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Abstract: In industrial production, accidents caused by the unsafe behavior of operators often bring
serious economic losses. Therefore, how to use artificial intelligence technology to monitor the unsafe
behavior of operators in a production area in real time has become a research topic of great concern.
Based on the YOLOv5 framework, this paper proposes an improved YOLO network to detect unsafe
behaviors such as not wearing safety helmets and smoking in industrial places. First, the proposed
network uses a novel adaptive self-attention embedding (ASAE) model to improve the backbone
network and reduce the loss of context information in the high-level feature map by reducing the
number of feature channels. Second, a new weighted feature pyramid network (WFPN) module
is used to replace the original enhanced feature-extraction network PANet to alleviate the loss of
feature information caused by too many network layers. Finally, the experimental results on the
self-constructed behavior dataset show that the proposed framework has higher detection accuracy
than traditional methods. The average detection accuracy of smoking increased by 3.3%, and the
average detection accuracy of not wearing a helmet increased by 3.1%.

Keywords: behavior detection; YOLO; ASAE; WFPN

1. Introduction

Frequent accidents and casualties reflect the problem of the untimely discovery of
accidents in current industrial production management. In particular, accidents occur
from time to time due to operators’ incorrect wearing of safety helmets, smoking, and
other violations. Therefore, it is of great practical significance to apply target detection
and behavior recognition technology to the safety supervision of industrial production
and construction, to effectively protect the safety of operators and reduce economic losses
caused by accidents.

Moving target detection and behavior recognition [1,2] is one of the basic tasks in
the field of computer vision, and it is also the core task of video surveillance. However,
target detection is still one of the most challenging directions in the field of computer vision
because of the diversity of target posture, the irregularity of action, the complexity of scene,
the resolution of camera and the transformation of lighting conditions [3,4]. Existing target-
detection algorithms can be divided into traditional target-detection algorithms and target-
detection algorithms based on deep learning. The processing process of traditional target-
detection algorithm generally includes the following four steps: (1) image preprocessing,
including image loading, image noise reduction, image color space conversion and image
morphological operation; (2) features (shape, texture and color) in the sliding window being
extracted by moving the sliding window with a specified size in the image to be detected,
(3) the AdaBoost classifier [5] and SVM classifier [6] being used to judge whether there is a
target of interest in the sliding window, and (4) overlapping sliding windows containing
the same target being merged to obtain the bounding box of the final target. However,
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because the traditional target-detection algorithm detects the target object through hand-
crafted features, it leads to the problem of the low accuracy of target detection and poor
generalization of the model [7,8].

On the other hand, a target-detection algorithm based on deep learning is a promising
research direction. In 2014, Ross Girshick et al. proposed the R-CNN network model [9]
and introduced deep learning into target detection for the first time, which is a milestone
in the research direction of target detection. Subsequently, Ross Girshick [10] proposed
the Fast R-CNN model, which means that the target-detection algorithm based on deep
learning has developed into an end-to-end network model. Recently, an improved R-
CNN model [11], named OCR-R-CNN, is presented for elevator button recognition, which
consists of a region-based convolutional neural network (R-CNN)-based button detector
and an attention-RNN-based character recognizer. Aiming at recognizing insulators and
detecting faults timely and accurately, an insulator recognition and fault-detection model
was proposed in [12], which is based on the faster region convolutional neural network
(R-CNN) and feature pyramid networks (FPNs). The main difference between R-CNN and
traditional target-detection algorithms is the use of deep neural network to extract image
features, and their common point is that they use AdaBoost and SVM classifiers to classify
them. Target-detection algorithms based on deep learning can be further divided into
region-proposal-based models and region-proposal-free models. Typical representatives of
the model based on region proposal include R-CNN, SPP_Ne [13], Fast R-CNN, Faster R-
CNN [14], etc. Region-proposal-free models, such as SSD [15] and YOLO [16], are different
from R-CNN series algorithms, which directly carry out intensive sampling at different
positions within the target picture, and then use a convolutional neural network to directly
extract features for classification and regression in one step. In practical application, the
above two models have their own advantages and disadvantages in the detection task.
Region-proposal-free models represented by SSD and Yolo series have a faster detection
speed, but their accuracy is not as good as that represented by the Fast R-CNN series.
In addition, in the process of target feature extraction, the continuous down-sampling
operation of the region-proposal-free model will cause the loss of detailed features, resulting
in incomplete effective information during detection, making it unable to achieve the effect
of deep learning and mainstream detection, and difficult to meet the needs of detection
and recognition. Moreover, the R-CNN-based methods cannot make full use of the context
information of local objects in the whole picture after transforming the detection problem
into the classification problem of local areas of the picture.

In view of the above problems, this paper proposes an improved YOLO network to
detect unsafe behaviors such as not wearing safety helmets and smoking in industrial
places. The main contributions of our work include the following aspects:

• A novel adaptive self-attention embedding (ASAE) model. By reducing the number of
feature channels, the AAE model can improve the backbone network and reduce the
loss of context information in the high-level feature map.

• A new weighted feature pyramid network (WFPN) model. The proposed WFPN
model is used to replace the original enhanced feature-extraction network PANet to
alleviate the loss of feature information caused by too many network layers.

• More accurate boundary box detection. In the process of boundary box detection,
through the optimization of loss function, the regression accuracy of the boundary
box is improved, and the cases of missed detection and false detection are reduced.

2. Methodology

As shown in Figure 1, we propose an unsafe behavior recognition network based
on YOLO framework, called YOLO-AW. The input images are 300 × 300 in size, which
contain the marked smoking or helmet-wearing behavior information. The backbone
network of the proposed network adopts CSPDarknet53 [17] +ASAM, in which the three
residual network blocks in CSPDarknet53 are shown as CSP1_1, CSP1_2 and csp1_3 in
Figure 1. Because the multiple convolution operations in the residual module may lead to
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the disappearance of target details and edge information, and then affect the target location,
we add an adaptive ASAE model to the second residual module, which reduces the loss
of context information in the high-level feature map caused by the reduction of feature
channels and improves the sensitivity of the network to unsafe behavior detection. Second,
a new feature-fusion module WFPN is added to the network neck to obtain more efficient
semantic feature information about the upper and lower layers, to improve the accuracy of
the target-detection algorithm. Third, using Alpha-IoU [18] to replace the original GIoU
index, the high or low-IOU target loss and target gradient are adaptively reweighted to
improve the regression accuracy of the bounding box. In addition, DIoU-NMS is used to
replace the traditional NMS. By considering the overlapping area and the center distance
of the two frames, the error suppression often caused by occlusion is reduced. No matter
of whether it is a clean or noisy environment, no additional parameters are introduced,
and the training time is not increased. Finally, the proposed network obtains the detection
output of three different scales.
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Figure 1. Architecture of the proposed YOLO-AW network.

2.1. Adaptive Self-Attention Embedding Module

To better integrate more high-quality upper and lower semantic feature information in
each feature map, it is necessary to further improve the ability of network feature extraction.
Inspired by ResNet [19] and self-attention [20], this paper constructs an adaptive ASAE
module. The operation of the ASAE module can be divided into two steps. First, multiple
context features of different scales are obtained through an adaptive average pool layer,
and the targets in the dataset are adaptively converted to the specified output size. Then,
one spatial weight map is generated for each feature map through the spatial attention
mechanism. Through this weight graph, the context features are fused to generate a new
feature graph containing multi-scale context information. To prevent the loss of features
in the process of propagation, we combine the new feature map with the adaptive feature
map and the original high-level feature map, and finally obtain a new feature map through
feature fusion.

The specific structure of the ASAE module is shown in Figure 2. First, the input data
passes through the input layer C3 and the adaptive pool layer to obtain three context
features with different scales (β1 × H ×W, β2 × H ×W, β3 × H ×W), which are tagged as
C31, C32 and C33, respectively. Then, each context feature is a 1 × 1 convolution to obtain
the same channel dimension 256. Finally, the convolution results are sampled up to H × W
scale by bilinear interpolation for subsequent feature fusion.

Given the input feature map C3, its length, width and number of channels are H, W
and C, respectively. After adaptive pooling and up-sampling operations, three new feature
maps, C31, C32 and C33, are obtained, respectively.

C31 = ups1(Avg1(C3)) (1)

C32 = ups2(Avg2(C3)) (2)
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C33 = ups3(Avg3(C3)) (3)

Then, the context features C31 and C32 are fused through the Concat layer, and the
obtained feature map passes through 3 × 3 convolution layer, ReLU activation layer, 1 × 1
convolution layer and Sigmoid activation layer in turn to generate corresponding spatial
weights for each feature mapping as:

wi = ρ(conv1(γ(conv3(cat(C31, C32))))) (4)

where cat(.) is the channel fusion function, conv3(.) is the 3 × 3 convolution operation, γ(.)
is the RELU activation function, conv1(.) is the 1 × 1 convolution operation, and ρ(.) is the
Sigmoid activation function.
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Figure 2. Architecture of the proposed ASAE module.

Next, C35 is obtained by multiplying the generated weight map and the feature map
after merging channels, and then C35 is separated according to channels and combined
with the context feature C33 and the input feature map C3 in turn. This operation makes the
final feature map have rich multi-scale context information, and alleviates the information
loss caused by the reduction of the number of channels to a certain extent. The calculation
process is as follows:

C35 = C35
⊗

wi (5)

M3 = C33 + C35[: C] + C35[C : 2C] + C3 (6)

where C35[: C] and C35[C : 2C] are the feature maps obtained by separating the obtained
feature map C35.

2.2. Weighted Feature Pyramid Network Module

In practical application scenarios, due to different collection angles and objects of
concern, the violations to be detected are also different, resulting in the different importance
of different scale feature maps. Therefore, this paper improves PANet [21] to obtain
a weighted feature-fusion structure WFPN. The improved structure can better extract
significant features to improve the accuracy of a target-detection algorithm.

As shown in Figure 3, the neck of the original YOLOv5 network uses PANet for
multi-scale fusion and outputs feature images. Based on FPN, PANet adds a bottom-up
enhancement structure, and changes the original one-way fusion to two-way fusion, which
consists of two parts: a top-down integration path and bottom-up integration path. As
shown in Figure 4, the bottom-up fusion method uses the nearest-neighbor method to
up-sample the feature map M twice, and adds the feature map M to the feature map N
of the previous layer after 1 × 1 convolution. The PANet network combines the strong
semantic information of the high-level feature map with the positioning information of the
low-level feature map, and uses the accurate low-level positioning signal to enhance the
whole feature level, to shorten the information path between the low-level and top-level
features. However, in the fusion process, PANet directly adds the features of different
levels without considering their unequal contribution to the final output.
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Figure 4. The bottom-up fusion method.

To make the network more efficient and enable the network to learn the weights of
different input features, the WFPN module proposed in this paper adopts the idea of two-
way fusion, constructs top-down and bottom-up two-way channels to obtain multi-scale
information, and unifies the feature resolution scale through up-sampling and down-
sampling when fusing between different scales, so as to achieve more effective feature
fusion. At the same time, the nodes with only one input edge and output edge in the
PANet network are removed, and when the input and output nodes are at the same level,
an additional edge is added using the residual method, and the weighted fusion method
is used to fuse the feature layers of different resolutions, which can fuse more features
without increasing the computational overhead. Through the multi-scale feature fusion of
cross level connection and same-level jump connection, the module makes full use of the
characteristics of violations in industrial sites of different scales to improve the accuracy of
information processing.

As shown in Figure 5, first, the features of C3 to C5 layers of the backbone network
are transferred to WFPN as the selected multi-scale feature layer, and a convolution layer
is used to extract significant features and reduce the feature dimension. Second, the top-
down feature fusion is carried out by up-sampling, and the high-level features are fused
with the low-level feature information through up-sampling. Thirdly, the fused features
are analyzed by a 3 × 3 convolution operation to eliminate the aliasing effect. Finally,
the top-down feature fusion is completed through maximum pooling, and the obtained
features are fused with high-level features to obtain three output features, P3, P4 and P5,
with different scales.
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Figure 5. Architecture of the proposed WFPN module.
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2.3. Boundary Box Detection

The classification results of the YOLO-AW network proposed in this paper include
three aspects: the prediction category, confidence, and location of each prediction box.
Therefore, when constructing the loss function, it is necessary to evaluate the above com-
ponents, calculate the category error, confidence error and position error of the prediction
results, respectively, and obtain the overall loss function by weighting. The loss function of
the prediction box is defined as:

loss = losslocation + losscon f + lossclass (7)

where losslocation is the loss of location, losscon f is the loss of confidence, and lossclass is the
loss of category. In YOLOv5, the loss location is calculated by GIoU loss function, but the
aspect ratio of the bounding box is not considered in the regression process. When the two
boxes intersect, the convergence is slow in the horizontal and vertical directions.

To solve the above problems, this paper uses α-IoU to replace the original GIoU and
uses parameter α to adaptively readjust the loss and gradient of IoU target, so that the
detector has greater flexibility in realizing different levels of bounding box regression
accuracy. α-IoU is defined as follows:

ια−IoU =
1 − IoUα

α
, α > 0 (8)

In addition, in traditional NMS, the IoU index is often used to suppress redundant
prediction-bounding box detection. Because occlusion often produces error suppression,
overlapping areas need to be considered. Therefore, the YOLO-AW network proposed in
this paper takes DIoU as the criterion of NMS, and considers the overlapping area and the
center distance of the two frames at the same time. The set of prediction boxes is obtained
through the network model, then the scores of all boxes are sorted, the box with the highest
score is selected, the box with the highest score and the remaining boxes in the set are
subjected to non-maximum suppression operation based on DIoU, and the box with the
highest score is continuously selected, and finally the detection result is obtained.

3. Experiments

The development environment of the experiment in this section is Anaconda 1.7.2
plus Pytorch 1.2.0. The experimental platform is Intel® Xeon® CPU E5-2630 v4 (10 core,
2.4 GHz), equipped with two NIVIDA® GeForce® RTX 2080 Ti graphics cards (11 GB video
memory) and Centos® 7.9.2009 operating system. In the experiment, the initial learning
rate is set to 1 × 10 −3, the Adam optimizer is used, the epoch is set to 200, and the batch
size is set to 4.

3.1. Datasets and Evaluation Criteria

Since no public datasets are available, we established a dataset containing smoking
and helmet-wearing behavior for algorithm testing. Most of these image data come from the
video surveillance of the industrial scene, and the other part comes from video and movies.
Among them, the image data from the industrial site is collected by the surveillance camera
and normalized to the size of 300 × 300. The production of the dataset included four steps:
data collection and sorting, data preprocessing, data filtering, and dataset annotation. In
this work, 1000 pieces of data were created manually and expanded to 4000 through data
enhancement. The dataset is divided into a training set and test set in the ratio of 9:1, and
samples of different resolutions and sizes are averaged to ensure that images of different
sizes can be fully trained and tested. In the segmentation of training samples and test
samples, we use the cross-validation method to ensure the fairness and effectiveness of the
test. The experimental dataset has been submitted as an attachment to the manuscript.
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In addition, this paper uses the commonly used evaluation criteria AP (average
accuracy), mAP (mean of average accuracy) and Recall to quantitatively evaluate the effect
of the target-detection network, which is defined as follows:

precison =
TP

TP + FP
(9)

recall =
TP

TP + FN
(10)

AP =
∫ 1

0
precison(recall) (11)

mAP =
∑N

i=1 APi

N
(12)

where TP is the positive sample with correct classification, FP is the positive sample with
wrong classification, N is the number of types of target objects, and APi is the AP value of
the class i.

3.2. Comparative Experiments

In this section, the proposed YOLO-AW method is compared with other mainstream
target-detection methods, and the experimental results are quantitatively analyzed using
AP, mAP and Recall criteria, as shown in Table 1. To test whether the performance improve-
ment is significant, we also conducted a paired t-test and provided the statistical results in
Table 2.

Table 1. Comparison of recognition results of different methods (IoU = 0.5).

Method AP (Safety Helmet) AP (Smoking) mAP Recall

Faster-R-CNN 0.697 0.667 0.682 0.583
YOLOv4 0.75 0.686 0.718 0.697
YOLOv5 0.751 0.719 0.735 0.638

YOLO-AW 0.782 0.752 0.767 0.689

Table 2. Paired t-test results of different methods.

Method Mean Standard Deviation Standard Error of Difference

Faster-R-CNN 0.6573 0.0510 0.0255
YOLOv4 0.7128 0.0282 0.0141
YOLOv5 0.7108 0.0502 0.0251

YOLO-AW 0.7475 0.0409 0.0204

It can be seen from Tables 1 and 2 that the AP of the method proposed in this paper
increased by 3.3% in smoking detection, 3.1% in helmet-wearing detection, 3.2% in map
and 5.1% in recall. This is mainly because the proposed network uses a new ASAE model
to reduce the loss of context information in the high-level feature map, and replaces the
original enhanced feature-extraction network PANet by a new WFPN network to alleviate
the loss of feature information caused by too many network layers.

Furthermore, to verify the improvement effect of the loss function in this paper, we
conducted comparative experiments on different types of IoU loss functions, and the results
are shown in Figure 6 and Table 3. It can be seen that compared with the traditional IoU
algorithm, the α-DIoU (α = 2) loss function introduced in this paper is superior to the
existing IoU loss functions, which improves the late training (e.g., after 150 epochs) by
increasing the gradient of high-IoU objects, but has little negative impact on the early
training (e.g., after the first 100 epochs). This feature helps to reduce the gradient of low-
IoU objects in the early training stage, i.e., it stabilizes the model training when the early
gradient is large, and provides stronger robustness for small datasets and noise boxes.
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Table 3. Comparison of AP results corresponding to different IoU (α = 2).

Cases GIoU α-DIoU α-CIoU α-GIoU

Safety Helmet 0.751 0.777 0.738 0.771
Smoking 0.719 0.707 0.69 0.679

All 0.735 0.742 0.714 0.725

Figure 6. The mAP results of different α-IoU across 200 training stages.

In addition, aiming at the small target and serious occlusion in the process of smoking
behavior detection, we designed a group of experiments to compare and test the DIoU-
NMS algorithm in the network, as shown in Table 4. Compared with the traditional NMS
algorithm, the DIoU-NMS algorithm presented in this paper does not involve unknown
parameters to be updated. Therefore, the model after the improved NMS algorithm can be
tested directly without training. It can be seen from Table 4 that the improved DIoU-NMS
algorithm improves the mAP by 1.1%, and the detection accuracy of unsafe behaviors in
industrial site is better than the traditional YOLOv5 algorithm.

Table 4. Comparison of AP results of two different NMS algorithms.

Cases NMS DIoU-NMS

Safety Helmet 0.751 0.751
Smoking 0.719 0.74

All 0.735 0.746

3.3. Ablation Experiments

The ablation experiment designed in this section is used to compare and analyze
the contributions of the YOLO-AW proposed network in this paper in terms of the four
improvement points. The results are shown in Table 5.

Table 5. Contribution comparison of each module.

ASAE WFPN α-DIoU DIoU_NMS mAP

X 0.752
X 0.75

X 0.742
X 0.746

X X 0.758
X X X 0.763
X X X X 0.767
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It can be seen from Table 5 that the average accuracy of the new network after adding
the ASAE model is improved by 1.7%, while the weighted feature-fusion module WFPN
can also improve the average accuracy of the network by 1.5%. On the other hand, the
introduction of α-IoU loss increases the average precision of the new model by 0.7%, and
the addition of DIoU_NMS further improved the detection accuracy by 1.1%. Moreover,
Table 5 also demonstrates that the average accuracy of the final model can reach 76.7%,
which is 3.2% higher than that of the original YOLOv5.

4. Conclusions

Based on the YOLOv5 network, this paper proposes a YOLO-AW recognition network
for detecting smoking and helmet-wearing behavior. The proposed network fuses the
feature map output from the backbone network through a new ASAE module, and uses a
new feature-fusion structure WFPN, Alpha-IoU and DIoU-NMS to improve the detection
effect of unsafe behavior. Finally, the experimental results on the self-developed behavior
dataset show that the improved algorithm has higher detection accuracy than the traditional
algorithm. When IoU is 0.5, the Recall rate of this method is 68.9%, mAP is 76.7%, AP for
smoking detection is 75.2%, and AP for helmet-wearing detection is 78.2%. Compared
with other mainstream recognition networks, the proposed network can detect the unsafe
behavior of industrial field operators more effectively, and has strong application value.
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