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Abstract: The paper presents a neuro-evolutionary algorithm called Hill Climb Assembler Encoding
(HCAE) which is a light variant of Hill Climb Modular Assembler Encoding (HCMAE). While
HCMAE, as the name implies, is dedicated to modular neural networks, the target application of
HCAE is to evolve small/mid-scale monolithic neural networks which, in spite of the great success of
deep architectures, are still in use, for example, in robotic systems. The paper analyses the influence
of different mechanisms incorporated into HCAE on the effectiveness of evolved neural networks
and compares it with a number of rival algorithms. In order to verify the ability of HCAE to evolve
effective small/mid-scale neural networks, both feed forward and recurrent, it was tested on fourteen
identification problems including the two-spiral problem, which is a well-known binary classification
benchmark, and on two control problems, i.e., the inverted-pendulum problem, which is a classical
control benchmark, and the trajectory-following problem, which is a real problem in underwater
robotics. Four other neuro-evolutionary algorithms, four particle swarm optimization methods,
differential evolution, and a well-known back-propagation algorithm, were applied as a point of
reference for HCAE. The experiments reported in the paper revealed that the evolutionary approach
applied in the proposed algorithm makes it a more effective tool for solving the test problems than all
the rivals.

Keywords: evolutionary neural networks; hill climb; control; classification

1. Introduction

Deep neural networks (DNN) are computing systems that have now become practi-
cally irreplaceable in many areas. It is currently difficult to imagine image/video processing
without convolutional neural networks (CNN), and the analysis of time series data without
gated recurrent units (GRU) and long short-term memories (LSTM). Thanks to the DNNs,
it has become possible to solve many problems that were previously either unsolvable or
were solvable, however, at an unsatisfactory level.

However, DNNs are not a magic formula for all problems. There are tasks that do
not require large-scale neural architectures and that can be effectively performed by a
class of simpler traditional neural networks, having up to five hundred neurons [1] which,
in the context of this paper, are called small/mid-scale networks. Low/high-level robot
control [2–7], prediction of complex object behaviour [8–10], and robot navigation [11–13]
are examples of tasks that are well-suited for this class of networks.

In order to train ANNs, gradient decent methods are usually applied. Back propa-
gation (BP), with many different variants, is the most popular algorithm that is used for
that purpose. However, the drawback of BP is its susceptibility to get stuck in the local
optima of an objective function that is optimized during ANN training. In effect, to find a
satisfactory neural solution, the algorithm has to be run many times from different starting
points which, for complex objective functions with many local optimums, significantly
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prolongs the training process, and, what is more, it does not give a guarantee of ultimate
success.

An alternative solution to the one outlined above is to apply global optimization meth-
ods instead of local ones such as BP. Neuro-evolution (NE) seems to be the most popular
global optimization approach which, together with BP, is used to train ANNs. However, the
problem of NE is the exponentially increasing search space with respect to the number of
neurons in the ANN. Even searching for small/mid-scale ANNs involves very large search
spaces, including all possible connection weights between the neurons, and the parameters
of each neuron: the bias and the transfer function. In turn, complex optimization domains
usually need to perform a large number of fitness function evaluations which, in the case of
robotic systems, means either huge costs (evaluation on real robots) or a time-consuming
process of training the network (evaluation on a complex robot simulation model).

In order to cope with the above problem, the NE methods try to somehow reduce
search space, for example, through indirect network representations or some restrictions
imposed on possible network architectures. However, all the state-of-the-art NE methods,
not only those meant for small/mid-scale networks, are based on the solution, adapted from
natural systems, of a one-to-one relation between the network and its genome, i.e., all the
information needed to create the network is encoded in a single network representation. As
a consequence, simple networks need simple representations, whereas complex networks
require complex representations. Meanwhile, the goal of the current paper is to prove that,
at least for small/mid-scale networks, an approach that forms neural networks from pieces
that evolve in successive evolutionary runs, each of which is responsible for a single piece
of the network, not for the entire network, is more efficient than the traditional model of
the NE with a one-to-one relation between the network and its genome.

In the paper, an NE method is presented, called Hill Climb Assembler Encoding
(HCAE), which is a light version of Hill Climb Modular Assembler Encoding (HCMAE) [14]
and whose target application, unlike its modular counterpart, is the evolution of small/mid-
scale neural networks. The main assumption of both HCAE and HCMAE is the gradual
growth in the networks and the use of the evolutionary algorithm to generate successive
network increments encoded in the form of simple programs that do not grow over time.
Instead of more and more complex network representations which are difficult to process
effectively, it builds the networks from small pieces that evolve in many consecutive
evolutionary runs. The task of each run is to make an improving step in a neural network
space. The first run performs in the same way as other traditional NE algorithms. The
most effective network from this run is the first step of HCAE. The following runs create
the next steps through expanding the network with new neurons and connections or
modifying connections that already exist. In contrast to other NE algorithms, HCAE does
not process encoded networks but encoded pieces of the networks that are short and simple
in effective processing.

HCAE is an improvement of Assembler Encoding (AE) [15], and Assembler Encoding
with Evolvable Operations (AEEO) [6,10,12,16], i.e., variations of genetic programming (GP)
that represent networks in the form of simple programs similar to assembler programs. The
major difference between HCAE and its predecessors is the applied model of the evolution.
Both AE and AEEO represent the traditional model with the central role of cooperative
co-evolutionary GA (CCEGA) [17,18], whereas HCAE is in fact a hill climber, whose each
step is made by means of CCEGA.

In order to determine how different solutions applied in HCAE affect the results
of the algorithm compared with the original solutions used in AE/AEEO, four different
variants of HCAE were examined during the tests. The first two variants implemented the
new model of the evolution and original mechanisms applied in AE/AEEO, whereas the
next two variants implemented improved HCAE mechanisms and the new model of the
evolution as well.

After the tests with AE/AEEO, the most effective HCAE variant from the previous
experiments was also compared with eight other algorithms. Neuro-Evolution of Aug-
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menting Topologies (NEAT) [19] and Cooperative Synapse Neuro-Evolution (CoSyNE) [20]
were the first HCAE competitors from outside the AE family, and the reason why they were
chosen is that they are regarded as state-of-the-art NE methods with proven effectiveness.
Classical Particle Swarm Optimization (PSO) [21–24], Levy Flight Particle Swarm Optimiza-
tion (LFPSO) [25], modified LFPSO [26] called PSOLF, and Mantegna Levy Flight, Particle
Swarm Optimization, and Neighbourhood Search (LPSONS) [27] were PSO-based methods
applied as the next points of reference for HCAE. The Differential Evolution (DE) [28–30]
and classic BP algorithm were the last HCAE rivals.

The comparison between HCAE, NEAT, CoSyNE, AE, and AEEO was made on chal-
lenging variants of classical identification and control problems, i.e., on the two-spiral
problem (TSP) [31] and inverted-pendulum problem (IPP). In the experiments, the diffi-
culty of both problems was intentionally increased compared with their original variants.
TSP is a binary classification problem, and to solve it, feed-forward ANNs (FFANN) are
sufficient, whereas the IPP is a control problem that needs recurrent ANNs (RANN). The
average complexity of both problems was a deciding factor for why they were selected as a
testbed for HCAE and its rivals.

The comparison of HCAE, LFPSO, PSOLF, LPSONS, and BP was made based on the
results of experiments reported in [27]. To this end, thirteen datasets from the UCI machine-
learning repository were applied, each of which defines a real classification problem.

In turn, HCAE, DE, and PSO were compared on the trajectory-following problem (TFP).
In this case, the task of FFANNs and RANNs was to control an autonomous underwater
vehicle (AUV) along a desired trajectory defined spatially and temporally. The TFP is a real
problem in underwater robotics, if the coordinated operation of a team of AUVs in time
and space is required.

The contributions of the paper are as follows:

• The scheme of network evolution applied in HCAE, in which the genome represents a
piece of the network, is compared with the traditional model in which the genome
represents the entire network.

• HCAE is qualitatively evaluated on a number benchmark-classification and control
problems.

• HCAE is compared with ten other algorithms: AE, AEEO, NEAT, CoSyNE, PSO,
LFPSO, LFPSO, LPSONS, DE, BP.

The rest of the paper is organized as follows: section two presents related work, section
three details the HCAE, section four reports experiments, section five shows direction of
further research, and the final section concludes the paper.

2. Related Work

As already mentioned, the search space of the NE algorithms increases exponentially
with every new neuron in the network. For the direct NE methods, which directly and
explicitly specify every neuron and connection in the genome, at some point, the search
space becomes too large to provide a reasonable chance to design an effective network at
all. In order to cope with this problem, in NEAT [19], which seems to be, currently, the
most popular direct algorithm, the genome contains only gens that correspond to existing
connections in the network—the connections that do not exist are not represented in the
genome. This way, sparsely connected networks can be encoded in the form of short
chromosomes, which simplifies the task of NEAT. However, the problem returns for fully
or densely connected networks.

To some extent, the above problem can be solved by applying indirect encoding of
the networks, in which the genome includes the recipe of how to form the network. The
recipe can take different forms, for example, the form of a production rule or a program. By
repeatedly using the same rule or a piece of program code in different areas of the evolved
neural network, it is possible to generate large-scale networks. In other words, the indirect
encoding leads to the compression of the phenotype to a smaller genotype, providing a
smaller search space. However, such an approach is only beneficial if the problem solved is
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modular and has regularities. Otherwise, the indirect representations are just as complex
as the direct representations.

In [32,33], a developmental approach is presented that is based on production rules
that decide how neuron synapses grow and how mother neurons divide. Initially, the
mother neurons are placed in 2D space, and then the repeated process of synapse growth
and neuron division starts which, after a specified number of iterations, defines the final
architecture of the network.

A similar solution is proposed in [34–41]. In this case, a grammar is defined including
terminals with the network parameters, non-terminals, and the production rules that map
non-terminals into terminals or other non-terminals. The networks are represented in
the form of encoded starting rules which are run for a number of iterations generating,
ultimately, a complete specification of the network.

In order to reduce the dimensionality of fixed topology network representations, the
algorithm proposed by [42] does not work in the weight domain but in the frequency
domain. At the phenotypic level, each network is represented as a weight matrix, which,
at the genotypic level, is encoded as a matrix of Fourier-transform coefficients, however,
without the high-frequency part, which is ignored. To obtain the network, the inverse
Fourier transform is applied.

An indirect counterpart of NEAT is HyperNEAT, that is, Hypercube NeuroEvolution of
Augmented Topologies [43]. In the HyperNEAT, networks are produced by other networks
called compositional pattern producing networks (CPPNs), which evolve according to
NEAT. To generate a network—theoretically, of any size—its neurons are first placed in
n-dimensional space, and, then, weights of inter-neuron connections are determined by
a single CPPN. To fix a weight between a pair of neurons, the CPPN is supplied with the
coordinates of the neurons. An output signal of the CPPN indicates the weight of the
connection. Motivated by this approach, a number of variants were proposed to evolve
even larger-scale networks [44–47]. Moreover, algorithms were also proposed that replace
NEAT as the CPPN constructor with genetic programming [48].

The NE methods based on genetic programming (GP) are a separate class of indirect
solutions that represent neural networks in the form of programs. By repeatedly executing
the same code in different regions of the network or by cloning neurons/connections,
simple programs can represent even large-scale neural networks. In the classical GP,
the programs take the form of trees whose nodes include instructions that operate on
neurons/connections and control transfer instructions to direct the flow of execution,
e.g., sequential/parallel division of a neuron, modification of a weight/bias, jump, and
loop [49–52].

Gene expression programming (GEP) is a variation of GP in which chromosomes
take the form of fixed-length linear strings that, like their tree-structured counterparts,
include network-building instructions. The application of GEP to evolve neural networks
is presented, among other things, in [53,54].

Assembler encoding (AE) [15] is the next representative of GP. In AE, a network is
represented in the form of a linearly organized Assembler Encoding Program (AEP) whose
structure is similar to the structure of a simple assembler program. The AEP is composed of
two parts, i.e., a part including operations and a part including data. The task of each AEP is
to create a Network Definition Matrix (NDM) which includes all the information necessary
to produce the network. Unlike instructions of tree-based GP and GEP which work, rather,
on the level of individual neurons/connections, each operation of AE can modify even the
whole NDM, and, consequently, the network. This way, even a few operations working
together within one AEP can form very complex neural structures.

Assembler Encoding with Evolvable Operations (AEEO) [55] and its modular/ensemble
variants [16,56] are the successors of AE. Instead of applying hand-made algorithmic op-
erations with evolved parameters, AEEO, like HyperNEAT, uses operations which take
the form of simple directly encoded networks, called ANN operations. Just like in the
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classic variant of the AE, the task of ANN operations, which are run one after the other, is
to change the content of the NDM.

Another solution to cope with the problem of large search spaces is the gradual
growth in representations and the networks, which is applied, for example, in NEAT [19],
AE [15], and AEEO [55]. In this case, the evolution usually starts with light representations
and simple networks and increases their complexity in the course of time. The idea is
to evolve the networks little by little, and to focus, at each stage of evolution, mainly
on genotype/phenotype increments. Initially, small networks and their representations
grow if the evolution cannot make progress for a time. Beneficial sub-structures in both
genotypes and phenotypes are preserved and gradually expanded with new sub-structures.
However, along with the increase in the size of the representations, the complexity of the
task of the evolutionary algorithm automatically grows as well. Often, in the late phases
of the evolutionary process, the change in the size of chromosomes does not entail any
progress in network effectiveness.

There are also NE algorithms that restrict the search space by applying constraints on
the network architectures and the evolutionary process. The constraints are usually based
on domain knowledge about the problem to be solved. Their task is to focus the search only
on allowed network architectures, making the search space for the evolutionary algorithm
smaller and its task simpler. In [1,57], constraint functions are proposed which directly
manipulate neural networks and implement structure, functional, and evolutionary con-
straints whose task is, for example, to evolve symmetries and repetitive structures, to insert
predefined functional units to evolved networks, or to restrict the range of evolutionary
operators.

Surrogate model-based optimization [58,59] is a solution that does not simplify the
task of NE algorithm but alleviates the burden associated with the evaluation of neural
solutions scattered over large areas of high-dimensional network space. This is of particular
importance in the case of robotic systems whose evaluation requires expansive simulations
or real-world experiments. By using surrogate models that mimic the behaviour of the
simulation model as closely as possible, being at the same time and computationally
cheaper to evaluate, NE algorithms can explore their search spaces more intensely, and
thus increase the chance of finding optimal networks.

3. Hill Climb Assembler Encoding

As already mentioned, HCAE is a light variant of HCMAE and it originates from
both AE and AEEO. All the algorithms are based on three key components, i.e., a network
definition matrix (NDM), which represents the neural networks, assembler encoding
program (AEP), which operates on NDM, and evolutionary algorithm, whose task is to
produce optimal AEPs, NDMs, and, consequently, the networks. All the three components
are described below.

3.1. Network Definition Matrix

To represent a neural network, HCAE, like its predecessors, uses a matrix called
network definition matrix (NDM). The matrix includes all the parameters of the network,
including the weights of inter-neuron connections, bias, etc. The matrix which contains non-
zero elements above and below the diagonal encodes a recurrent neural network (RANN),
whereas the matrix with only the content above the diagonal represents a feed-forward
network (FFANN) [14] .

3.2. Assembler Encoding Program

In all the AE family, filling up the matrix, and, consequently, constructing an ANN
is the task of an assembler encoding program (AEP) which, like an assembler program,
consists of a list of operations and a sequence of data. Each operation implements a fixed
algorithm and its role is to modify a piece of NDM. The operations are run one after
another and their working areas can overlap, which means that modifications made by one
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operation can be overwritten by other operations which are placed further in the program.
AEPs can be homogeneous or heterogeneous in terms of applied operations. In the first
case, all operations in AEP are of the same type and they implement the same algorithm
whereas, in the second case, AEPs can include operations with different algorithms. The
first solution is applied in HCAE and AEEO, whereas the second one in AE [14] .

The way each operation works depends, on the one hand, on its algorithm and, on
the other hand, on its parameters. Each operation can be fed with its “private” parameters,
linked exclusively to it, or with a list of shared parameters concentrated in the data sequence.
Parametrization allows operations with the same algorithm to work in a different manner,
for example, to work in different fragments of NDM.

HCAE uses two types of operations, say, Oper1 and Oper2. Oper1 is an adaptation of
a solution applied in AEEO. It is of a global range, which means that it can modify any
element of NDM, and it uses a small feed-forward neural network, say, ANN operation, in
the decision-making process. The task of ANN operation is to decide which NDM items are
to be updated and how they are to be updated (see Figure 1). The architecture of each ANN
operation is determined by parameters of Oper1, whereas inputs to the ANN operation are
taken from the data sequence of AEP. A pseudo-code of Oper1 is given in Algorithm 1.

Each ANN operation has two inputs and five outputs. The inputs indicate individual
items of NDM. In AEEO, ANN operations are fed with coordinates of items to be modified,
that is, with numbers of columns and rows, for example, in order to modify item [i, j], an
ANN operation is supplied with i and j. In HCAE, a different approach is used, namely,
instead of i, j, ANN operations are fed with data items which correspond to i and j, that is,
with row [i] and column [j] (lines (10) and (11) in Algorithm 1). Vectors row and column are
filled with appropriate data items (lines (2) and (5) in Algorithm 1).

The outputs of ANN operation decide whether to modify a given item of NDM or to
leave it intact—outputs no. 1 and no. 2 (line (13) in Algorithm 1), and then, whether to reset
the item or to assign it a new value—outputs no. 3 and no. 4 (line (14) in Algorithm 1), the
new value is taken from the fifth output of the ANN operation (line (15) in Algorithm 1).
Parameter M is a scaling parameter.

Figure 1. Applying ANN operations in Oper1: ANN operation is run for each item in NDM, one
after another, and it can change the value of each item. The figure shows applying the network to
determine the value of three items: NDM[2,2], NDM[4,6] and NDM[5,5]. In the first case, the item is
modified to the value out5, which is the response of the network to the input r2, c2. r2, c2 are data
items that correspond to the second row and column, that is, to the location of the modified item. The
value out5 is inserted into NDM because out1 < out2 and out3 < out4. In the second case, the item
receives the value 0 because out1 < out2 and out3 ≥ out4. In addition, in the third case, the item is
left unchanged because out1 ≥ out2.
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Algorithm 1 Pseudo-code of Oper1.
Input: operation parameters (p), data sequence (d), NDM
Output: NDM

1: for i∈<0..NDM.numberOfRows) do
2: row[i]← d[i mod d.length];
3: end for
4: for i∈<0..NDM.numberOfColumns) do
5: column[i]← d[(i+NDM.numberOfRows) mod d.length];
6: end for
7: ANN-oper← getANN(p);
8: for i∈<0..NDM.numberOfColumns) do
9: for j∈<0..NDM.numberOfRows) do

10: ANN-oper.setIn(1,row[j]);
11: ANN-oper.setIn(2,column[i]);
12: ANN-oper.run();
13: if ANN-oper.getOut(1) <ANN-oper.getOut(2) then
14: if ANN-oper.getOut(3) < ANN-oper.getOut(4) then
15: NDM[j,i]← M*ANN-oper.getOut(5);
16: else
17: NDM[j,i]← 0;
18: end if
19: end if
20: end for
21: end for
22: Return NDM

Like resultant ANNs, ANN operations are also represented in the form of NDMs, say,
NDM operations. To generate an NDM operation, and consequently, an ANN operation,
getANN(p) is applied whose pseudo-code is depicted in Algorithm 2. It fills all matrix items
with subsequent parameters of Oper1 divided by a scaling coefficient, N. If the number of
parameters is too small to fill the entire matrix, they are used many times.

Algorithm 2 Pseudo-code of getANN.
Input: operation parameters (p)
Output: ANN-operation

1: NDM-operation← 0;
2: noOfItem← 0;
3: for i∈<0..NDM-operation.numberOfColumns) do
4: for j<i //feed-forward ANN do
5: NDM-operation[j,i]← p[noOfItem mod p.length]/N;
6: noOfItem++;
7: end for
8: end for
9: Return ANN-operation encoded in NDM-operation.

Unlike Oper1, Oper2 works locally in NDM, and is an adaptation of a solution applied
in AE. Pseudo-code of Oper2 is given in Algorithm 3 and 4. It does not use ANN-operations;
instead, it directly fills NDM with values from the data sequence of AEP: where NDM is
updated, and which and how many data items are used, are determined by operation pa-
rameters. The first parameter indicates the direction according to which NDM is modified,
that is, whether it is changed along columns or rows (lines (4) and (10) in Algorithm 3).
The second parameter determines the size of holes between NDM updates, that is, the
number of zeros that separate consecutive updates (line (3) in Algorithm 4). The next
two parameters point out the location in NDM where the operation starts to work, i.e.,
they indicate the starting row and column (line (1) in Algorithm 4). The fifth parameter
determines the size of the altered NDM area, in other words, it indicates how many NDM
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items are updated (line (1) in Algorithm 4). Additionally, the last, sixth parameter points
out location in the sequence of data from where the operation starts to take data items and
put them into the NDM (line (2) in Algorithm 3) [14] .

Algorithm 3 Pseudo-code of Oper2 [14].
Input: operation parameters (p), data sequence (d), NDM
Output: NDM

1: filled← 0;
2: where← p[6];
3: holes← 0;
4: if p[1] mod 2 = 0 then
5: for k∈<0..NDM.numberOfColumns) do
6: for j∈<0..NDM.numberOfRows) do
7: NDM[j,k]← fill(k,j,param,data,filled,where,holes);
8: end for
9: end for

10: else
11: for k∈<0..NDM.numberOfRows) do
12: for j∈<0..NDM.numberOfColumns) do
13: NDM[k,j]← fill(j,k,p,d,filled,where,holes);
14: end for
15: end for
16: end if
17: Return NDM.

Algorithm 4 Pseudo-code of fill() [14].
Input: number of column (c), number of row (r), operation parameters (p),
data sequence (d), number of updated items (f),
starting position in data (w), number of holes (h)
Output: new value for NDM item

1: if f < p[5] and c ≥ p[4] and r ≥ p[3] then
2: f++;
3: if h = p[2] then
4: h← 0;
5: w++;
6: Return d[w mod d.length];
7: else
8: h++;
9: Return 0.

10: end if
11: end if

3.3. Evolutionary Algorithm

The common characteristic of all AE-based algorithms is the use of cooperative co-
evolutionary GA (CCEGA) [17,18] to evolve AEPs, that is, to determine the number of
operations (AE,AEEO), the type of each operation (AE), the parameters of the operations
(all algorithms), the length of the data sequence (AE,AEEO), and its content (all algorithms).
As already mentioned, the implementations of operations are predefined. According to
CCEGA, each evolved component of AEP evolves in a separate population, that is, an AEP
with n operations and the sequence of data evolves in n + 1 populations (see Figure 2) [14] .

To construct a complete AEP, NDM, and finally, a network, the operations and the data
are combined together according to the procedure applied in CCEGA. An individual (for
example, an operation) from an evaluated population is linked to the best leader individuals
from the remaining populations that evolved in all previous CCEGA iterations. Each popu-
lation maintains the leader individuals, which are applied as building blocks of all AEPs
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constructed during the evolutionary process. In order to evaluate newborn individuals,
they are combined with the leader individuals from the remaining populations [14].

Figure 2. Evolution of AEPs according to CCEGA

Even though all the AE family applies CCEGA to evolve neural networks, HCAE
does it in a different way from the remaining AE algorithms. In AE/AEEO, the networks
evolve in one potentially infinite loop of CCEGA. Throughout the evolution, AEPs can
grow or shrink, that is, they adjust their complexity to the task by changing in size. Each
growth or shrinkage entails a change in the number of populations in which AEPs evolve.
Unfortunately, such an approach appeared to be ineffective for a greater number of opera-
tions/populations. Usually, an increase in the number of operations/populations to three
or more does not improve results, which is due to the difficulties in the coordination of a
greater number of operations.

In contrast to AE/AEEO, HCAE is a hill climber whose each step is made by CCEGA
(see Algorithm 5). A starting point of the algorithm is a blank network represented by a
blank NDM (line (1)). Then, the network as well as NDM are improved in subsequent
evolutionary runs of CCEGA (line (5)). Each next run works on the best network/NDM
found so far by all earlier runs (each AEP works on its own copy of NDM), is interrupted
after a specified number of iterations without progress (MAX_ITER_NO_PROG), and
delegates outside, to the HCAE main loop, the best network/NDM that evolved within the
run (tempNDM). If this network/NDM is better than those generated by earlier CCEGA
runs, a next HCAE step is made—each subsequent network/NDM has to be better than its
predecessor (line (7) [14] ).

Algorithm 5 Evolution in HCAE [14].
Input: CCEGA parameters, for example crossover probability
Output: Neural network

1: NDM← 0;
2: numberOfIter← 0;
3: fitness← evaluation of NDM;
4: while numberOfIter < maxEval and fitness < acceptedFitness do
5: tempNDM← CCEGA.run(NDM,MAX_ITER_NO_PROG);
6: if tempNDM.fitness > fitness then
7: NDM← tempNDM;
8: fitness← tempNDM.fitness;
9: end if

10: numberOfIter← numberOfIter + 1;
11: end while
12: Return Neural network decoded from NDM.

In order to avoid AE/AEEO problems with the effective processing of complex AEPs,
HCAE uses constant-length programs of a small size. They include, at most, two operations
and the sequence of data; the number of operations does not change over time. Such a
construction of AEPs affects the structure of CCEGA. In this case, AEPs evolve in two
or, at most, three populations; the number of populations is invariable. One population
includes sequences of data, i.e., chromosomes data, whereas the remaining populations
contain encoded operations, i.e., chromosomes operations. The operations are encoded as
integer strings, whereas the data as real-valued vectors, which is a next difference between
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HCAE and AE/AEEO that apply binary encoding. Both chromosomes operations and
chromosomes data are of constant length.

In HCAE, like in AE/AEEO, the evolution in all the populations takes place according
to simple canonical genetic algorithm with a tournament selection. The chromosomes
undergo two classical genetic operators, i.e., one-point crossover and mutation. The
crossover is performed with a constant probability Pc, whereas the mutation is adjusted to
the current state of the evolutionary process. Its probability (Pd

m—probability of mutation in
data sequences; Po

m—probability of mutation in operations) grows once there is no progress
for a time and it decreases once progress is noticed [14] .

The chromosomes data and chromosomes operations are mutated differently, and they
are performed according to Equations (1) and (2) [14].

dnew =

{
d + randU(−a, a) if randU(0, 1) ≤ Pd

m

d otherwise
(1)

onew =


o + randI(−b, b) if randU(0, 1) ≤ Po

m and
randU(0, 1) ≥ Po,zero

m

0 if randU(0, 1) ≤ Po
m and randU(0, 1) ≤ Po,zero

m

o otherwise

(2)

where d—is a gene in a chromosome-data; o—is a gene in a chromosome-operation;
randU(−a, a)—is a uniformly distributed random real value from the range < −a, a >;
randI(−b, b)—is a uniformly distributed random integer value from the range < −b, b >;
Po,zero

m —is a probability of a mutated gene to be zero.

3.4. Complexity Analysis

Although algorithms no. 1, 2 and 3 present the traditional iterative implementation
style, which is due to the ease of analysis of such algorithms, the actual HCAE implemen-
tation is parallel. This means that the algorithm can be divided into three parallel blocks
executed one after the other, namely: the genetic algorithm (CCEGA + CGA), the AEP pro-
gram and the evaluation of neural networks. The complexity of the algorithm can therefore
be defined as O(O(CCEGA + CGA) + O(AEP) + O(Fitness)). The parallel implementation of
the genetic algorithm requires, in principle, three steps, i.e., selection of parent individuals,
crossover and mutation, which means that we obtain O(3). In addition, it also requires
l(n+ n1n2) processors or processor cores, where l is the number of chromosomes in a single
CCEGA population, n1 is the number of AEP operations, and n and n2 are the number of
genes in chromosome data and chromosomes operations, respectively. The AEP program
is executed in n1 steps (O(n1)) and requires a maximum of Z processors/cores, where Z is
the number of cells of the NDM matrix. The last block of the algorithm is the evaluation of
neural networks, the computational complexity of which depends on the problem being
solved. Ignoring the network evaluation, it can be concluded that the algorithm complexity
is O(3 + n1) and requires max(l(n + n1n2), Z) processors/cores.

4. Experiments

As already mentioned in the introduction, HCAE was tested on fourteen classification
problems and one control problem against eight rival methods. First, HCAE(AE) and
HCAE(AEEO) algorithms were tested on the two-spiral problem (TSP) and the inverted-
pendulum problems (IPP) against original AE and AEEO. HCAE(AE) and HCAE(AEEO)
are algorithms that evolve networks according to the HCAE algorithm depicted in
Algorithm 5; however, at the same time, they apply AE and AEEO operations, binary
encoding, variable-size chromosomes, and CCEGA mechanisms of adapting size of AEPs
to a problem—AEPs can change their size throughout the evolution. The goal of this phase
of the experiments was to examine the effectiveness of the new model of evolution applied
in HCAE.
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In the second stage of the experiments, HCAE(AE) and HCAE(AEEO) competed with
HCAE(Oper1) and HCAE(Oper2) with the goal of testing the new operations applied in
HCAE. Again, TSP and IPP constituted a testbed for the compared algorithms.

The third phase of the experiments was devoted to the comparison between HCAE,
NEAT (C++ implementation of NEAT was taken from [60]), and CoSyNE (C++ implemen-
tation of CoSyNE was taken from [61]). Only the most effective variant of HCAE took part
in the tests. As before, the task of the selected algorithms was to evolve neural solutions to
TSP and IPP problems.

Finally, HCAE was also compared with four PSO-based algorithms considered in [27]
and with backpropagation (BP). This time, the algorithms were put to the test on thirteen
classification problems defined in the UCI machine-learning repository. The objective of
both of the last phases of the experiments was to present HCAE against other algorithms in
the field of NE.

4.1. Two-Spiral Problem

TSP, which is a well-known benchmark for binary classification, was selected as a
starting problem for HCAE and its rivals. Even though it is not a new problem, its average
complexity corresponds to the complexity of problems that can be effectively solved with
small/medium-size neural networks and learning algorithms dedicated to such networks.

In TSP, the task is to split into (x, y) data points that form intertwined spirals which
cannot be linearly separated into two classes. The learning set consists of 194 points, 97
for each spiral. To generate the first spiral, the following formulas can be used: (x, y) =
(rcos(φ), rsin(φ)), r = 6.5(104−i)

104 , φ = i
16 π, i = 0.96. The second spiral can be obtained by

the negation of first spiral coordinates, that is, by: (−x,−y).
To solve the above-mentioned problem, feed-forward neural networks with two

inputs, two outputs, and maximally thirty-six hidden neurons were applied. The inputs
were fed with the (x, y) coordinates of data points, whereas outputs were responsible for
identification, one output for one class. If the output signal of the first output neuron
was greater than the output signal of the second output neuron, an input data point was
assigned to the first class, otherwise, to the second class. All neurons in the networks used
a hyperbolic tangent activation function.

When evolving the networks, the algorithms were allowed to make, maximally,
3,000,000 evaluations. In order to evaluate each evolved neural network, the following
fitness function was applied:

F(ANN) = S +
1

1 + E(i)
(3)

where S—is the number of correct classifications up to the first wrong decision; in the case
of a wrong decision, the evaluation process was immediately interrupted; E(i)—is an error
in i-th learning iteration in which the first wrong decision was made; in the learning process
two classes were presented alternately to the network, which means that points from the
first class even had indexes in the learning set (i mod 2 = 0), whereas points from the
second class had odd indexes (i mod 2 = 1), o1 and o2 are outputs of the neural network;
the formal definition of E(i) is given below:

E(i) =


100 if o1 = o2

abs(1− o1) + abs(−1− o2) if i mod 2 = 0
and o1 6= o2

abs(1− o2) + abs(−1− o1) otherwise

(4)

The fitness function (3) introduces additional difficulties compared with the original
problem defined in [31]. Originally, in order to evaluate the network, classification results
on all training points are used. This corresponds to the situation in which the learning
algorithm has complete knowledge of the effectiveness of the network in the whole range
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of the input space (considered in the learning set). Meanwhile, according to (3), the learning
algorithm is forced to rely on partial knowledge. If the network fails at some point, the
evaluation process is interrupted with the consequence that the algorithm has only insight
into fragmentary capabilities of the evaluated network and its evaluation can be misleading.
For example, a network successful in the first n points will be more fit than a network
successful in m points in total; m > n, however, in only k consecutive points from the top
of the learning point list, k < n.

Error (4) has three options. The first option E = 100 drastically reduces the network
fitness if o1 = o2. In the absence of this option, function (3) would have a deep local
maximum for o1 = o2, at which the algorithm would often get stuck. The other two options
are just the sum of the errors on each network output. For the first class, the ideal situation
is o1 = 1, o2 = −1, while for the second class, o1 = −1, and o2 = 1.

4.2. Inverted-Pendulum Problem

In order to assess how HCAE copes with evolving recurrent neural networks (RANN)
dedicated for control problems of average complexity, and to compare its performance
in this regard with the performance of other algorithms, experiments in the inverted-
pendulum problem (IPP) were carried out. Even though the original variant of IPP was
defined quite a long time ago [20], the modified version applied in the experiments is
enough to achieve the goal of the research mentioned above.

In this case, the networks deal with a wheeled cart moving on a finite length track and
with two poles installed on the cart; one pole is shorter and lighter, whereas the second one
is longer and heavier. The task of the networks is to indefinitely balance the poles and to
keep the cart within track boundaries. To accomplish the task, the cart has to be pushed left
or right with a fixed force. The decision about the direction and the strength of each move
is made based on the information about the state of the cart-and-pole system. The complete
state vector includes the following parameters: the position of the cart (x), the velocity of
the cart (ẋ), angles of both poles (θ1, θ2), and angular velocities of both poles (θ̇1, θ̇2). To
model behaviour of the cart-and-pole system, the following equations are used [20]:

ẍ =
F− µc(ẋ) + ∑2

i=1 F̃i

M + ∑2
i=1 m̃i

(5)

θ̈i = −
3

4li

(
ẍ cos θi + g sin θi +

µpi θ̇i

mili

)
(6)

where ẍ—acceleration of cart; θ̈i—acceleration of ith pole; F—force put to cart; M—mass of
cart; mi—mass of ith pole; li—half length of ith pole; µc—coefficient of friction of cart on
track; µpi—coefficient of friction of ith pole’s hinge; g—gravity.

F̃i = miliθ2
i sin θi +

3
4

mi cos θi

(
µpi θ̇i

mili
+ g sin θi

)
(7)

m̃i = mi

(
1− 3

4
cos2 θi

)
(8)

The state of the cart-and-pole system in subsequent points in time of simulation, i.e.,
every t seconds, where t is a step size, is determined by means of Euler’s method:

x = x + tẋ (9)

ẋ = ẋ + tẍ (10)

θ = θ + tθ̇ (11)

θ̇ = θ̇ + tθ̈ (12)
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To control the cart-and-pole system, the networks were fed with the state parameters
scaled to the range < −1, 1 >. The force F used to control the system was calculated as
a product of network output (one output neuron) and value 10. To make the task of the
networks more difficult, they had access to only two parameters, i.e., x, and θ1 (two input
neurons). This means that they had no information about the shorter pole, and they did not
know the direction of movement and velocity of the cart and the longer pole. To effectively
control the cart-and-pole system, all missing information had to be reconstructed by the
networks in the subsequent steps of the simulation.

The above-mentioned setting was not the only impediment the networks had to face.
In contrast to the original problem, each network was evaluated four times, each time for
other starting conditions, and each single evaluation was interrupted once the cart went off
the path or any pole fell down, that is, exceeded a failure angle. In order for the task of the
networks to be even harder in relation to the original problem [20], the failure angels for
both poles were decreased to 8 degrees for the longer pole, and 20 degrees for the shorter
one. The other experiment settings remained unchanged in relation to [20] and are given in
Table 1.

The networks applied in the experiments had the following architecture: two inputs,
one output, and, maximally, forty hidden units. When evolving the networks, the algo-
rithms were allowed to make, maximally, 30,000 evaluations. In order to evaluate each
evolved neural network, the following fitness function was applied:

FIP(MANN) =
4

∑
i=1

Wi (13)

where Wi is the duration of ith simulation that was measured as the number of steps
the cart-and-pole system remained controlled. The maximum duration of each single
simulation was equal to 10,000 control steps, which means that the maximum fitness that
could be achieved was 40,000. The task of function (13) is simply to obtain a network
capable of holding the pendulum up for as long as possible in each of the four simulations.

Table 1. Parameter setting for inverted-pendulum problem.

Parameter Description Value

length of path 4.8 m
l length of pole l1 = 0.5 m l2 = 0.05 m
m mass of pole m1 = 0.1 kg m2 = 0.01 kg
θ angle of pole θ1 =< −8, 8 > deg, θ2 =< −20, 20 > deg

initial position of poles (θ1, θ2) =< (4, 0), (−4, 0), (0, 4), (0,−4) >deg
x position of cart <−2.4,2.4> m

initial position of cart 0 m
M mass of cart 1 kg

F force applied to cart < −10, 10 >N but no less than ±1/256 × 10
N

g gravity 9.8 m/s2

µc coefficient of friction of cart on track 0.0005
µp coefficient of friction of ith pole’s hinge 0.000002
t step size 0.02 s

4.3. Trajectory-Following Problem

In this case, the task of the neural networks was to guide the AUV along a desired
trajectory defined spatially and temporally. Given that the AUV trajectory is determined
by a set of way points in 2D space (it is assumed that the AUV moves on the horizontal
plane without depth control) and each straight segment between two way points has a
march velocity (VM) assigned, at each point in time, it is possible to determine a desirable
position of the AUV and two errors in the position, i.e., the position error calculated along
the trajectory—E1, and the position error perpendicular to the trajectory—E2. E1 indicates
the timing error, that is, whether the AUV is late or ahead of time, whereas E2 corresponds
to the distance to the right trajectory—see Figure 3a.
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The neural network controls the vehicle by determining its heading H and speed
V in such a way as to minimize the errors E1 and E2. The new parameters of the AUV
movement are defined every 0.1 s. The heading of the vehicle is determined from point
D (see Figure 3a), where the vehicle is currently located, to point C, which is the local
destination of the AUV. To find point C, the neural network determines the distance d from
point B towards the next way point.

(a) (b)

Figure 3. (a) A—desired position of the AUV, B—true position of the AUV projected on the trajectory,
C—local destination point of the AUV, D—true position of the AUV, H—heading to point C, d—
distance from point B to point C, E1, E2—errors, (b) trajectory of the vehicle.

Speed V is the sum of the marching speed VM associated with each straight section of
the vehicle route and speed V1 determined by the neural network.

Both FFANN and RANN networks were used during the research. In both cases, the
networks were supplied with E1 and E2 errors. The E1 error was positive if the vehicle was
late and negative—if it was in a hurry. The E2 error was always positive. FFANN networks
had four inputs, two inputs corresponding to errors from the current time moment and
two inputs corresponding to errors from the previous time moment. The RANN networks
had only two inputs corresponding to the errors that occurred at the current time.

Apart from two output neurons (d and V1) and two or four input neurons, both types
of networks had 10 hidden neurons. All the neurons had the same activation function—the
hyperbolic tangent function.

The tests were carried out in simulation conditions using a kinematic vehicle model
implemented in the MOOS-IvP application called uSimMarine [62]. This model has a
number of parameters determining the speed of the vehicle, its manoeuvrability or inertia.
The description of the parameters with their values used during the simulation can be
found at the end of the paper, in Appendix B.

During the simulation, the behaviour of the vehicle was also influenced by the low-
level control system, whose task was to convert high-level decisions made by the neural
network into low-level decisions for the propellers (engine) and rudder of the vehicle. The
low-level system consisted of four PID controllers, each with three parameters: P, I, and D,
the values of which are given in Appendix B.

The task of the AUV was to follow a lawn-mower trajectory consisting of eight way
points and seven straight segments, i.e., three 100-m long scanning-bottom segments and
four turning-back segments—see Figure 3b. The march speed VM along the scanning-
bottom segments amounted to 1 m/s, whereas, along the turning–back segments, it
amounted to 0.5 m/s.

For the conditions of the experiments to be maximally similar to the real ones, the
AUV was subject to a sea current which had random duration, direction and strength. It
appeared regularly every 6 s at most, and its maximum duration amounted to 2 s. The
direction of the current amounted to 45◦± 10◦, whereas its strength amounted, maximally,
to 0.8 m/s.

Each of the evolutionarily formed networks was evaluated k times, each time with a
different influence of the sea current; kmax = 40. The evaluation of the network was always
interrupted (k < kmax) if the error E1 or E2 exceeded the threshold value equal to 3 m and
2 m, respectively. The following fitness function was used to evaluate the networks:

FTFP(ANN) =
1

1 + Emax
1 + 5Emax

2
(14)
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where Emax
1 and Emax

2 are the maximum errors obtained during the entire network-evaluation
process, while the AUV was moving along the scanning-bottom segments of the trajectory.
Short turning-back segments were not included in the evaluation. In order to obtain the
precise trajectory of the vehicle along the entire scanning-bottom segments, function (14)
was oriented to minimize maximum errors. Error Emax

2 has a greater influence on func-
tion (14), which means that more emphasis is on minimizing the spatial deviation from the
trajectory than the temporal deviation.

4.4. Results in the First Phase of Experiments

As already mentioned, the objective of this phase was to evaluate the effectiveness of
the new model of evolution applied in HCAE. To this end, original AE and AEEO were
compared with HCAE(AE) and HCAE(AEEO) which are variants of AE/AEEO with the
HCAE model of evolution.

At the beginning, AE and AEEO were tuned to both testing problems (TSP and IPP),
mainly by adjusting the probability of mutation. Other parameters were either manually
tailored to the tasks, for example: size of NDM-operation = 10× 11− 10 neurons in total,
one extra column for biases, crossover probability Pc = 0.5, size of each population = 100,
size of tournament = 3, length of chromosome-data = 80, initial number of operations = 1,
length of chromosome-operations = 12 or 6, number of CCEGA iterations without progress
followed by a change of AEP size = 100,000 (TSP) or 2500 (IPP), or they were the same as
those applied in [15,16].

In order to compare the algorithms, each of them were run thirty times. Then, thirty of
the most effective networks from all the runs, one network per run, were applied to compare
the algorithms. Four criteria were used to measure the performance of each algorithm,
i.e., the average, maximum, and minimum fitness, and the total number of successes in
the learning process (TSP—all learning data points classified correctly, IPP—the poles
successfully balanced in all attempts). The final results of the tests are summarized in
Tables 2 and 3.

Table 2. Results of the first phase of experiments—TSP.

Method Mean Std Maximum Minimum Successes

AEEO 115.3 32.7 194 65.4 1
HCAE(AEEO) 124.4 28.5 194 62.1 1

AE 105.7 18.7 145.6 62.3 0
HCAE(AE) 155.3 32.2 194 66.5 5

Table 3. Results of the first phase of experiments—IPP.

Method Mean Std Maximum Minimum Successes

AEEO 10,289 1128 12,530 8445 0
HCAE(AEEO) 12,611 1851 13,481 9560 0

AE 9620 1292 10,571 7402 0
HCAE(AE) 36,522 7845 40,000 1202 24

Both tables clearly show the positive effect of HCAE model of evolution on the
performance of AE/AEEO. The greatest increase in efficiency is noticeable when com-
paring results of HCAE(AE) and AE. A smaller improvement is observed in the case of
HCAE(AEEO) and AEEO.

The result proves, at least with regard to evolutionary neural networks and the AE
family, that the model in which the evolution is conducted in many separate evolutionary
runs and each earlier run produces input data for its successors, when the solutions grow
gradually in many subsequent increments, and when the complexity of the genome is
replaced with a sequence of simple genomes, outperforms a traditional model in which the
complexity of the problem corresponds to the complexity of the genome and the whole
problem has to be solved within one evolutionary super run.



Electronics 2022, 11, 2104 16 of 27

Two main factors seem to decide the success of the HCAE model: firstly, the strategy
of gradual growth, and secondly, the simplicity of representation. However, as the above
results show, the success depends on the interference between subsequent evolutionary
runs and between operations inside AEP—the greater the interference, the smaller the
success. To put it simply, if operations within one AEP, or AEPs executed one after another,
strongly interfere with each other, it is difficult to achieve the effect of gradual growth.

One objective of the HCAE model is to simplify AEPs as much as possible with the
task to simplify cooperation between operations derived from different populations. It is
simply much easier to match two or three components of a solution together than to do it
with, say, five or ten components. In other words, the interference between two or three
operations is smaller than the interference between five or ten operations. To make matters
worse, the interference can also apply to operations from different evolutionary runs.

However, the interference between operations depends not only on the number of
operations in AEP but also on the range of operations, which is different in HCAE(AE)
and HCAE(AEEO). In the first case, the operations work locally in a selected region of
NDM, whereas in the second case, they are allowed to update each element of NDM. In
consequence, operations applied in HCAE(AE) rarely interfere with each other, whereas
those used in HCAE(AEEO) do it much more often. This, in turn, means that the strategy
“little by little” implemented in HCAE has a greater chance for success in combination with
AE than AEEO.

4.5. Results in the Second Phase of Experiments

In this phase, the objective was to evaluate the effectiveness of the remaining solutions
applied in HCAE compared with their originals from AE and AEEO. The results of this
phase are given in Tables 4 and 5.

Table 4. Results of the second phase of experiments—TSP.

Method Mean Std Maximum Minimum Successes

HCAE(AEEO) 124.4 28.5 194 62.1 1
HCAE(Oper1) 128.3 26.6 194 68.2 3

HCAE(AE) 155.3 32.2 194 66.5 5
HCAE(Oper2) 169.2 18.4 194 125.8 10

Table 5. Results of the second phase of experiments—IPP.

Method Mean Std Maximum Minimum Successes

HCAE(AEEO) 12,611 1851 13,481 9560 0
HCAE(Oper1) 12,023 6224 40,000 8966 1

HCAE(AE) 36,522 7845 40,000 1202 24
HCAE(Oper2) 40,000 0 40,000 40,000 30

As it turned out, new solutions implemented in HCAE(Oper2) appeared to have an
advantageous influence on the algorithm performance compared with HCAE(AE). In turn,
for those applied in HCAE(Oper1), if they brought any positive effect it is visible only in
TSP. In IPP, the results of HCAE(Oper1) and HCAE(AEEO) are roughly at the same level.

The new solutions implemented in HCAE can be divided into two categories, i.e., the
ones that are common for both HCAE variants and the ones that are variant-specific. Real
and integer encodings, instead of binary encoding, and fixed-length chromosomes belong
to the first category, whereas new operations belong to the second category. The difference
in results of HCAE(Oper1) against HCAE(AEEO) and HCAE(Oper2) against HCAE(AE)
indicates that solutions from the first category do not constitute a valuable replacement for
original solutions. The same applies to Oper1, the added value of this operation, if it exists,
seems to be rather symbolic. A different situation is with Oper2, in this case, an increase in
efficiency is clearly noticeable.
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There are only two differences between Oper2 and operations used in AE which, as it
turned out, had an influence on the results. Firstly, AEPs in AE can contain three different
types of operations: modification of a single row in NDM, modification of a single column
in NDM, and modification of a rectangular patch in NDM, whereas in HCAE(Oper2) there
is no choice; each AEP consists of operations of only one type. This way, evolution in
HCAE(AE) has a slightly harder task than in HCAE(Oper2). It has to match operations
to the task, and to adjust parameters to selected operations. In HCAE(Oper2), in turn,
operations do not differ in implementation, so the only difficulty is to appropriately set the
parameters.

However, it seems that, in this case, it is more significant how individual operations
modify NDM, and, consequently, the network. In HCAE(AE), all the three operations
have no possibility of deactivating connections by setting their weights to zero, with the
effect that all networks produced by HCAE(AE) are densely connected. They simply copy
connection weights from the data sequence to NDM; zero weight could only appear in the
network if it also appeared in the data sequence. To overcome this problem, each Oper2
periodically fills NDM with zeros; they appear in the matrix alternately with connection
weights from the data sequence.

To sum up, the experiments in this phase showed that two factors are crucial for
HCAE success: firstly, a local range of the operations, and secondly, their ability to establish
sparsely connected sub-networks.

4.6. Results in the Third Phase of Experiments

The objective of this phase was to compare HCAE with other algorithms from the field
of NE. Two algorithms were selected as a point of reference for the proposed algorithm, i.e.,
NEAT and CoSyNE. Both rivals represent the same class of algorithms as HCAE, that is,
the algorithms meant for constructing small/medium-size neural networks.

Before the tests, NEAT and CoSyNE, like all the previous algorithms, were also
tuned to testing problems. Again, TSP and IPP constituted a testbed for the compared
algorithms. A detailed parameter setting after the tuning process is given in the structures
mutation_rate_container and cosyneArgs in Appendices A and B.

In contrast to the AE family, the evolution in NEAT took place in a single population
with 300 individuals. In HCAE, AE and AEEO, the evolution is conducted in many
populations, at least in two, and each population has 100 individuals, which means 200
or 300 network evaluations in each evolutionary iteration. Meanwhile, NEAT works in
a single population, and the number of individuals in the population corresponds to the
number of evaluations and networks generated in a single evolutionary iteration. In order
to equalize the chances of NEAT, and HCAE, the number of individuals in a single NEAT
population was the same as the maximum number of individuals in all HCAE populations.
Moreover, in order for NEAT to evolve networks of the same maximum size as the networks
produced by HCAE (TSP: 2 input, 2 output, and a maximum of 36 hidden neurons, IPP:
2 input, 1 output, and a maximum of 40 hidden neurons), it was necessary to slightly
modify the C++ code of NEAT.

The conditions of the tests for CoSyNE were the same as for the remaining algorithms,
meaning the number of hidden units was set to 36 (TSP) or 40 (IPP), whereas the number
of network evaluations in one evolutionary generation was equal to 300.

The results of the experiments in this phase, after thirty runs of each algorithm,
are given in Table 6 (The implementation of CoSyNE provides only one type of feed-
forward network, namely, multilayered perceptron with one hidden layer; the table includes
results for this type of network) and Table 7 (The implementation of CoSyNE used in the
tests offers five different types of recurrent neural network: SimpleRecurrentNetwork,
SecondOrderRecurrentNetwork, LinearRecurrentNetwork, FullyRecurrentNetwork, and
FullyRecurrentNetwork2; the table includes results of SecondOrderRecurrentNetwork
which appeared to be the most effective).
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Table 6. Results of experiments on two-spiral problem: average, maximum, and minimum fitness,
and the number of runs ended with success.

Method Mean Std Maximum Minimum Successes

HCAE(Oper2) 169.2 18.4 194 125.8 10
NEAT 122.3 5.6 132.5 112.5 0

CoSyNE 106.5 6.7 112.1 96.2 0

Table 7. Results of experiments on inverted-pendulum problem: average, maximum, and minimum
fitness, and the number of runs ended with success, networks with 40 hidden units.

Method Mean Std Maximum Minimum Successes

HCAE(Oper2) 40,000 0 40,000 40,000 30
NEAT 9461 954 10,368 7511 0

CoSyNE 10,563 8.2 10,568 10,545 0

As Table 6 shows, the only algorithm that coped with the TSP is HCAE(Oper2) (ex-
ample spirals generated by HCAE(Oper2) networks are depicted in Figure 4). In this case,
ten runs ended with fully successful networks, and the average result amounts to 169.
NEAT and CoSyNE, like AE and AEEO, appeared to be insufficiently effective to evolve
even a single fully successful neural network. All NEAT and CoSyNE runs got stuck
in more or less the same region of fitness function, that is, for NEAT, between 112 and
132 (example spirals generated by NEAT networks are depicted in Figure 5), whereas for
CoSyNE, between 96 and 106.

Figure 4. Spirals generated by ten fully successful neural networks evolved by HCAE(Oper2).

Figure 5. Example spirals generated by NEAT networks.

In IPP, HCAE(Oper2) again outperformed other methods. Generally, it had no prob-
lems with evolving fully successful networks that were able to balance the cart-and-pole-
system for the maximal number of iterations in all four attempts. To evolve a fully successful
network, it needed only 1386 network evaluations on average and 310 minimum.

Meanwhile, the rivals of HCAE, like in the previous case, could not successfully cope
with the problem. The best result in both cases corresponds to the beginning of the second
out of four simulations, that is, to the area of fitness function equal to 10,000. There were
very few runs, in this case, that exceeded 11,000. As before, this result is very similar to
those obtained by AE and AEEO.

Generally, two factors can be responsible for the difference in performance between
HCAE and its rivals, i.e., the evolutionary algorithm and the encoding method. However,
the most likely “suspect”, in this case, seems to be the evolutionary algorithm. As already
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mentioned, regardless of the testing problem, the results of NEAT and CoSyNE are very
similar to those obtained by AE and AEEO. Meanwhile, the only thing that all the algo-
rithms have in common is the traditional evolutionary model. This suggests that, like in
the case of AE and AEEO, the decisive factor that prevented NEAT and CoSyNE from
obtaining better results is the model of the evolution applied in both algorithms.

In turn, the influence of the encoding method is visible in the networks’ architecture:
most networks evolved by NEAT and CoSyNE were densely connected with a maximum
number of neurons. In the early stages of the evolution, NEAT produces “light” networks
from “light” genetic representations. However, the representations and networks quickly
become more and more complex and their effective processing more and more difficult.
Exactly the same problem is observed in AE and AEEO, where the growth in genotypic
complexity decreases the effectiveness of the evolution. In turn, CoSyNE, from the very
beginning, evolves fully connected neurons of a fixed architecture and does not have any
effective mechanism for producing sparse networks.

Meanwhile, the networks produced by HCAE(Oper2) often included fewer neurons
than the assumed maximum size, and were very often sparse; NDMs of these networks
contained many spacious holes filled with zeros.

4.7. Tests on Datasets from UCI Machine Repository

The most effective variant of HCAE was also compared with LFPSO, PSOLF, LPSONS,
and BP on thirteen classification benchmarks from the UCI machine repository. To this end,
HCAE was put to the test in the same conditions as those used in the experiments reported
in [27]. For each classification benchmark, the following setting was applied: 30 runs of
the algorithm, neural networks with five hidden units, termination of the algorithm after
13,000 network evaluations, mean square error (MSE) as a minimized objective function,
training set—80% and testing set—20% of data instances (in [27]: 70%—testing set, 10%
validation set, and 20% testing set).

Since the above conditions of the experiments assume a quick effect (only 13,000 net-
work evaluations) with the use of small neural networks (only five hidden units), HCAE
had to be adjusted to these conditions through appropriate parameter setting. First, the size
of each NDM corresponded to networks with five hidden units. Second, it was assumed
that, in order to evolve effective networks with a small number of neurons, the networks
cannot be both small and sparse. In consequence, Oper2 was modified so as not to generate
holes between consecutive values in NDMs. Third, in order to quickly evolve effective
networks, the stagnation of the evolutionary process in CCEGA should be detected very
quickly; the first symptoms of the stagnation should interrupt one evolutionary run and
start a next run. To achieve such an effect, the interruption of each single CCEGA run took
place after five iterations without progress.

Tables 8 and 9 show the comparison of all the five methods in terms of the training
and testing accuracy that is defined in [27] as a rate of correctly identified data instances to
all instances derived either from the training or the testing set, respectively. In both tables,
the best results for each benchmark are in bold.

The tables show that, in spite of unfavorable conditions for HCAE which is rather
dedicated to problems which require greater networks and more effort to train them, it
outperforms all rival methods in terms of both the training and testing accuracy. The
number of wins (the best results in bold) for each algorithm and for each benchmark is as
follows: training phase (BP = 0, PSOLF = 2, LFPSO = 3, LPSONS = 11, HCAE = 12), testing
phase (BP = 6, PSOLF = 1, LFPSO = 2, LPSONS = 7, HCAE = 13), total (BP = 6, PSOLF = 3,
LFPSO = 5, LPSONS = 18, HCAE = 25).
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Table 8. Classification training accuracy (results of BP, PSOLF, LFPSO, and LPSONS taken from [27]).

Dataset Param. BP PSOLF LFPSO LPSONS HCAE

Breast Cancer Best 0.9760 0.9790 0.9806 0.9811 0.9821
Mean 0.9721 0.9721 0.9753 0.9759 0.9786

Std 0.0041 0.0043 0.0046 0.0041 0.0042

Liver Best 0.7837 0.7824 0.7740 0.7866 0.7898
Mean 0.7393 0.7297 0.7535 0.7652 0.7816

Std 0.0193 0.0248 0.0183 0.0177 0.0101

Wine Best 0.9908 1.0000 1.0000 1.0000 1.0000
Mean 0.9872 0.9832 0.9968 1.0000 0.9941

Std 0.0047 0.0096 0.0056 0.0000 0.0127

Australian Best 0.8929 0.8902 0.8944 0.9586 0.8804
Mean 0.8791 0.8712 0.8819 0.8818 0.8736

Std 0.0110 0.0090 0.0091 0.0279 0.0039

Hepatitis Best 0.9853 1.0000 1.0000 1.0000 0.9200
Mean 0.9721 0.9619 0.9768 0.9885 0.8888

Std 0.0162 0.0305 0.0147 0.0128 0.0222

Heart Best 0.9392 0.8956 0.9086 0.9183 0.9023
Mean 0.9116 0.8719 0.8764 0.8894 0.8824

Std 0.0175 0.0113 0.0170 0.0147 0.0135

Blood Best 0.7934 0.7881 0.7977 0.8015 0.8030
Mean 0.7512 0.7674 0.7807 0.7904 0.7949

Std 0.0182 0.0134 0.0145 0.0077 0.0059

Iris Best 0.9921 0.9809 0.9904 1.0000 0.9833
Mean 0.9635 0.9519 0.9647 0.9752 0.9691

Std 0.0323 0.0495 0.0175 0.0163 0.0209

Credit Best 0.9046 0.8905 0.8993 0.9059 0.9005
Mean 0.8825 0.8822 0.8840 0.8877 0.8921

Std 0.0178 0.0065 0.0084 0.0114 0.0060

Seeds Best 0.9775 0.9640 0.9640 0.9784 0.9761
Mean 0.9587 0.9489 0.9566 0.9647 0.9623

Std 0.0123 0.0115 0.0106 0.0110 0.0158

Haberman Best 0.7810 0.7803 0.7850 0.7803 0.7836
Mean 0.7635 0.7616 0.7612 0.7654 0.7752

Std 0.0215 0.0136 0.0186 0.0134 0.0061

Balance Best 0.8921 0.8949 0.9640 0.8995 0.9023
Mean 0.8705 0.8741 0.8849 0.8853 0.8909

Std 0.0189 0.0097 0.0104 0.0090 0.0111

Diabetes Best 0.7163 0.7099 0.7229 0.7345 0.7296
Mean 0.7082 0.7093 0.7191 0.7109 0.7079

Std 0.0147 0.0093 0.0084 0.0109 0.0233

However, if the best accuracy is considered separately from the mean accuracy, the re-
sults are slightly different: training phase—best (BP = 0, PSOLF = 1, LFPSO = 2, LPSONS = 7,
HCAE = 6), testing phase—best (BP = 4, PSOLF = 1, LFPSO = 2, LPSONS = 5, HCAE = 4),
total—best (BP = 4, PSOLF = 2, LFPSO = 4, LPSONS = 12, HCAE = 10), training phase—
mean (BP = 0, PSOLF = 0, LFPSO = 2, LPSONS = 4, HCAE = 6), testing phase—mean
(BP = 2, PSOLF = 0, LFPSO = 0, LPSONS = 2, HCAE = 9), total—mean (BP = 2, PSOLF =
0, LFPSO = 2, LPSONS = 6, HCAE = 15). They show the high stability of HCAE which,
regardless of the problem, the number of problem parameters, the number of data instances,
and the starting point of the evolution, is able to quickly produce effective neural networks
in almost every run. However, the above-mentioned result may also suggest some prob-
lems of HCAE with exploitation and finding globally optimal solutions. While the average
effectiveness of HCAE is very high compared with other algorithms, its best networks were
often inferior to the best networks of the rivals, especially to the networks of LPSONS.
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Table 9. Classification testing accuracy (results of BP, PSOLF, LFPSO, and LPSONS taken from [27],
*—a table in [27] includes a value 0.7315 instead of 0.6315, however, due to the fact that 0.7315 is
greater than 0.68 which is the best value for Diabetes dataset, the value 0.7315 was considered to be a
typo and it was replaced with 0.6315.

Dataset Param. BP PSOLF LFPSO LPSONS HCAE

Breast Cancer Best 0.9748 0.9756 0.9707 0.9756 0.9640
Mean 0.9529 0.9590 0.9590 0.9648 0.9630

Std 0.0920 0.0116 0.0076 0.0072 0.0083

Liver Best 0.8427 0.7323 0.7058 0.7353 0.7971
Mean 0.6558 0.6469 0.6539 0.6638 0.7893

Std 0.0495 0.0448 0.0647 0.0450 0.0182

Wine Best 0.9259 0.9811 0.9811 1.0000 0.9714
Mean 0.8667 0.9377 0.9413 0.9509 0.9714

Std 0.0531 0.0427 0.0346 0.0328 0.0101

Australian Best 0.8985 0.8985 0.8888 0.8985 0.9130
Mean 0.8629 0.8604 0.8623 0.8635 0.9045

Std 0.0325 0.0263 0.0184 0.0223 0.0081

Hepatitis Best 0.9655 0.9117 0.8529 0.9118 0.9000
Mean 0.9211 0.7913 0.7911 0.7941 0.8722

Std 0.0462 0.0801 0.0426 0.0399 0.0194

Heart Best 0.9870 0.8314 0.8764 0.8539 0.9502
Mean 0.8293 0.8024 0.8258 0.8112 0.8311

Std 0.0265 0.0183 0.0348 0.0264 0.0322

Blood Best 0.8154 0.7991 0.8214 0.8125 0.8053
Mean 0.7739 0.7713 0.7746 0.7799 0.7908

Std 0.0425 0.0248 0.0339 0.0244 0.0122

Iris Best 0.9565 0.9777 1.0000 1.0000 1.0000
Mean 0.9230 0.9155 0.9711 0.9755 0.9944

Std 0.0553 0.0701 0.0298 0.0286 0.0299

Credit Best 0.9529 0.8775 0.8775 0.8826 0.8905
Mean 0.9329 0.8418 0.8250 0.8290 0.8725

Std 0.220 0.0259 0.0587 0.0621 0.0079

Seeds Best 0.9808 1.0000 0.9833 1.0000 0.9761
Mean 0.9215 0.9416 0.9250 0.9250 0.9730

Std 0.0393 0.0345 0.0326 0.0479 0.0080

Haberman Best 0.7872 0.7826 0.7826 0.8043 0.7540
Mean 0.7416 0.7347 0.7360 0.7500 0.7453

Std 0.0361 0.0370 0.0455 0.0251 0.0081

Balance Best 0.8635 0.9090 0.9037 0.9144 0.9186
Mean 0.8239 0.8883 0.8716 0.8883 0.9086

Std 0.0424 0.0173 0.0232 0.0200 0.0111

Diabetes Best 0.6800 0.7043 0.6795 0.7092 0.7391
Mean 0.6315 * 0.6392 0.6078 0.6383 0.7159

Std 0.0369 0.0233 0.0402 0.0221 0.0213

4.8. Results of Experiments on the Trajectory-Following Problem

The aim of this phase of research was to verify the ability of HCAE to solve real prob-
lems requiring neural networks of small to medium size. Since one of the target applications
of HCAE are control problems, it was decided that the real problem in this phase of the
research would be to control a complex non-linear object, namely, an underwater vehicle.
The rivals of the proposed algorithm in this case were DE and PSO, whose parameter
setting is in Appendix A, at the end of the paper. The task of each of the algorithms was
the construction of the FFANN and RANN networks for the TFP problem described in
Section 4.3. Each of the algorithms was run 30 times and, during each run, it was possible
to evaluate a maximum of 3,000,000 neural networks. The test results in the form of Emax

1
and Emax

2 errors are presented in Table 10, and an example of the AUV trajectory is shown
in Figure 6.
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Table 10. Results of experiments on TFP.

HCAE(FF) HCAE(R) DE(FF) DE(R) PSO(FF) PSO(R)

Mean Emax
1 0.59 0.58 0.94 0.73 1.12 1.05

Max E1max 0.64 0.62 0.96 0.81 1.32 1.33
Std E1max 0.04 0.03 0.01 0.05 0.05 0.04

Mean Emax
2 0.44 0.45 0.59 0.72 0.82 0.79

Max Emax
2 0.52 0.5 0.65 0.75 0.95 0.99

Sts Emax
2 0.03 0.02 0.05 0.06 0.03 0.05

Figure 6. Example AUV trajectory.

As can be seen, also in this case, the HCAE outperforms its rivals. The average and
maximum errors Emax

1 and Emax
2 generated for all the 30 runs of the algorithm are definitely

smaller than the errors obtained for the other algorithms, which proves that HCAE is
able to very effectively solve not only artificial problems but also real ones. Moreover, the
obtained result confirms the high efficiency of the new model of the evolution of neural
networks proposed in the paper. The algorithms used in DE and PSO along with the direct
network coding method used in them turned out to be less effective.

5. Directions of Further Research

The current variant of HCAE is a classic hill climber which assumes that only better
NDMs are accepted in the following algorithm iterations. In a future variant, a solution
from simulated annealing can be borrowed which allows the acceptance of non-improving
steps. In HCAE, the acceptance of worse matrices would depend on the phase of the
algorithm. In early phases, they would be accepted with a greater probability, whereas in
later phases, they would be very unlikely.

Instead of developing a single leader network, the algorithm, at each evolutionary
step, can also work on a number of networks simultaneously. The increase in the number
of evolved networks should have a positive effect on the chance of finding the global
optimum. In the extreme case, a solution can also be imagined in which the number of
programs constructed in a single evolutionary iteration is equal to the number of leader
networks, and each program develops its own network.

6. Conclusions

The paper presented a novel neuro-evolutionary algorithm called Hill Climb Assem-
bler Encoding. The algorithm encodes a neural network in the form of a matrix which is
filled with an evolutionary formed program called assembler encoding program. Like every
assembler program, the AEP is composed of two parts, i.e., a part with implementation
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and a part with a data sequence. The implementation part includes operations whose code
is fixed—it does not evolve. Each operation is supplied with a vector of parameters and a
sequence of data. Both data and the parameters are shaped in the evolutionary way. Their
evolution is conducted according to the CCEGA algorithm, one population includes data
sequences, whereas vectors of parameters are processed in two other populations.

The HCAE has two variants which differ in applied operations. One variant uses
so-called ANN operations, which are small neural networks whose task is to form the
matrix representing a resultant neural network. The ANN operations are supplied with
sequences of data. Another variant of HCAE does not use ANN operations; instead, it
simply copies data directly to the matrix. Where data is copied and how much data is
copied is determined by the operation.

HCAE was tested on fourteen classification problems, including the two-spiral prob-
lem, which is a well-known benchmark for binary classification and is regarded as extremely
challenging, and on the inverted-pendulum problem which is a well-known control bench-
mark. In the tests, apart from HCAE, eight other algorithms were also used for comparison
purposes, i.e., two predecessors of HCAE: essembler encoding, and assembler encod-
ing with evolvable operations, and six other methods: Neuro-Evolution of Augmenting
Topologies which is a well-known state-of-the-art NE method, Cooperative Synapse Neuro-
Evolution, Levy Flight Particle Swarm Optimization (LFPSO), modified LFPSO, Mantegna
Levy Flight, Particle Swarm Optimization, and Neighbourhood Search, and the classic
Back-Propagation algorithm.

The experiments revealed that HCAE outperforms all rival methods. The main factor
that decided the high effectiveness of HCAE compared with other algorithms is the gradual
growth in the networks and neuro-evolution conducted in a reduced search space. HCAE
constructs the networks incrementally, little by little, by gradually adding new neurons
and connections to the best network found so far. Each increment is a product of other
evolutionary runs, each of which processes very simple HCAE programs.

In contrast, in the remaining algorithms, we deal with a one-to-one relation between
genotype and phenotype, resulting in each algorithm being responsible for finding a
complete network in the genotype space. If the space is large and the problem is abundant
with local minima, finding the optimum is not a trivial task. This applies particularly to
direct methods such as NEAT or CoSyNE, which do not scale well with larger networks.

The HCAE variant, which constructs neural networks by locally expanding them with
concentrations of neurons and connections, appeared to be the most effective. Another
characteristic of this variant is extreme simplicity compared with other HCAE variants and
other algorithms. To form a neural network, it simply copies data directly to the matrix
representation of the network.

The global nature of ANN operations seems to be the main reason for the problems of
the HCAE variant based on these type of operations with generating optimal networks.
HCAE assumes a slow incremental growth in the networks in many successive evolutionary
runs, whereas, ANN operations disprove this assumption with serious changes introduced
to the networks, which can be very destructive for the connection schemes found earlier.
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Abbreviations
The following abbreviations are used in this manuscript:

HCAE Hill climb assembler encoding
HCMAE Hill climb assembler encoding
ANN Artificial neural network
FFANN Feed-forward ANN
RANN Recurrent ANN
AE Assembler encoding
AEEO Assembler encoding with evolvable operations
NDM Network definition matrix
AEP Assembler encoding program
TSP Two-spiral problem
IPP Inverted-pendulum problem

Appendix A. Structures Including Parameters of NEAT

typedef struct {
double connection_mutate_chance = 0.6;
double perturb_chance = 0.90;
double crossover_chance = 0.7;
double link_mutation_chance = 2.0;
double node_mutation_chance = 0.50;
double bias_mutation_chance = 0.40;
double step_size = 0.1;
double disable_mutation_chance = 0.4;
double enable_mutation_chance = 0.2;
} mutation_rate_container;

typedef struct {
unsigned int population = 300;
double delta_disjoint = 2.0;
double delta_weights = 0.4;
double delta_threshold = 1.3;
unsigned int stale_species = 15;
} speciating_parameter_container;

Appendix B. Structures Including Parameters of CoSyNE

typedef struct {
int numpops = 36;
int popsize = 300;
int init_popsize = 0;
int numevals = 1;
int stagnation = 20;
int nettype = 0; - feed-forward ANN
bool netlevel = false;
int netlevelsize = 20;
bool grownets = true;
double mutation = 0.2;
bool perc = false;
int loci = 1;
double neutral = 0.1;
bool proportional = false;
double shift = 0.1;
double wtrange = 10.0;
int crossover_type = 1;
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} cosyneArgs;

DE:
size of population = 300,

differential weight: F = 0.01,

mutation probability: Cr = 0.3,

length of chromosomes in FFANNs = 120 genes,

length of chromosomes in RANNs = 196 genes

PSO:
PSO: size of population = 300,

inertia rate: θ = 0.1,

learning rates: α = 2, β = 2,

length of chromosomes in FFANNs = 120 genes,

length of chromosomes in RANNs = 196 genes
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