and light patches are identified as pseudo-edges when k = 50. Multiple images
were combined and analyzed, and the k value for the endoscopic images was set at 40.



Electronics 2022, 11, 1909 11 of 20Electronics 2022, 11, x FOR PEER REVIEW 11 of 20 
 

 

 
K=40 base image1 

 
 

K=50 base image1 

 

 
K=40 base image3 

 

 
K=50 base image3 

 

(a) 

 
(b) 

Figure 8. (a) The canny operator discovers the structure layer as the value of k changes. (b) PSNR 
of the structure layer and EPI value of the structure layer relative to the original image. 

4.2.2. Setting of Parameter φ in Brightness Correction 
As shown in Figure 9, as the value of 𝜑 gradually increases, the image’s average 

brightness grows larger and larger, and the image’s histogram concentration value grows 
closer and closer to the high pixel value region. Setting the brightness enhancement to 0.6 
makes it easier for human eyes to notice and judge. 

4.3. Subjective and Objective Analysis 
On a laboratory-built dataset (LEI D), we compare our algorithm to many existing 

image enhancement algorithms in this section. Algorithms for comparison include 
AGCWD, MSRCR, Al-Ameen et al., Palanisamy et al., Ying et al., and Wang et al. The 
increased effect images were evaluated objectively using five evaluation metrics: 
PCQI(patch-based contrast quality index) [30], SSIM(structural similarity index) [24], 
PSNR(Peak Signal-to-Noise Ratio) [23], C_II(contrast improvement index) [31], and 
Tenengrad gradient [32]. 

Figure 8. (a) The canny operator discovers the structure layer as the value of k changes. (b) PSNR of
the structure layer and EPI value of the structure layer relative to the original image.

4.2.2. Setting of Parameter ϕ in Brightness Correction

As shown in Figure 9, as the value of ϕ gradually increases, the image’s average
brightness grows larger and larger, and the image’s histogram concentration value grows
closer and closer to the high pixel value region. Setting the brightness enhancement to 0.6
makes it easier for human eyes to notice and judge.

4.3. Subjective and Objective Analysis

On a laboratory-built dataset (LEI D), we compare our algorithm to many existing im-
age enhancement algorithms in this section. Algorithms for comparison include AGCWD,
MSRCR, Al-Ameen et al., Palanisamy et al., Ying et al., and Wang et al. The increased effect
images were evaluated objectively using five evaluation metrics: PCQI(patch-based con-
trast quality index) [30], SSIM(structural similarity index) [24], PSNR(Peak Signal-to-Noise
Ratio) [23], C_II(contrast improvement index) [31], and Tenengrad gradient [32].



Electronics 2022, 11, 1909 12 of 20Electronics 2022, 11, x FOR PEER REVIEW 12 of 20 
 

 

 

 𝜑 = 0.4 in image 1 

 

 𝜑 = 0.6 in image 1 

 

 𝜑 = 0.8 in image 1 

 

 𝜑 = 0.4 in image 3 

 

 𝜑 = 0.6 in image 3 

 

 𝜑 = 0.8 in image 3 

Figure 9. Histogram of the image’s V-channel corresponding to various values of 𝜑. 

4.3.1. Subjective Analysis 
Endoscopic images are mainly used by physicians to analyze and judge the images 

of blood vessels and organ tissues collected from patients to identify abnormal areas. As 
a result, the enhanced image should keep the image’s brightness, color, and naturalness 
while emphasizing the details of lesions and blood vessels to meet the typical observation 
range of the human eye. Consider the following photographs of different human tissues 
as examples. 

AGCWD over-enhanced localized areas when enhancing endoscopic images. The 
high bright spot area in Figure 10a is over-enhanced, and the vascular features around the 
bright spot are nearly unnoticeable. These phenomena are better illustrated in Figure 11a. 

MSRCR captures information at several scales before completing color recovery, 
which frequently results in color distortion in the recovered endoscopic images, as shown 
in Figure 10a,c. It is possible that the extraction scale is not exact enough, or that the color 
recovery technique produces bias, and that when used to endoscopic pictures, the algo-
rithm produces judgment errors. 

Al-Ameen et al.’s algorithm would have greatly increased contrast in some regions, 
but the image as a whole is excessively dark, impairing human eye visual observation. 

Palanisamy et al.’s algorithm delivers good contrast results, which are considerably 
more reasonable than the prior algorithms, and accomplishes the basic goal of endoscopic 
image enhancement. On the negative side, magnifying Figure 10c reveals a tendency for 
the blood vessels in the endoscopic image to darken, affecting the physician’s assessment 
of the lesion. 

Figure 9. Histogram of the image’s V-channel corresponding to various values of ϕ.

4.3.1. Subjective Analysis

Endoscopic images are mainly used by physicians to analyze and judge the images
of blood vessels and organ tissues collected from patients to identify abnormal areas. As
a result, the enhanced image should keep the image’s brightness, color, and naturalness
while emphasizing the details of lesions and blood vessels to meet the typical observation
range of the human eye. Consider the following photographs of different human tissues
as examples.

AGCWD over-enhanced localized areas when enhancing endoscopic images. The
high bright spot area in Figure 10a is over-enhanced, and the vascular features around the
bright spot are nearly unnoticeable. These phenomena are better illustrated in Figure 11a.

MSRCR captures information at several scales before completing color recovery, which
frequently results in color distortion in the recovered endoscopic images, as shown in
Figure 10a,c. It is possible that the extraction scale is not exact enough, or that the color
recovery technique produces bias, and that when used to endoscopic pictures, the algorithm
produces judgment errors.

Al-Ameen et al.’s algorithm would have greatly increased contrast in some regions,
but the image as a whole is excessively dark, impairing human eye visual observation.

Palanisamy et al.’s algorithm delivers good contrast results, which are considerably
more reasonable than the prior algorithms, and accomplishes the basic goal of endoscopic
image enhancement. On the negative side, magnifying Figure 10c reveals a tendency for
the blood vessels in the endoscopic image to darken, affecting the physician’s assessment
of the lesion.
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Ying et al.’s algorithm provides a significant increase in brightness, and the enhanced
image is clearly visible; however, there appears to be a decrease in contrast as the brightness
is increased, and part of the subject architecture is blurred, resulting in the loss of some
information in the enhanced endoscopic image. This defect is highlighted more clearly in
Figure 11b.

Wang et al.’s algorithm improves brightness and contrast more effectively; neverthe-
less, the brightness of the light and dark areas is overly boosted in some photos, obscuring
the information in the dark areas. As seen in the lower-left corner of Figure 10e.

We zoomed in on a localized section of the individual technique effect figure in the
preceding figure to observe. The high brightness area of the map obtained by AGCWD
is unduly magnified, as seen in the zoomed-in view of the local area in image 1, which
hampers normal observation. The contrast intensity of the plot obtained by Palanisamy
et al. was excessively high, making the trend of the blood vessel color change from red to
black more evident. Wang et al.’s algorithm is brightened, but the accompanying detail
information is not well synchronized, and some tiny blood vessel details are blurred.

Our algorithm improves the brightness, contrast, and naturalness of blood vessels
in general. The image’s contrast is improved in the normal brightness area, while the
intricacies of blood vessels in the dark area are highlighted, avoiding the artifacts, over-
enhancing, and color distortion that can occur with traditional image enhancement.
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internal tissue maps of humans and chicks) were selected and the images were enhanced by classical
image enhancement algorithms and novel medical image enhancement algorithms, and then shown
in subjective comparison with the algorithms in this paper.
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4.3.2. Objective Analysis

This research uses five indexes to conduct an objective examination of the good and
bad images.

PCQI index [30] (patch-based contrast quality index) was developed as an adaptable
representation based on local block structure to forecast contrast variation. Each block
calculates the average intensity, signal strength, and signal structure. Images with higher
PCQI values have better contrast.

SSIM index [24] (structural similarity index) compares three sample and outcome
variables (luminance, contrast, and structure) to determine how similar the improved
image and the original image are.

SSIM(x, y) = [l(x, y)]α × [c(x, y)]β × [s(x, y)]γ (26)

where l(x, y), c(x, y), and s(x, y) represent the image’s brightness, contrast, and structure,
respectively.
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The peak signal-to-noise ratio (PSNR [23]) indicator is used to assess noise perfor-
mance. When reconstructing enhanced images, a greater PSNR suggests that the rebuilt
enhanced images are of higher quality.

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (27)

PSNR = 10·log10

(
MAXI2

MSE

)
(28)

where I and K represent the improved and original pictures, MAXI represents the image’s
maximum pixel value, and MSE represents the image’s mean square error.

CI I [31] is a contrast evaluation index for medical pictures that is calculated by dividing
the average value of local contrast of images before and after processing by the ratio, with
a larger ratio value indicating more contrast.

CI I =
Cprocessed

Coriginal
(29)

Clocal =
max−min
max + min

(30)

where max and min are the maximum and minimum pixel intensity values in a window.
Coriginal and Cprocessed are the average of the local contrast of the image before and after
processing, respectively. The window size of the conventional image is set to 3 × 3 pixels.
Here, considering the larger proportion of details such as blood vessels in endoscopic
images, and referring to the window size set by other medical image calculations, the
window size was set to 50 × 50 pixels for a more accurate evaluation of the endoscopic
pictures [33].

The Tenengrad [26] gradient is utilized as an image sharpness evaluation index, and
the Sobel operator is used to extract the gradient values of the picture’s horizontal and
vertical directions, respectively. The image becomes sharper and more suited for human
eye observation as the Tenengrad gradient value increases.

As shown in Table 1, we present both the metric results for the three sets of a, b, and c
images in Figure 10 and the mean values of the 50 image metrics in the dataset. In the table,
Im1, Im2, and Im3 correspond to the three groups of a, b, and c images in Figure 10, and
“Ave” represents the average of the 50 image metrics.

Table 1. Comparison chart of five evaluation indexes.

Methods Image PCQI SSIM PSNR C_II Tenengrad

AGCWD

Im1 0.98 0.87 14.06 1.18 3.37

Im2 0.88 0.96 18.94 1.03 1.06

Im3 0.94 0.94 18.49 1.07 2.89

Ave 0.91 0.93 17.72 1.08 2.44

MSRCR

Im1 0.63 0.72 7.83 0.71 2.37

Im2 1.01 0.88 17.14 2.16 1.70

Im3 0.68 0.83 11.06 0.91 2.29

Ave 0.79 0.81 12.20 1.28 2.12

Al-Ameen

Im1 0.75 0.71 14.01 1.82 2.43

Im2 0.81 0.75 12.73 2.06 1.20

Im3 0.78 0.75 12.97 1.58 2.45

Ave 0.80 0.73 13.34 1.74 2.03
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Table 1. Cont.

Methods Image PCQI SSIM PSNR C_II Tenengrad

Palanisamy

Im1 1.10 0.89 23.10 1.26 4.15

Im2 1.10 0.90 20.93 1.56 1.70

Im3 0.61 0.78 12.48 0.75 2.70

Ave 0.99 0.88 21.97 1.27 2.55

Ying

Im1 0.90 0.93 17.23 0.83 2.87

Im2 0.89 0.95 18.42 0.83 1.06

Im3 0.94 0.97 22.03 0.90 2.65

Ave 0.91 0.95 18.71 0.86 2.19

Wang

Im1 0.75 0.89 14.81 0.69 2.60

Im2 0.75 0.94 18.10 0.72 0.95

Im3 0.71 0.90 16.14 0.74 2.15

Ave 0.74 0.91 16.78 0.72 1.93

Ours

Im1 1.01 0.96 27.65 1.43 3.02

Im2 0.94 0.96 20.90 1.58 1.24

Im3 1.01 0.96 22.84 1.46 3.11

Ave 0.98 0.96 23.23 1.53 2.49

In terms of contrast. The algorithm in this paper is ahead of the mean value of the
algorithm proposed by Palanisamy by 0.01 (0.98 and 0.99) in PCQI. It is second only to the
algorithm proposed by Al-Ameen in terms of C_II index. Taken combined, the algorithm
in this paper improves contrast significantly.

The SSIM value of this algorithm is the best in terms of similarity, ahead of the other
six evaluated algorithms, demonstrating that the image enhancement of this algorithm
does not lose the picture’s significant topic information, which is critical for medical
image processing.

In terms of picture quality, this algorithm’s PSNR values are higher than those of
other algorithms, implying that the reconstructed images are of higher quality. In terms
of Tenengrad gradient index, the approach given in this study is pretty near to both the
algorithm proposed by Palanisamy et al. and the algorithm value of adaptive gamma
correction, showing that the clarity aspect is also ensured.

When image contrast, image quality, and information preservation are all considered,
as can be seen from Figure 12, our algorithm is excellent for processing endoscopic images.
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5. Discussion

This work demonstrates a study on enhancing the visibility of endoscopic images to
achieve accuracy in machine-assisted physician diagnosis [34]. During endoscopic imaging,
organ substructures or surroundings are hidden in the obtained endoscopic images due
to the complexity of the internal structures of the human body and the limitations of
hardware devices for imaging. Based on the imaging characteristics of endoscopy, this
work introduces the image decomposition architecture to address these defects.

5.1. Effectiveness

The architecture of image decomposition can obtain multiple image layers with differ-
ent features. Further processing corresponding to each image layer can effectively highlight
the contrast of blood vessels and tissues in the endoscope while maintaining the architec-
ture of the image subject. From the experimental analysis comparing the enhancement
effect plots of various algorithms, we can see that most of the enhancement algorithms
cannot be well applied to endoscopic images. The reason is that they do not consider the
imaging characteristics of endoscopic images and the importance of the detailed infor-
mation of tiny blood vessels, and all perform image enhancement from the image as a
whole. They [4–14] changed the three-channel pixel values, resulting in the blurring or
loss of the underlying detail information of endoscopic images. The image decomposition
model uses various forms of filtering to decompose the figure into structural, noise, and
detail layers for separate processing, which effectively solves the problems of biased noise
estimation, uneven brightness, and inconspicuous detail information in endoscopic images.
The algorithm in this paper is not affected by external factors during the experiment. It can
be applied to images of any tissue inside a human or animal, and of course, the framework
idea of the algorithm can be used in any image enhancement.

5.2. Limitations

Although the algorithm outperforms other existing algorithms in solving existing
problems for endoscopic images, it still has some potential limitations or open issues. First,
the algorithm analysis is performed on an existing set of images. However, the images that
physicians are exposed to in some extreme cases may be more complex, and individual
extremely specific images could be collected for experiments in subsequent studies to
ensure that the generalizability of the algorithm is maximized. Secondly, compared with
other algorithms, it may be designed to set some parameters in different algorithms or
set parameters in the evaluation index. We need to study these parameters further to
obtain more accurate results. Finally, the algorithm can currently run well on the Matlab
R2019b. In the next step, we consider multi-threaded programming and hardware device
enhancement to achieve synchronization and setting in the physician’s surgical system to
highlight the significance of practicality further.

6. Conclusions

This paper provides an image decomposition-based endoscopic image enhancement
algorithm that effectively avoids the interference of high bright spots and noise in en-
doscopic pictures. Adaptive enhancements were applied to the brightness of the base
layer pictures, as well as stretching of the detail layer vascular lesions and other infor-
mation in sub-channels suited for endoscopic image characteristics. Traditional image
enhancement difficulties such as color distortion, hazy disappearance of vascular features,
and excessive local brightness augmentation are efficiently solved by this algorithm. The
algorithm produces good visual results and assessment indications through subjective and
objective examination. It was demonstrated that this algorithm outperforms numerous
other conventional algorithms for processing endoscopic images. Due to the limitations of
traditional algorithms in image processing, in future work, we will consider applying the
image decomposition ideas used in this algorithm to neural networks to design a suitable
image quality loss to optimize the network model.
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