
����������
�������

Citation: Monir, M.S.; Sayed, W.S.;

Madian, A.H.; Radwan, A.G.; Said,

L.A. A Unified FPGA Realization for

Fractional-Order Integrator and

Differentiator. Electronics 2022, 11,

2052. https://doi.org/10.3390/

electronics11132052

Academic Editor: Akash Kumar

Received: 25 May 2022

Accepted: 25 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Unified FPGA Realization for Fractional-Order Integrator
and Differentiator
Mohamed S. Monir 1 , Wafaa S. Sayed 2 , Ahmed H. Madian 1,3 , Ahmed G. Radwan 2,4

and Lobna A. Said 1,*

1 Nanoelectronics Integrated Systems Center, Nile University, Giza 12588, Egypt;
m.samir2130@nu.edu.eg (M.S.M.); amadian@nu.edu.eg (A.H.M.)

2 Engineering Mathematics and Physics Department, Faculty of Engineering, Cairo University,
Giza 12613, Egypt; wafaa.s.sayed@eng.cu.edu.eg (W.S.S.); agradwan@ieee.org (A.G.R.)

3 Radiation Engineering Department, Egyptian Atomic Energy Authority NCRRT, Cairo 29sos, Egypt
4 School of Engineering and Applied Sciences, Nile University, Giza 12588, Egypt
* Correspondence: l.a.said@ieee.org

Abstract: This paper proposes a generic FPGA realization of an IP core for fractional-order integration
and differentiation based on the Grünwald–Letnikov approximation. All fractional-order dependent
terms are approximated to simpler relations using curve fitting to enable an efficient hardware
realization. Compared to previous works, the proposed design introduces enhancements in the
fractional-order range covering both integration and differentiation. An error analysis between
software and hardware results is presented for sine, triangle and sawtooth signals. The proposed
generic design is realized on XC7A100T FPGA achieving frequency of 9.328 MHz and validated
experimentally for a sine input signal on the oscilloscope. The proposed unified generic design is
suitable for biomedical signal processing applications. In addition, it can be employed as a laboratory
tool for fractional calculus education.

Keywords: FPGA; fractional-calculus; Grünwald–Letnikov; hardware implementation; fractional-
order circuits

1. Introduction

Fractional calculus describes the noninteger-order differentiator and integrator, where
the order can be real, complex, or rational [1]. Fractional calculus has become more popular
and is widely used because of its flexibility, tunability, memory dependency and, hence,
ability to model systems [2,3]. Engineering applications of fractional calculus include:
bioengineering [4], control [5], filters [6], oscillators [7], energy [8], encryption [9], and
chaos [10]. The most common fractional operators are the Grünwald–Letnikov (GL), Ca-
puto, and Riemann–Liouville (RL) [11]. The GL definition, which is an extension of the
Euler method, is the primary focus of this work.

The GL definition is given by [3]:

GL
a Dq

t x(t) = lim
h→0

1
hq

b(t−a)/hc

∑
j=0

w(q)
j x(t− jh), (1a)

w(q)
0 = 1, w(q)

j =

(
1− q + 1

j

)
w(q)

j−1, j = 1, 2, 3, . . . (1b)

where w(q)
j are the binomial coefficients, h is the step size, and q is the fractional order.

The binomial coefficients act as damping factors that result in the stability and accuracy of
the GL method [12]. The summation in the definition lends itself to adaptation for use in a
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computer numerical solver [13] and digital hardware realization. The concept of the short
memory principle was proposed as follows [3]:

GL
a Dq

t f (t) ≈ GL
t−L Dq

t f (t), t > a + L (2a)

GL
t−L Dq

t x(t) =
1
hq

L

∑
j=0

w(q)
j x(t− jh), (2b)

where L is the window size, which limits the memory dependency to a finite window,
including a fewer number of the previous iterations [3,14], resulting in another form for the
GL operator (2b), which can be implemented on hardware based on the window size L.

The error calculation depends on the difference between the general form of GL (1a) and
the approximated equation with window L. The upper bound of the error, which is a result
of the approximation (2b), is given as follows [15]:

∆(t) =
∣∣∣GL

a Dq
t x(t)− GL

t−L Dq
t x(t)

∣∣∣ ≤ ML−q

|Γ(1− q)| , (3)

where a + L < t < b with window L, |x(t)| < M, when a < t < b for the infinite
definition in (1a), where a is the start point and b is the end point of the interval under
investigation, and t lies in it. Different applications require several values of fractional
orders to perform integration and differentiation. This needs more flexibility in changing the
order in hardware, without redesigning the whole architecture of calculating the response
of a fractional-order system.

FPGAs have an important role in digital communications and complicated systems
because of their characteristics such as flexibility due to the predesigned configurable logic
blocks (CLB) and a high speed, up to hundreds of megahertz (MHz) [16]. Unlike application
specific integrated circuits (ASIC), the design-implement-test-debug cycle may take only
hours on an FPGA while on ASIC it can take months. Therefore, the modification in the
design is easier [17]. Furthermore, FPGAs have intrinsic advantages such as a large capacity,
real-time computation, cheap cost and low power consumption. Therefore, FPGAs can be
used in high-speed industrial applications that meet the intended criteria and match the
parallel structure.

The implementation of the GL definition on FPGA has been attempted many times
in the literature. The advantages of the GL over the Caputo definitions in digital real-
ization include a smaller area, better performance, and avoiding the complexity of im-
plementing sinc or Gaussian functions, unlike Caputo’s implementation [18]. Additional
advantages for the GL over the Caputo and RL definitions in digital applications are the
GL’s discretized form and the short memory principle [18]. These digital realizations still
lacked generality of the hardware design and had limited ranges for the fractional order
q. Most of these works relied on software to calculate hq and binomial coefficients w(q)

j
and stored them in lookup tables (LUT). Furthermore, some practical applications need
only differential operations, such as chaotic systems [19]. Other applications use integral
operations [20] such as the damped oscillator system and other control systems. Some
applications use both diff/int operations, such as fractional-order proportional integral
derivative (FOPID) controllers [21], where reliable architectures and generic designs are
needed. In [22], the fractional-order operator was implemented on hardware and employed
in different applications such as the generation of chaotic systems. A comparison between
different approaches for integrator and differentiator operators of the GL definition was
proposed in [23]. The LabVIEW software tools were used to produce the RTL code imple-
menting the fractional-order integrator and differentiator using GL as proposed in [24].
In [25,26], a generic GL definition with a fixed-window approach employed in a chaotic sys-
tem was proposed. In [27], a generic hardware realization for the GL-based differentiator
was proposed. This paper proposes a generic hardware design of a GL-based differentiator
and integrator, which involves an improvement in the range of order q and a decrease in
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the reliance on software for the calculation of different parameters of GL. The proposed
design is independent of changes in the value of q within the covered range and does not
require fixed-step increments of q. The proposed design demonstrates its approximation
efficiency through an error analysis between software and hardware results achieving a
maximum error of 0.05 at q = 0.9. The proposed design achieves good hardware utilization
with a frequency of 9.328 MHz.

The rest of this paper is organized as follows: Section 2 compares different works
which implemented the GL operator on FPGA. Section 3 shows the hardware architecture
of the proposed generic fractional-order differentiator and integrator design. Section 4
provides the FPGA results and experimental validation. Finally, the concluding remarks
are summarized in Section 5.

2. Literature Review of GL-Based Fractional Operators Implementations

The fractional-order operators were implemented on FPGA by several works with dif-
ferent approaches including: fixed-window [22], fixed-linear approach, piecewise quadratic
(PWQ) and piecewise linear (PWL) [23]. The fixed-window approach was designed to
calculate a fixed number of binomial coefficients and obtain the output of the GL defi-
nition only for a differentiator, based on the length of this window as in [22]. Different
chaotic systems were implemented based on the proposed GL hardware design in [22].
Another hardware design for Caputo and GL definitions realizing different derivative
orders was proposed in [18]. Moreover, a new implementation of the GL operator based
on the linear approximation technique was proposed in [28]. Additionally, FPGA imple-
mentations of a fractional-order differentiator and integrator based on a GL operator were
introduced in [23]. Two approaches were developed based on quadratic and piecewise
linear approximations. The transfer functions of different fractional-order applications
were implemented. The applications included a Heaviside’s inductor-terminated lossy line
system, damped oscillator and fractional-order controller.

In [29], fixed-window and linear approximation approaches were introduced to im-
plement differential and integral operators to reduce the memory dependency of the
fractional-order operators. The two approaches were used as building blocks to implement
a fractional-order proportional integral derivative (FOPID) controller on an FPGA. The
GL-based FPGA implementation of different families of fractional-order chaotic oscillators
was introduced in [30]. The proposed architecture used a stored value of coefficients in a
read-only memory to be employed later in the calculations.

In [25], a generic GL hardware implementation was proposed with a modified fixed-
window approach and employed to implement a chaotic system. The design calculated the
binomial coefficients and the hq on the hardware platform, for the range q ∈ [0 : 1.5]. The
range of order q was quite wide. However, it was limited for differentiator operations,
and hq was limited to powers of 2. Another generic hardware implementation for the GL
operator with different derivative fractional orders was proposed in [26]. A multiscroll
fractional-order NEW-SPROTT-41 system was implemented using the proposed GL archi-
tecture. In [27], a generic design for the GL based differentiator was proposed, realizing
a reconfigurable fractional-order chaotic system. The design achieved the generality of
differentiator order in the range of q ∈ [0.7 : 1]. However, it had a limited range of order q,
and the integration operation was not mentioned.

In [31], a hardware implementation of fractional primary operators, integrator, and
differentiator, on an FPGA integrated with a digital oscilloscope on the same board was
proposed. The design included a module for a digital storage oscilloscope, a module for
fractional operation and a PCIe module used to establish communication lines between
parts of the entire system. The goal of that integration was to decrease the operating
time while improving the measurement range and accuracy. Table 1 summarizes different
previous contributions and implementations of the fractional-order GL operator on a
hardware platform. Some works used software to calculate hq and w(q)

j , changing the
whole design every time q changed. Therefore, hardware is not applicable for variable
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orders. Other works improved the calculations of hq and w(q)
j on the hardware platform for

specific ranges of q.

Table 1. Summary of different works on fractional-order integrator and differentiator

Ref

Diff./Integ.

Application

Generality

Approaches q Range Window Size
Diff. Int.

hq w(q)
j

MATLAB Hardware MATLAB Hardware

[22] X — chaotic
systems X — X — fixed window 0 ≤ q 20,40,30

[23] X X
fractional

order systems X — X —

fixed-linear,
fixed-

quadratic and
pwl

−0.5 < q ≤ 0.5 64,512,20

[30] X — oscillators X — X — fixed window 0.5 < q ≤ 1 256

[29] X X
FOPID

controller X — X — fixed
window-linear — 32,512,1024

[18] X X — X — X — fixed
window-linear — 32

[25] X — chaotic
systems — X — X

fixed
window-linear 0 < q ≤ 1.5 32

[26] — — chaotic
systems — X — X fixed window 0.5 < q ≤ 1 28,56

[27] — — chaotic
systems — X — X fixed window 0.7 < q ≤ 1 16,32

[31] X X — — — — — — — —

3. Proposed Generic Hardware Realization of Fractional-Order GL-Based Integrator
and Differentiator

This section introduces the proposed generic implementation of integrator and differ-
entiator of the GL operator. The proposed design generalizes the fixed-window approach
introduced in [22], to include both differentiator and integrator operations.

Figure 1 shows the binomial coefficients, described by (1b), with different orders q pro-
viding both differentiator and integrator for 0.4, 0.9, −0.4, and −0.9. For the differentiator
case, w(q)

j tends to zero after a small range of iterations. Therefore, the fixed-window ap-
proach is applicable for systems that need differentiator applications. On the other hand, for
the integrator case, the fixed window has a more significant error leading to an increase
in the number of iterations (window size), which is a trade-off with hardware resources.
Figure 2 shows the proposed hardware architecture, described in detail as follows:
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Figure 1. Binomial coefficients against fixed-window iterations at (a) q = 0.4, (b) q = 0.9, (c) q = −0.4,
and (d) q = −0.9.

Figure 2. The hardware architecture of the proposed approach for the integrator and differentiator
GL operator.

3.1. Binomial Coefficients Generation

Based on (1b), the generation of binomial coefficients depends on the value of order
q. Order q is received as an input represented with a fixed-point representation as 4 bits for
the integer part and 12 bits for the fractional part. Afterwards, the q value is stored into a
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register to be used when calculating the binomial coefficient for the first iteration based
on (1b), storing every coefficient in a LUT. Finally, that operation is repeated for the target
window size, where the coefficients can be generated for a target window size L up to 1024.

3.2. hq Generation

The proposed design was based on a curve fitting approximation with MATLAB, to ap-
proximate the curve of hq against order q, in the range ∈ [−1 : 1], as shown in Figure 3a. For
the negative values of q, the magnitude of hq reached high values. Moreover, if q increased,
hq got smaller with a nonuniform rate of change. On the other hand, positive values of q
had a regular rate of change, making the fitting process more manageable. The summed
square of residual (SSE), given by (4), calculated the overall deviation of the fitting val-
ues [32,33]. The SSE was used to determine the order of the polynomial fitting for each
range of the hq curve. The negative range had the highest division ratio because of the
irregular change in the values of hq.

SSE =
nt

∑
i=1

(
yexp(i)− ymod(i)

)2, (4)

where yexp is the observed data value, ymod is the model predicted value, and nt is the
number of data points.

The proposed approach depended on dividing the range of hq into subranges as in
Figure 3a. The curve of hq was divided into subcurves, each curve describing a specific
range of q values as illustrated using the vertical lines in Figure 3a, which was fitted with
polynomial least squares [34]. According to [27], a rational curve fitting has the highest
accuracy. However, it consumes the highest resources; and vice versa for a linear curve
fitting. On the other hand, a quadratic fitting is the best approximation for both resources
and accuracy. Inspired from [23], the curve of hq was divided into 8 intervals of different
ranges of q. Then, the polynomial curve fitting was employed for each subrange.

Applying the fitting process on hardware imposes a limited accuracy compared to
the software results. Therefore, this approach was appropriate to generate hq for a wide
range of values with an accuracy of more than 96% as shown in Figure 3b. Applying the
previous approach to hardware involved checking the input q to determine the appropriate
fitting equation. Based on the range of q, the coefficients of the polynomial equation of
each range were determined to calculate the value of hq. After the calculations of hq and
binomial coefficients w(q)

j , the calculation of (1a) was quite easier and more optimized.
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Figure 3. hq generation plots against different values of q within range [−1 : 1]. (a) Values of hq and
(b) relative Error.

3.3. Fixed-Window Hardware Implementation:

Finally, using hq and the binomial coefficients w(q)
j values we applied the summation

of (1a) for the same window size used in generating the coefficients. The input signal or
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system was received as digital values represented in a fixed-point representation as 32 bits
with a precision of 24 bits for the fraction part and 8 bits for the integer part. This signal
was stored in a LUT. The output was represented in 32 bits to get a higher precision.

Based on the values of the rate of change for the hq curve, in each value of order q, the
ranges of q were implemented as in Figure 3a, which shows the values of hq generated by
the hardware platform in the range of q ∈ [−1 : 1] at h = 0.01. The quadratic approximation
equation is described in (5) and its hardware implementation is in Figure 2, where the
ranges of order q have different values of coefficients c00, c01, and c02. Each range of q
has a specific interval in the curve of hq calculated using the second-order polynomial
approximation.

hq = c00q2 + c01q + c02. (5)

The relative error was calculated between the MATLAB values and the results gen-
erated in the approximated hardware approach for different values of q, as presented in
Figure 3b.

4. Results and Discussion

The testing process was done with different values of q and at different window sizes,
for three different input signals. The differentiator operations were tested with orders q =
0.3, q = 0.6, and q = 0.9 and the integration was tested for orders q = −0.3, q = −0.6, and
q = −0.9 with window sizes of L = 32, L = 512, and L = 1024. Table 2 shows the error of
the proposed generic fixed-window approach with a sine signal as an input. The error when
order q is negative is larger than the error when order q is positive. Tables 3 and 4 show
the error of the GL fractional-order differentiator and integrator of the proposed design for
a sawtooth signal and a triangle signal, respectively, with different orders of q and window
sizes L. Table 5 summarizes the values of the maximum errors for the proposed design
and [29] with different L and q with a sine signal as an input.

Table 2. The error of the proposed design results (differentiator and integrator) for a sine signal input
with respect to MATLAB results.

L = 32 L = 512 L = 1024

D
er

iv
at

iv
e

0 10 20

-0.4

-0.2

0

0.2

0.4

0.6 q=0.3 q=0.6 q=0.9

0 10 20

-0.04

-0.02

0

0.02

0.04

0.06 q=0.3 q=0.6 q=0.9

0 10 20

-0.04

-0.02

0

0.02

0.04

0.06 q=0.3 q=0.6 q=0.9

In
te

gr
al

0 10 20
-0.5

0

0.5

1

1.5

q=-0.3 q=-0.6 q=-0.9

0 10 20

0

0.5

1

1.5 q=-0.3
q=-0.6
q=-0.9

0 10 20

0

0.5

1

1.5 q=-0.3
q=-0.6
q=-0.9
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Table 3. The error of the proposed design results (differentiator and integrator) for a sawtooth signal
input with respect to MATLAB results.

L = 32 L = 512 L = 1024

D
er

iv
at

iv
e

0 10 20
-0.5

0

0.5

1

1.6
q=0.3 q=0.6 q=0.9

0 10 20
0

0.5

1

1.8
q=0.3 q=0.6 q=0.9

0 10 20

0

0.1

0.2

0.3

0 10 20
0

0.5

1

1.8157
q=0.3 q=0.6 q=0.9

0 10 20

0

0.1

0.2

0.3

In
te

gr
al

0 10 20
-1.4

-0.5

0

0.62
q=-0.3 q=-0.6 q=-0.9

0 10 20
-1.2

-0.5

0.3
q=-0.3 q=-0.6 q=-0.9

0 10 20
-1.2

-0.5

0.254
q=-0.3 q=-0.6 q=-0.9

Table 4. The error of the proposed design results (differentiator and integrator) for a triangle signal
input with respect to MATLAB results.

L = 32 L = 512 L = 1024

D
er

iv
at

iv
e

0 2 4 6
-0.7

0

0.8
q=0.3 q=0.6 q=0.9

0 2 4 6
-0.75

0

0.8
q=0.3 q=0.6 q=0.9

0 2 4 6
-0.75

0

0.8
q=0.3 q=0.6 q=0.9

In
te

gr
al

0 2 4 6
-0.061

0

0.063
q=-0.3 q=-0.6 q=-0.9

0 2 4 6
-0.086

0

0.086
q=-0.3 q=-0.6 q=-0.9

0 2 4 6
-0.05

0

0.05
q=-0.3 q=-0.6 q=-0.9
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Table 5. Comparison between the maximum errors of the proposed implementation and [29] for
sine signal.

L = 32 L = 1024

q = 0.9 q = −0.9 q = 0.9 q = −0.9

The proposed Design 0.22 1.7 0.05 1.4

[29] 0.22 1.8 0.01 1.5

The GL-defined differentiator and integrator of the proposed design hardware ar-
chitecture were implemented on a Nexys-4 XC7A100T FPGA of Artix-7. Xilinx ISE 14.7
was utilized for the simulation. MATLAB software simulation was used to validate the
GL design. Then, it was compared with the FPGA output. A LUT was used to store the
input signal of the FPGA for the test. Table 6 presents the FPGA hardware resources of the
proposed approach for a window size L = 20. The proposed implementation achieves a
slice utilization percentage of 36%, slice registers percentage of 1%, a number of DSPs of 64
with the utilization of 26%, and a frequency of 9.328 MHz. To convert the FPGA output
to analog streaming to be showed on an oscilloscope device, a Pmod DA2 module was
used and driven with two bits generated by the FPGA. Figure 4 shows the experimental
setup and FPGA results for the generic GL design on the oscilloscope. The setup shows the
output signal at a window size of 20 and the input sine signal after applying a GL integrator
with order q = −0.9. The accuracy improves with the increase of L. However, the hardware
resources increase at large values of L.

Table 6. FPGA hardware resources summary on XC7A100T.

Logic
Utilization

No. of
Slice
LUTs

No. of
Slice

Registers

Maximum
Frequency

(MHz)

DSP
Multipliers

Proposed
Design
(L = 20)

22,968
(36%)

1072
(1%)

9.328 64
(26%)

(a) (b)

Figure 4. Oscilloscope FPGA results of integration process at q = −0.9 and L = 20 for a sine signal as
input; (a) FPGA testing environment, (b) proposed approach response.

The design can be tested for any L up to 1024 and is applicable for any q in the proposed
range. Therefore, the proposed approach can be implemented to perform integration with
the accuracy presented. The proposed design provides the generality of the hardware
architecture and achieves flexibility with a wide range of q ∈ [−1 : 1] for both integrator
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and differentiator. The proposed implementation can be used in many applications such as
encryption and biomedical signal processing applications.

5. Conclusions

A generic IP core for fractional-order int/diff of the GL operator was designed with the
Verilog hardware description language. The proposed approach decreased the dependency
on software and made the proposed architecture more tunable. It provided more generality
in the implementation compared with previous works. Moreover, the proposed implemen-
tation proved its curve fitting approximation efficiency through an error analysis between
software and hardware results. An Artix-7 FPGA board was used to test the proposed
IP design at L = 20, and the experimental results were shown on an oscilloscope. The
proposed generic hardware implementation achieved a slice utilization percentage of 36%,
a slice registers percentage of 1%, a DSPs percentage of 26%, and a frequency of 9.328
MHz. The proposed generic implementation can be employed in many applications such as
dynamic encryption applications, dynamic switching and synchronization, variable-order
chaotic systems, and fractional-order controller systems.
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