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Abstract: With the explosive growth of the demand for computing power in the era of digital econ-
omy and the continuous enhancement of the computing power of terminals, how to provide high
bandwidth, low-latency, and low-cost service by leveraging the user devices’ computing, storage,
and network resources has become a research hotspot. However, due to differences in magnitude,
architecture, and performance, the existing technologies for cloud computing and edge computing
need to overcome many challenges such as android-based devices not supporting container tech-
nologies. In this paper, a terminal-side computing force network (TSCFN) architecture is proposed,
which realizes the unified computing power management of massive user devices by layered and
distributed architecture with highly dynamic and domain-federated deployments. At the same time,
we propose a cloud-native container resource scheduling scheme based on the Android system to
enhance the scalability of TSCFN. Taking the CDN service as a use case, the experiment results show
that services provided by TSCFN can reduce latency and improve resource utilization, especially in
an unstable network status. Compared with traditional CDN, delay duration of HomeCDN based on
TSCFN is decreased by 96% in a bad network environment.

Keywords: terminal-side computing force network; container technology; resource scheduling;
resource awareness and abstraction; service orchestration

1. Introduction

Computing Power is fast becoming a key instrument in digital economy. Only with
stronger computing power, can smart industry, smart city, smart transportation, smart
medical, and other application scenarios continue to change from ideal to reality, so as
to achieve continuous expansion of industrial scale and continuous economic and social
progress. With the continuous penetration of digitalization into thousands of industries,
the demand for computing power is also surging. In 2020, total computing power reached
135EFLOPS in China. In order to meet the growing demand for computing power, Industry
must focus on building large-scale and ultra-large-scale data centers. However, the central-
ized cloud computing model has obvious shortcomings in terms of delay, bandwidth, and
flexibility. The edge computing model is closer to the data source. The delay-sensitive tasks
are deployed to the edge nodes, without uploading to cloud data centers through long links.
It realizes the rapid response of key tasks and effectively relieves the computing pressure
of cloud data centers. With the gradual increase in the computing power of personal
computers, many distributed computing projects have used the idle computing power
of volunteer computers around the world, such as the SETI@Home and Folding@home
projects. However, they all focus on homogeneous terminal resources, and do not solve
the resource utilization problem of heterogeneous massive terminals. At the same time,
the number of intelligent terminal devices is growing exponentially. According to IDC’s
forecast, the number of global terminal devices will reach 100 billion in 2025. The rapid
development of large-scale integrated circuits and semiconductor technologies has led to
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a rapid increase in the computing power of terminal equipment. Taking the Apple A15
chip as an example, it is equipped with a faster neural network engine and image signal
processor, and the AI computing power has reached 15.8TOPS. According to a Gartner
report, in 2022, 74% of the world’s data will be analyzed and calculated on the terminal
side. With the continuous enrichment of terminal-side computing resources, whether the
massive terminal computing resources can be utilized more effectively has become a new
research field. Table 1 shows the comparison of three kinds of computing models.

Table 1. Comparison of cloud, edge, and device computing.

Issues Cloud Edge Device

Computing Mode Centralized Distributed Hyperdistributed
Distribution Characteristics Network Center Network Edge Service Occurrence Site

Hardware resources Sufficient and belongs to the
company

Relatively sufficient and
belongs to the company

Fragmented and limited and
belongs to the user

Delay High Low Very Low
Location Awareness No Regional Awareness Precise Awareness

Bandwidth Requirements Sensitive Insensitive Insensitive
Service type batch large tasks small tasks lightweight small tasks
Privacy level low low high

Existing work tends to achieve centralized computing power scheduling through
network capabilities and promote the ubiquity of computing power. For example, China
Mobile, China Telecom, China Unicom have all released white papers on computing power
networks. However, current solutions basically do not consider how to use the computing
power of massive terminals, but only use terminals as a carrier of business, rather than as a
provider of business. At the same time, the traditional cloud-native technology system faces
challenges when managing terminal devices because they are massive and lightweight,
with different architecture and high fragmentation, compared with the data center.

In this paper, we leverage customized cloud native technology to help in the man-
agement and scheduling of dispersive computing resources. We propose a terminal-side
computing force network (TSCFN) architecture that includes resource scheduling layer,
resource management layer, orchestration and scheduling layer, and the capability opening
layer. Through this architecture, idle terminal computing power resources can be aggre-
gated and scheduled to support upper-level services with container technology. However,
a large number of Android devices do not support container technology. We introduce a
cloud-native container resource scheduling scheme based on the Android system. This
scheme can make cloud management technology easier to deploy and manage on Android
devices. In addition, we research the application scenarios based on TSCFN, and built
a demonstration environment to verify the solution from both the function and perfor-
mance aspects.

In summary, the main contributions are the following:

• We propose a TSCFN architecture to achieve unified allocation, scheduling, and
management of massive lightweight computing resources, to bring computing closer
to the terminal side, while pooling idle terminal computing power to better meet the
user experience.

• We propose a cloud-native container resource scheduling scheme based on the An-
droid system. This allows a large number of Android devices to join TSCFN, thereby
greatly expanding the availability and scalability of the network.

• We propose typical application scenarios based on TSCFN. In addition, we experimen-
tally verified that TSCFN-based HomeCDN service can provide better performance
compared to traditional CDN.

The rest of the paper is organized as follows. Section 2 discusses the related works.
Section 3 describes the overall structure of TSCFN and key technologies. Section 4 studies
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potential application cases and analyzes the performance of HomeCDN based on TSCFN.
Finally, Section 5 concludes this paper and gives future research directions.

2. Related Work

The computing force network is the ubiquitous computing force resource based on
the ubiquitous network. It is an intelligent, flexible, and on-demand real-time invoking
Network Architecture. The computing force network connects distributed computing
nodes through the network. According to the real-time perception of massive computing
resources and network resource status, the resources of the computing force network
are reasonably coordinated. The computing tasks are uniformly scheduled, allocated,
and arranged to meet new business, new applications, and requirements for computing
power [1]. At present, the industry and academia are promoting the development and
research of the computing force network.

In industry, the three major operators are actively involved in the related work of
Computing Force Network. China Mobile leads the international standard for computing
power-aware networks in ITU-T, and promotes computing-force-aware networks to become
an important direction for the next ITU research period. China Mobile first posted the
“White paper on computing power aware network technology” [2]. They also proposed a
computing force-aware network based on distributed systems, computing, and network
integration, realized joint optimal scheduling of ICT (Information and Communications
Technology) systems, provided end-to-end ICT systems and SLA (Service-Level Agree-
ment) experience guarantee, and promoted the computing force network as one of the
foundations of the 6G network development in IMT-2030. Furthermore, they released
the “Computing Force network White paper” in November 2021 [3] to analyze the con-
cept, architecture, technology, and ecology of the network. China Unicom takes the lead
in ITU computing power scheduling technical standards, proposing a network-centric
realization of computing force network in CUBE-Net3.0 and a new type of “computing
network integration” as the long-term goal of future bearer network development. The
“White paper on computing network architecture and technology system” was released [4],
which clarifies the key factors of China Unicom’s computing network architecture de-
sign, functional model, inter-layer interface, and each functional layer. Combined with
several scenarios, the application and deployment methods of computing force network
are prospected. China Telecom’s “Cloud-Network Integration 2030 Technical White Pa-
per” emphasizes cloud-network integration [5], and proposes the technical architecture,
three-stage development path, and goals of China Telecom’s cloud-network integration,
and regards computing force network as one of the key technological innovation areas
of cloud-network integration. Huawei proposed CFirstN at the IETF, and ZTE actively
conducted technical research and prototype verification. In the computing force network,
the computing, storage, and other resources of massive terminal-side devices are an im-
portant part of its infrastructure. The research of various enterprises mainly focuses on
large-scale data centers, and there is no systematic consideration of massive terminal-side
resources. The TSCFN proposed in this paper is different from the traditional data center
that is centralized by operators or cloud service providers. It collects and organizes the idle
resources of massive user terminals, makes full use of the computing resources of massive
terminals, and cooperates with traditional cloud computing and edge computing to achieve
complementary advantages in different scenarios.

In academics, with the exposure of problems in cloud computing, the research on
edge computing has also been very in-depth, which mainly focuses on computing of-
floading, service migration, content caching, and cloud-edge-terminal collaboration. In
the literature [6], the author focus on three offloading decision scenarios to explore the
optimal strategy for offloading scheduling and resource management. In the paper [7],
the authors introduce the network organization method of the computing force network,
which is oriented to business requirements, and allocates and flexibly schedules computing
resources among clouds, networks, and edges on demand. Starting from the computing
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force network architecture, in order to realize the unified scheduling and management
of a wider range of computing resources, based on the cloud-native resource scheduling
mechanism, a lightweight, multi-cluster hierarchical edge resource scheduling scheme
is expounded. Based on the lightweight cloud native platform, the unified management
of front-end massive edge devices for computing force networks is realized, and can be
deployed on embedded platforms of various architectures. Reference [8] designed a public
computing power platform architecture for the current situation that machine learning
has relatively high requirements on the development environment. Through the technical
design and configuration of containerization, the hardware resources of the GPU can be
shared. By allocating computing resources on demand, the isolation of the development
environment of each artificial intelligence development project can also be achieved. The
specific methods of platform implementation, management, and maintenance are proposed.
In [9], the author conducts an in-depth study on the key issues of efficient deployment of
tasks in the cloud-edge joint data center environment. An efficient task deployment method
of the joint cloud computing model in the edge computing environment is proposed, and
the efficient deployment method of the task in the cloud-edge joint computing environment
is studied. The efficient processing method of large-scale lightweight tasks in the mobile
edge computing environment is innovated. In [10], the author analyzes the spatial and
temporal differences of edge container cloud loads in a multi-cluster environment and the
differences in experimental sensitive requirements of edge applications, and proposes a
multi-cluster edge cloud framework managed by master-slave mode. Further, they research
the resource scheduling problem of delay-sensitive applications in the framework, and a
cross-cluster resource scheduling strategy for delay-insensitive applications is proposed to
improve the resource utilization rate of the cluster. In the literature [11], the author proposes
a lightweight mobile operating system virtualization architecture for the problems of low
efficiency and high cost caused by the current virtualization architecture translating a large
number of instructions between the hardware layer and the virtual system. By extending
the Driver namespace framework on the basis of the Linux kernel namespace mechanism,
multiple virtual Android systems can run simultaneously.

Traditionally, cloud computing technology was applied to the mobile Internet, so
that mobile devices such as mobile phones, tablets, and stereos can obtain the required IT
resources or information services in an on-demand and easily scalable manner through the
mobile network. As to how to fully mine and utilize the resources of the terminal itself after
the computing power sinks, as well as the problems of heterogeneous and decentralized
computing power [9,11], the industry has begun to explore how to apply the cloud-based
container orchestration technology to the edge. Most research still focuses on the orchestra-
tion and scheduling of MEC resources. For the orchestration and scheduling of computing
power on the terminal side, it is more based on a unified technical system to promote better
collaboration between the cloud and the edge, and it has not yet been involved in how to
effectively integrate the computing power resources of massive terminals.

3. Terminal-Side Computing Force Network

TSCFN, integrating the computing resources of massive user terminals and devices
in the community and buildings, such as phones, smart home terminals, community
monitoring devices, and edge nodes, provide users with high-quality computing services
on demand. It can unify, manage, and dynamically schedule terminal computing resources,
and fully coordinate with edge computing and cloud computing. Although TSCFN focuses
on the terminal-side, it does not mean that it is separated from the cloud-side and the
edge-side. On the contrary, TSCFN is more closely integrated with the cloud-side and
edge-side. A computing task can be calculated in the cloud, edge or TSCFN independently
according to the different privacy or latency requirements. It may also need the cloud and
edge and TSCFN cooperate to complete the calculation. In addition, the TSCFN can build
everyone’s private IaaS on the user side. Users can “rent out” the storage and computing
resources of the device when the device is idle or after the end of its life cycle, and users
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can get income from their own device resources. It will bring a new supply and service
way of computing power.

3.1. Overall Structure

The overall architecture of the TSCFN is shown in Figure 1, which mainly includes the
resource scheduling layer, the resource management layer, the orchestration and scheduling
layer, the capability open layer, and the application layer. The resource scheduling layer
unifies and manages resource instances in heterogeneous devices with different configura-
tions and different operating systems using container virtualization technologies. TSCFN
relies on the resource scheduling layer to sense the network resources, computing resources,
and storage resources in the cluster. The resource scheduling layer is the basic form of
orchestration and scheduling of fragmented terminal resources—it reports the resources
information to the resource management layer. The resource management layer abstracts,
maps, and manages the unified fragmented device resources to form the terminal-side
computing resource pools and storage resource pools, which shield the underlying differ-
ences of the devices. The resource scheduling layer and the resource management layer
jointly realize the unified management of device resources of TSCFN. The orchestration
and scheduling layer is the brain in TSCFN. It intelligently decomposes applications and
reasonably arranges and schedules computing tasks with AI algorithms according to the
TSCFN load, node availability, and attributes of upper-layer applications. The capability
open layer provides a unified capability set of computing capabilities, storage capabilities,
and AI capabilities of TSCFN, and provides standard open APIs for the different appli-
cation environments. Developers only need to package applications into containerized
micro-services, which can be easily deployed, updated, and iterated on TSCFN. At the
same time, TSCFN also built an application store for developers and users, which can
provide better integrated computing services and enrich the ecology of TSCFN.

Figure 1. Overall structure.

3.2. Key Technology

TSCFN has certain similarities with cloud computing. Cloud computing aggregates a
large number of hardware resources to form a unified resource pool, which can provide
the computing services with the dynamic and scalable virtualized resources through the
network. Similarly, TSCFN also aggregates massive amounts of individual hardware to
form a unified terminal-side resource pool, which can provide the computing or storage
services through scheduling and orchestration. Therefore, it has the theoretical basis for
using the cloud computing technologies to build TSCFN. At present, the cloud native
technologies have become a hot spot in the field of cloud computing. Among them, the



Electronics 2022, 11, 2108 6 of 15

container technology is one of the most active technologies. Containers are a lightweight
virtualization alternative to VMs [12] that leverage two Linux kernel features: namespace
and cgroups [13]. Containers can reduce overhead compared to VMs by packaging only
applications or functions and application-specific operating system dependencies [13,14].
One of the most widely used containerization technologies is Docker due to its ability to
provide portability and scalability [15]. Lightweight Docker containers enable portability
and real-time deployment of distributed applications. Solutions based on lightweight
Docker containers also promote the realization of TSCFN [16,17]. Docker handles the
packaging and distribution of applications, while the Kubernetes (K8s) is used to scale,
run, and monitor applications [18]. K8s has become the mainstream tool for orchestration
and scheduling in cloud-native programs, also known as a container orchestrator. It
provides deployment automation, scheduling, scaling, and orchestration of containerized
applications [19]. At the same time, considering there are more and more light devices, K3s
has gradually become a hot topic, which tailors and optimizes the management plane and
control plane of K8s.

However, since the computing resources in TSCFN come from terminal devices, which
are massive, lightweight, and heterogeneous compared with dedicated servers. Therefore,
the technical solutions of TSCFN have to fully optimize the differentiated characteristics of
the devices, which should consult both the experience of cloud resource management and
the compatibility with the mainstream cloud native technologies. The key technologies
of TSCFN include perception and abstraction of heterogeneous resources, scheduling of
massive lightweight resources, and orchestration of services.

3.2.1. Heterogeneous Resource Awareness and Abstraction Technologies

TSCFN is a highly heterogeneous environment, covering different hardware, software
architectures, and various chips (the resources and processing capabilities of various chips
are different, for example, some of the processor cores support a large cache structure, and
some support a small cache structure). Some cores are sequential pipelines; some are out-
of-order pipelines. Such a highly heterogeneous environment requires TSCFN to be aware
of the resource requirements of different programs on different chips (due to the different
attributes of computing tasks, different computing tasks have different requirements for
hardware resources, such as computing-intensive tasks, accessing memory-intensive tasks
or branch-intensive tasks). At the same time, the resource scheduling decisions also need
to sense the load of TSCFN in real time, and comprehensively consider the migration cost
between different cores. Containerized transformation of the terminal system can shield
the interface details of the hardware platform and the differentiation of operating system
versions. In TSCFN, the resource management layer provides abstract services for the
upper layers with APIs, so that the application does not need to know the details of the
device, which greatly reduces the developer’s dependence on system understanding and
development complexity.

3.2.2. Resource Scheduling Technologies

Considering the characteristics of devices, such as mass and lightweight, this paper
adopts a converged architecture of “K8s+K3s” to achieve unified terminal-side resource
scheduling management. The terminal cluster uses the lightweight K3s cloud native
platform to manage the resources, which is more suitable for devices with limited resources.
On the cell or edge side, the K8s cloud native platform is used to unify, schedule, and
manage the multi-clusters. This converged architecture based on cell slicing can fully match
the capabilities and characteristics of nodes, and realize efficient collaboration between
cloud, edges, and terminals with the unified platform interfaces [20]. Now, the main
operating system is Android, but K3s cannot support Android, due to the tailoring of some
functions of Linux by the Android. This paper proposes a cloud-native container resource
scheduling scheme based on the Android system, which ensures TSCFN can coverage
mainstream terminal devices, the scheme is detailed in Section 3.3.
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3.2.3. Service Orchestration Technologies

The traditional cloud computing environment has homogenized computing nodes
and reliable network connections, while the computing nodes and network connections
in TSCFN are highly heterogeneous. If TSCFN arranges the tasks indiscriminately, it
will easily lead to a waste of resources for devices with high computing power, and the
longer computing time of devices with low computing power, which makes the service
worse. In centralized service orchestration, each service orchestration is relatively simple
and straightforward (the main purpose of the service orchestration is obtaining more
resources and completing services more efficiently). In TSCFN, computing resources
are relatively limited and more fragmented, therefore, it has higher demands for service
orchestration technologies. TSCFN adopts cloud-native technologies, and each service
is dynamically deployed in the container. Meanwhile, more terminal-side characteristic
factors are considered, such as load, delay, network consumption, and service attributes.
The orchestration and scheduling layer of TSCFN in this paper comprehensively consider
the interaction between the orchestration strategy and the cost, and continuously iterate
the overall service orchestration strategy that meets the Nash equilibrium conditions, for
example, when there are multiple applications running at the same time, the security
and real-time interactive services should be defined as high priority, but the storage and
audio-visual services should be defined as low priority.

3.3. A Cloud-Native Container Resource Scheduling Scheme Based on Android System

According to the architecture design principles of K8s and K3s, when the system is
running, it needs to isolate the host resources, virtualize the network, and arrange the
running containers to realize the management and scheduling of the underlying computing
resources. The K8s operating architecture is shown in Figure 2. However, considering the
lightweight characteristics of terminal devices, the current Android system has tailored
some kernels of the Linux system, including the module supporting the cloud-native
network protocols, go language runtime environment, namespace and cgroup process
isolation mechanisms, and the orchestration of container runtime. The cropping make it
impossible to start the container management service, to realize the management of the
full life cycle of the container, and the orchestration of distributed containers; this means it
cannot support K8s or K3s.

Figure 2. Kubernetes operation diagram.

For the problem of container virtualization in Android, there are some solutions
and theoretical achievements, but they are not suitable for containerized management
scenarios of massive terminals. The Linux Container (LXC) project team has developed
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related components based on the Android library, so that Android can also implement
container virtualization through LXC [21]. However, LXC does not follow the OCI Runtime
specification, which is formulated by the OCI (Open Container Initiative) organization,
while the mainstream container orchestration system and container management engine,
such as K8s, K3s and Docker, cannot run container runtimes that do not follow the OCI
Runtime specification. The Condroid project of Zhejiang University refactored the LXC
tools to the ARM architecture, and proposed an Android system virtualization solution
based on Linux containers. Condroid can start multiple containers on the same device and
run an independent Android in each container [22,23]. However, in practice, this solution
needs to modify the code of each virtual Android system, which faces great difficulties in
scalability and compatibility. The Virtualization Research Laboratory of Columbia Univer-
sity proposed a Cells virtualization architecture [24,25]. Unlike the traditional Hypervisor
virtualization architecture [26], Cells can run multiple independent virtual Android systems
on one Android device, and support resource calls of the same physical device between
multiple virtual Android systems. However, Cells also brings more overhead due to its
own virtual architecture. The above solutions all solve the problems of container virtu-
alization in the Android system, to some extent, but they all cannot support the current
mainstream container orchestration tools, for they do not support the OCI specification
or the mainstream container runtimes, etc., so they also cannot realize the containerized
management of massive devices.

Considering that a large number of devices are equipped with the Android sys-
tem, such as mobile phones, set-top boxes, smart speakers, etc., this paper proposes a
cloud-native container resource scheduling scheme based on Android and completes the
optimization of the bottom layer in native Android. The scheme ensures optimized An-
droid support of the mainstream container orchestration tools, such as K8s and K3s. The
optimized Android architecture is shown in Figure 3.

Figure 3. Android system optimization supporting container technology.

First of all, it is necessary to solve the problem of allocation and isolation of network
resources and physical resources, it will create a healthy running environment for containers
under Android. First, we add virtualization to the kernel module layer and add drivers for
kernel config to support cloud-native network protocols. Therefore, the container network
can be allocated and managed after the containers are started; it means the K3s nodes can
communicate between each other. Second, we add namespaces, cgroups in kernel. We
realize the encapsulation, abstraction, and isolation of processes with namespace, so that
the processes in each namespace have their own global resources. We further realize the
allocation and restriction of underlying physical resources, such as CPU, memory, etc., with
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cgroups, so that the containers can run stably. On this basis, we modify the kernel setting
parameters to realize the docking with K3s and the supporting for containerd. At last, we
realize the pulling of container images, the management of the full life cycle of the container,
and the scheduling of computing resources with the supporting for the commands, such as
the runc command.

4. Case Studies and Performance Evaluation

As an important part of the computing power network ecosystem, TSCFN can bring
users richer experiences. It can provide users with lower-cost and lower-latency bandwidth,
storage, computing, and other resource capabilities, upgrading existing scenarios for
individuals, families, and industries, and meet the needs of ultra-high-definition video,
cloud games, and other high-concurrency, large-throughput, and large-bandwidth business
requirements. This case study confirms the importance of idle computing power.

4.1. Homecdn

CDN (Content Delivery Network) is a distributed technology that distributes the
content of the source site to all nodes, thereby shortening the delay for users to view content
and improving the response speed of user access. It can effectively solve the problems of
small network bandwidth, large number of user visits, and uneven distribution of network
points. Currently, it is mainly used in video acceleration. With the increasing demand
of users for high-definition video, live broadcast, etc., the CDN market is developing
rapidly. The current total market size is about 300 T–500 T, which has reached CNY
31.1 billion in 2020 and is expected to reach CNY 95 billion in 2025. Based on TSCFN,
idle traffic bandwidth capabilities of massive video boxes, smart speakers, and other
lightweight devices can be integrated, and provide users low-cost CDN to enhance the
service experience, including OTA upgrades, long and short videos, live broadcasts, game
acceleration, etc. Figure 4 presents an overview of Home CDN services based on TSCFN.

Figure 4. Integrated scheduling of massive terminal-side bandwidth resources—HomeCDN.

4.2. Personalcloud

With the explosive growth of digital content, there is a huge demand for content
storage by individuals. According to MarketsandMarkets forecast, the global personal
cloud scale was USD 23.7 billion in 2019, and the market size is expected to reach USD
73.4 billion in 2024, with a compound annual growth rate of 25.4%. At the same time, with
the increasing demands of privacy and security, the centralized cloud storage model has
many shortages such as slow transmission speed, file restrictions, expensive storage price,
and so on. The user-centric distributed storage model has become a new trend. Based on
TSCFN, idle storage capabilities of smartphones, smart TVs, smart speakers, and other
devices can be integrated to provide users low-cost storage for high privacy distributed
storage service. Figure 5 shows an overview of personal cloud services based on TSCFN.
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Figure 5. Integration and scheduling of massive terminal-side storage resources—PersonalCloud.

4.3. Localcomputing

With the increase of smart devices and the enhancement of computing power, the
terminal will not only be a simple device for data collection and task execution, but also
provide external computing power. On the one hand, as the closest computing site for
data processing, faster data analysis, and local application processing can be achieved to
improve data security, protect user privacy, and effectively reduce bandwidth resource
consumption based on TSCFN. With the maturity of interactive technologies such as virtual
reality, augmented reality, image processing, and video rendering, the boundary between
virtualization and reality will gradually be broken. A kind of Fat terminal with stronger
computing power can provide enhanced AI capabilities to empower lightweight devices in
the home to achieve a richer experience and realize higher computing scenarios, such as
Metaverse. Figure 6 illustrates the overview of local computing services based on TSCFN.

Figure 6. Integrated scheduling of field level computing resources—LocalComputing.

4.4. Experiment and Analysis

In order to verify the function and performance of the TSCFN, this section uses the
HomeCDN scenario as a case to build an experimental environment. The terminals such as
smart speakers and set-top boxes are selected to build TSCFN. Each device is used as the
data source of the download task, and the idle bandwidth resources and storage resources
on the terminal devices are integrated through this network to supply CDN service. Due to
the adoption of an Android-based containerized scheduling scheme, these computing tasks
can run independently using pre-allocated system resources in an isolated environment.
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4.4.1. Function Test

Firstly, in order to verify the Android-based container scheduling scheme, an Android
mobile phone (CPU MT7661, 4 GB + 64 GB memory) was selected to build a test environ-
ment. Firstly, we start the container in the test phone, and deploy and run the NGINX
service in the container. The test results feedback that the container in the Android device
can run successfully, and K3s can manage and schedule the container. Figures 7 and 8 show
the operation of K3s Server and Agent.

Figure 7. K3s-sever running list.

Figure 8. Running status of K3s-agent.

Although the container will bring a certain performance overhead to the terminal,
the overall impact is controllable. Taking memory consumption as an example, from the
test results, when the process of K3s-agent is started, its memory accounts for 5%, and
the process of Contairnerd memory accounts for 1.5%, and the process of Runc memory
accounts for 0.4%. The overall memory usage of the scheme takes little impact on the
service experience.

Secondly, we take the test of the success rate of NAT Hole Punching to verify the
functionality of HomeCDN based on TCSFN, while considering that the success rate is the
basis for ensuring the smooth operation of the HomeCDN Service. The specific equipment
list in the experimental environment is shown in Table 2.

Table 2. List of functional test equipment.

Device Type Device Model Amount

xiaodu intelligent screen 1A 16
Android phone Redmi Note 8 Pro 1
leguang router K200 1
xiaodu router XD-INA12-2001 1

The experimental plan divides the cloud seed into 32 shares and pushes them to 16 Xi-
aodu 1A devices as data sources. Different types of network environments are simulated
through router configuration, and Android phones are used as clients to download rele-
vant data. We test the download success rate under different network environments. The
experimental results show that the NAT hole punching requirements can be successfully
implemented in most network environments to ensure the stable operation of HomeCDN
services. It is feasible to form a computing power network by lightweight devices. The test
results are shown in Table 3.
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Table 3. Functional test results.

ID Client NAT Server NAT 1st Attempt 2nd Attempt 3rd Attempt

1 NAT1 NAT1 pass pass pass
2 NAT2 NAT1 pass pass pass
3 NAT3 NAT1 pass pass pass
4 NAT4 NAT1 pass pass pass
5 NAT1 NAT2 pass pass pass
6 NAT2 NAT2 pass pass pass
7 NAT3 NAT2 pass pass pass
8 NAT4 NAT2 pass pass pass
9 NAT1 NAT3 pass pass pass
10 NAT2 NAT3 pass pass pass
11 NAT3 NAT3 pass pass pass
12 NAT4 NAT3 pass pass pass
13 NAT1 NAT4 pass fail pass
14 NAT2 NAT4 fail fail fail
15 NAT3 NAT4 pass fail pass
16 NAT4 NAT4 pass fail fail

4.4.2. Performance Test

In order to verify the performance of HomeCDN, the video streaming service that
requires high real-time data is selected as the test scenario. We compare HomeCDN with
traditional CDN as a benchmark through two sets of comparative experiments. In the first
set, we use three Xiaodu smart speakers to build a two-layer HomeCDN network, in which
a 1S device and a 1C device form a Level1 network, and the other 1S device acts as a Level2
network. The video data in the Level1 network is pulled from the CDN service, and the
Level2 network data is pulled from the Level1 network. In the second set, a 1S device is
directly connected to the CDN node to push the video.

QoS is the most concerning aspect for video streaming services, mainly reflected by
the delay frequency and the delay duration. The impact of the delay duration on user
experience is more obvious. When the delay duration is small, the delay frequency can be
ignored. For accurate calculating, delay frequency, and delay duration, we use an external
camera to record the pictures of two 1S devices, and use the python script to calculate the
result according to the QR code timestamp. We can calculate the delay duration and the
delay frequency by comparing the time difference between each frame of the captured
video and the original video. The experimental environment is shown in Figure 9.

Figure 9. Play push videos from different sources.

4.4.3. Experimental Results

In this subsection, we evaluate the performance of HomeCDN based on TSCFN. To
better verify the performance in different network environments, three rounds of tests were
performed by simulating different external network status to record the playback delay.
The simulated network environments are normal network status, network status with a
packet loss rate of 10%, and network status with a packet loss rate of 30%, respectively.
At the same time, considering that different delays will have different impacts on user
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experience, we made a detailed comparison between the delay of over 500 ms and over
1000 ms. The performance comparisons are shown in Tables 4–6.

Table 4. Playback latency under normal network.

Data Source
Latency > 500 ms Latency > 1000 ms

Delay Frequency Delay Duration Delay Frequency Delay Duration

Centralized CDN 0 0 s 0 0 s
TSCFN based
HomeCDN 0 0 s 0 0 s

Table 5. Playback latency when network delay is 100 to 300 ms.

Data Source
Latency > 500 ms Latency > 1000 ms

Delay Frequency Delay Duration Delay Frequency Delay Duration

Centralized CDN 9 210.6 s 9 210.6 s
TSCFN based
HomeCDN 0 0 s 0 0 s

Table 6. Playback latency with 30% packet loss rate.

Data Source
Latency > 500 ms Latency > 1000 ms

Delay Frequency Delay Duration Delay Frequency Delay Duration

Centralized CDN 1 271.0 s 1 271.0 s
TSCFN based
HomeCDN 12 10.9 s 4 4.3 s

Table 4 shows that under a normal network environment, the performance of Home-
CDN is comparable to traditional CDN. The playback is very smooth without any delay.
With the deterioration of the network status, it can be seen that the stability of the Home-
CDN network obviously surpasses traditional CDN from Table 5. With the CDN service,
the delay occurs four times in total and the playback delay is as long as 210 s, which
seriously affects user experience. At the same time, the playback of HomeCDN is still
smooth without any delay.

As the network environment continues to deteriorate, it proves that HomeCDN has
obvious advantages. Table 6 shows that compared with traditional CDN, the delay duration
of HomeCDN is decreased by 96% in a network environment with a packet loss rate of
30%. In particular, the long delay period (over 1000 ms) has been significantly improved to
ensure the user experience. Although the delay of HomeCDN occurs more often, each time
is short enough to have little impact on the user experience.

5. Conclusions

In this paper, considering the increasing of terminal computing power, we propose a
Terminal-side Computing Force Network architecture, namely, TSCFN. Based on cloud-
native enabling technologies, TSCFN reconstructs the idle terminal computing power
resources and builds a terminal computing power resource pool. The distinctive feature
of TSCFN is the support of mainstream Android devices by customized operation system
based on an open-source platform, which further expands the scope of computing nodes
and extends to a large number of smart devices at home. We verify the functionality and
analyze the performance improvement effect of TSCFN. The experimental results show
that the CDN service provided by TSCFN can reduce latency, especially in an unstable
network status. Due to the limitations of the experimental environment, we only take the
CDN service as a test scenario. The application of the proposed TSCFN on a wider scale
has yet to be further verified.
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In the future, the main research direction is the scheduling mechanism optimization
because existing open-source platforms lack efficient scheduling algorithms for our scenario.
We will design an adaptive mechanism for dynamic task scheduling to better match the
characteristics of terminals and improve resiliency and performance. What is more, we will
attempt to introduce a zero-trust model to enhance the security of the system on this topic
as well.
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