
Citation: Song, Y.; Yang, F.; Li, T.

Chinese Calligraphy Generation

Based on Involution. Electronics 2022,

11, 2201. https://doi.org/10.3390/

electronics11142201

Academic Editors: Xiushan Nie,

Guoqiang Zhong, Yongshun Gong,

Bin Fan and Xin Li

Received: 5 June 2022

Accepted: 11 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Chinese Calligraphy Generation Based on Involution
Yao Song 1,2, Fang Yang 1,2,* and Te Li 1,2

1 Computer Science and Technology, School of Cyberspace Security and Computer, Hebei University,
Baoding 071000, China; songyao@stumail.hbu.edu.cn (Y.S.); 20208014007@stumail.hbu.edu.cn (T.L.)

2 Hebei Machine Vision Engineering Reasearch Center, Hebei University, Baoding 071000, China
* Correspondence: yangfang@hbu.edu.cn

Abstract: The calligraphic works of particular calligraphers often contain only a limited number of
characters, rather than the full set of Chinese characters required for typography, which does not
meet practical needs. There is therefore a need to develop a complete set of calligraphic characters for
calligraphers. Most of the recently popular methods for generating calligraphic characters are based
on deep learning, using an end-to-end approach to generate the target image. Deep learning-based
methods usually suffer from unsuccessful conversion of stroke structures when the printed font
differs significantly from the target font structure. In this paper, we propose an involution-based
calligraphic character generation model, which can realize the conversion from printed fonts to target
calligraphic fonts. We improve the Pix2Pix model by using a new neural operator, involution, which
focuses more on spatial feature processing and can better handle the relationship between strokes
than the models using only convolution, so that the generated calligraphic characters have an accurate
stroke structure. A self-attentive module and a residual block are also added to increase the depth of
the network to improve the feature processing capability of the model. We evaluated our method
and some baseline methods using the same dataset, and the experimental results demonstrate that
our model is superior in both visual and quantitative evaluation.

Keywords: Chinese calligraphy generation; involution; image translation; generative adversarial

1. Introduction

Chinese calligraphy is a crystallization of the wisdom of the Chinese people, an im-
portant part of national culture and a very unique visual art. The beauty of the melody,
form and mood of Chinese calligraphy has been increasingly valued by the design commu-
nity and is widely used in the fields of graphic design, stone carving and product design.
However, none of the extant calligraphic works can contain a full set of commonly used
characters to meet practical needs. Unlike the English alphabet, the number of Chinese
characters is very large—three thousand even for commonly used characters—and it is not
easy to rely on human effort to imitate a calligrapher’s style to complete a complete font
library, and it is very difficult to become proficient in a calligraphy discipline, requiring
years of practice. Therefore, it was necessary to devise a method of automatically gener-
ating calligraphic fonts for calligraphers to generate a complete set of Chinese characters
required for typography, making it easy for designers to use and for calligraphy enthusiasts
to learn.

There are two broad approaches to automatically generating calligraphic fonts, and
one is to build a stroke library by breaking down Chinese characters into strokes and then
using the strokes in the library to build new calligraphic characters [1,2]. This method
simply pieces together the split strokes to form calligraphic characters, ignoring the overall
structure of the font and relying heavily on the extraction effect of the strokes. When the
structure of the character is too complex, the stroke extraction technique does not achieve
good results and relies on manual extraction, which greatly increases the workload. The
other is to use deep learning to achieve the conversion of standard fonts to calligraphic

Electronics 2022, 11, 2201. https://doi.org/10.3390/electronics11142201 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11142201
https://doi.org/10.3390/electronics11142201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5948-3965
https://doi.org/10.3390/electronics11142201
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11142201?type=check_update&version=1

Electronics 2022, 11, 2201 2 of 15

fonts. The printed font is used as input, its feature representation is extracted and feature
transformation is performed in the feature space to finally complete the mapping to the
calligraphic font. However, when the source fonts differ greatly from the calligraphic fonts
in style, the conversion results are still unsatisfactory.

In this paper, we consider the generation of calligraphy as an image-to-image trans-
lation problem and propose a Pix2Pix-based neural network model. The model consists
of a generator and a discriminator. We add residual blocks to the generator to deepen
the network depth and improve the feature processing capability of the model, as well
as a self-attention module to ensure the integrity of the generated font strokes. In order
to achieve a better mapping from printed font to calligraphic fonts, we use a new neural
operator, involution, in the generator instead of the traditional convolution operation. As
our model is based on a neural network, the parameters of the model are formed by the
network as it continues to learn, and our model minimizes manual manipulation compared
to the stroke construction approach. Our main contributions are as follows.

We propose an involution-based calligraphy generation model that can directly con-
vert Chinese character printed font images into target calligraphic font images without
extracting strokes, and font content and style can be learned simultaneously without sepa-
rate training. Compared with some baseline methods [3,4], our model can generate higher
quality calligraphic images.

2. Related Work

The following subsections describe the links and differences between traditional image
conversion and calligraphy generation, and discuss some traditional baseline methods as
well as existing methods related to calligraphy generation.

2.1. Generative Adversarial Networks

Generative adversarial networks, proposed by [5], have revolutionized the field of
deep learning and have also attracted a lot of attention in the field of computer vision,
where they have been developing rapidly. The GAN is commonly used for unsupervised
learning, which transforms images from one domain to another without labeling data, and
it excels in image generation and processing. A number of GAN-based methods have been
proposed to solve various image processing problems. In recent years, bigGAN [6] and
styleGAN [7] have been proposed to design huge networks to generate higher quality and
higher resolution images. These methods map noise to images and the input does not
contain specific conditional information. However, in some image translation tasks it is
required that the image must be used as input and transformed into the target image domain
using the given image as conditional information [8]. Some new extension architectures for
GANs have been proposed, such as Pix2Pix [3] and cycleGAN [4].

2.2. Image-to-Image Translation

The process of converting an image from the source domain to the target domain is
called image-to-image conversion and involves areas such as medical image processing [9],
semantic segmentation [10] and image style conversion [11].

The Pix2Pix [3] model is applicable to many image-to-image translation problems. The
model takes images as input and uses pairs of images for training to achieve image style
migration. Although Pix2Pix style migration works well, the pairing process is tedious
and time-consuming due to the large amount of paired image data required for model
training, and even in some special cases it is impossible to obtain paired images, and these
shortcomings limit the promotion and application of Pix2Pix.

CycleGAN [4] is widely used for tasks where ground truth does not exist because
it does not require a paired training set. The network contains two pairs of generative
adversarial networks that enable bi-directional domain transformation, and the invoked
cyclic consistency loss removes the pairwise constraint between domains, which allows
cycleGAN to transform image styles even without a paired dataset. However, the cyclic

Electronics 2022, 11, 2201 3 of 15

consistency loss and the pixel-by-pixel difference loss of the images used by cycleGAN
allow the content information of the generated images to be over-represented and do not
allow for good style migration. Sanakoyue et al. [12] introduced a style-aware content
loss in GAN that allows the model to better learn the target style. cycleGAN uses two
pairs of generators and discriminators in order to train without pairing, which significantly
increases the time cost and computational cost required to train the model, especially
in one-to-many style transformation tasks. To compensate for this drawback, Choi et al.
proposed starGAN [13], a model that accepts multiple target style attributes, increases
domain classification loss and learns mappings between multiple domains using only one
generator and one discriminator, enabling one-to-many image style conversion.

In these tasks mentioned above, the image-to-image conversion problem is usually de-
scribed as a pixel-to-pixel conversion problem, where the input image and the target image
have the same underlying structure without any distortion. However, in the calligraphic
character generation task, the input standard image and the target calligraphic image only
have similar relative layouts, the position and style of the strokes are not the same and
distortion is inevitable in the implementation of the font conversion process, so the above
methods are not well-suited to the calligraphic character generation task.

2.3. Chinese Character Generation

Zi2zi [14], proposed in 2017, is an early approach to using generative adversarial
learning for Chinese character font generation, which adds category embedding to the
Pix2Pix model for one-to-many modeling, enabling the model to handle many different
styles simultaneously; to avoid the model confusing multiple styles, it draws on the multi-
class in AC-GAN. Zi2zi performs very well in some conventional font generation.

Zhou et al. [15] added a series of residual blocks and a content complementary network
to the cycleGAN model to implement the conversion of printed font to calligraphic fonts.
Li [16] et al. proposed a F2PNet model inspired by cycleGAN to implement the conversion
of printed font to flower and bird art characters. Chen et al. [17] proposed a model that
can generate multiple styles of fonts simultaneously with reference to starGAN, and can
fuse existing styles to generate a new style font. Zheng et al. [18] argued that each Chinese
character includes a style factor and a content factor, and they mapped two kinds of Chinese
character images with style features and content features, respectively, and then used the
generator to perform style and content. The fusion of style and content was then performed
by a generator to generate the target style of Chinese characters. The model is able to
generate realistic Chinese characters with strong generalization capabilities. It is worth
noting that the structure of the generated calligraphic characters, whether trained using
the cycleGAN model or the starGAN model, is very dependent on the input print, and is
not generated well when using certain calligraphic fonts that differ significantly from the
printed font structure.

Jiang et al. [19] divided font generation into two parts: skeleton synthesis and font
style rendering, and used CNN to convert the skeleton of the reference font into the
skeleton of the target style, making the final generated font free from the structure of the
original font. The accuracy of the fonts generated by this method is of good quality, but
its network type is too complex. Lyu et al. [20] added a monitoring network to Pix2Pix to
encode and decode the target calligraphic characters, and fuse the features of the target
calligraphic characters obtained from the decoding with the features of the print, using the
target calligraphic character features to supervise the print features, so that the generated
calligraphic fonts are to a certain extent free from the print structure. In addition, this
author added reconstruction loss to the monitoring network to ensure the accuracy of the
calligraphic character features obtained by decoding.

3. Methodology

We propose an involution [21]-based calligraphy generation model for Chinese charac-
ters, which is based on the Pix2Pix model. The generator of the model is a U-Net network

Electronics 2022, 11, 2201 4 of 15

structure [22], and we used involution for all layers except the outermost layer of the
network, and added residual blocks and self-attentive modules to the middle layer of the
U-Net network. The discriminator uses patchGAN, which learns the distribution of target
styles and thus guides the generator to generate more realistic images. In 3.1, we introduce
the principle of involution and compare it with convolution. The next subsections describe
our proposed model architecture in detail.

3.1. Involution

Most generative adversarial network-based image generation models are superim-
posed by convolution operations, but convolution can suffer from several shortcomings in
use: (1) the convolution kernel of a CNN shares parameters at all spatial locations, which
will limit the ability to model local space at different spatial locations and cannot effectively
capture distant relationships in space; and (2) the parameters within the convolution kernel
are randomly generated and there is no relationship between them and the input features.

Involution is a complete reversal of the convolution mindset:

1. Whereas convolution shares parameters in space, involution uses different kernels at
different locations in space.

2. Whereas convolution uses different kernels for different channels, involution shares
parameters.

3. The parameters within the convolution kernel are randomly generated and are inde-
pendent of the input feature information, whereas the involution kernel is formed by
mapping the input to the features.

Taking these points together, it can be seen that involution focuses more on spatially
scoped feature processing.

Involution’s kernels can be set to different sizes as required, and as the kernels become
larger, the field of view becomes larger, making it easier to capture relationships between
features at a distance. In addition to this, channels can be grouped so that kernels are shared
between channels within a group and different kernels are used for different channel groups.
When the number of groups is 1, it means that the whole channel uses one kernel, and
when the number of groups is equal to the number of channels, it means that each channel
has its own corresponding kernel. The number of groups can be adjusted as required.

3.2. Model Design
3.2.1. Generator

The generators are mainly structured as a U-Net network [22], which is a combination
of an encoder and a decoder with additional jump links to preserve the low-dimensional
features and avoid the loss of valid information. However, due to the lack of depth of the
network, a good result is not achieved when handling the calligraphic character genera-
tion task, and the generated calligraphic characters suffer from serious stroke errors and
blurred edges. The task of generating calligraphic characters is to achieve the conversion
from printed Chinese characters to calligraphic Chinese characters, in which the charac-
ter structure and position need to change, and a simple coding and decoding structure
cannot meet the demand. In order to increase the depth of the network and enhance its
feature processing capability, we added a residual network consisting of a series of residual
blocks [23] to the middle layer of the U-Net network. The use of this residual network both
increases the depth of the network and avoids the problem of gradient disappearance due
to the network being too deep.

However, adding a residual network to the intermediate layer alone only generates
roughly the target calligraphic characters, and there is still some degree of stroke loss.
For this reason, we tried to continue adding a self-attentive module [24] to the middle
layer to capture the internal correlation of the data features. The combination of the
residual network and the self-attentive module was experimentally found to be effective in
improving the stroke problem. At this point the generated calligraphic characters already
had some accuracy and legibility, but the font would appear somewhat distorted and

Electronics 2022, 11, 2201 5 of 15

wavy. We believe that this is a problem of insufficient spatial feature processing, where
convolution shares convolution kernels at all spatial locations and cannot effectively capture
distant relationships in space, whereas involution, mentioned in 3.1, is very concerned with
spatial range on feature processing and can adaptively assign weights so that the most
informative visual elements in the spatial domain are prioritized. Therefore, we replaced
some of the convolution modules in the generator with modules containing involution.

We set the size of the involution kernel to 7 × 7, the number of groups G to 4 and the
compression rate r to 4 according to the experimental data given in [21]. The principle of
involution is shown in Figure 1. All channel features under a certain pixel point in the
input features are first extracted, and then the channel compression is performed by r,
with the aim of reducing a certain amount of computation. Then involution will take the
compressed channels and expand them again to a size of K × K × G. These features are
then reshaped to generate G kernels of size K × K. Finally, these kernels are multiplied and
summed with the features in the K × K range around the pixel point just selected, resulting
in features of the same size and number of channels as the input features.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 15

However, adding a residual network to the intermediate layer alone only generates
roughly the target calligraphic characters, and there is still some degree of stroke loss. For
this reason, we tried to continue adding a self-attentive module [24] to the middle layer to
capture the internal correlation of the data features. The combination of the residual net-
work and the self-attentive module was experimentally found to be effective in improving
the stroke problem. At this point the generated calligraphic characters already had some
accuracy and legibility, but the font would appear somewhat distorted and wavy. We
believe that this is a problem of insufficient spatial feature processing, where convolution
shares convolution kernels at all spatial locations and cannot effectively capture distant
relationships in space, whereas involution, mentioned in 3.1, is very concerned with spa-
tial range on feature processing and can adaptively assign weights so that the most in-
formative visual elements in the spatial domain are prioritized. Therefore, we replaced
some of the convolution modules in the generator with modules containing involution.

We set the size of the involution kernel to 7 × 7, the number of groups G to 4 and the
compression rate r to 4 according to the experimental data given in [21]. The principle of
involution is shown in Figure 1. All channel features under a certain pixel point in the
input features are first extracted, and then the channel compression is performed by r,
with the aim of reducing a certain amount of computation. Then involution will take the
compressed channels and expand them again to a size of K × K × G. These features are
then reshaped to generate G kernels of size K × K. Finally, these kernels are multiplied
and summed with the features in the K × K range around the pixel point just selected,
resulting in features of the same size and number of channels as the input features.

W

H

C

Conv

Conv

1
1

K2G

K×K

G

1
1

C/r Reshape

W

H

C

1
1 C

K

K
C

K

C1
1

Figure 1. The blue block is the feature vector to be processed and the compressed purple block is
the feature vector after involution. h and w are the height and width of the feature, respectively, C
is the number of channels, r is the compression rate, K × K is the kernel size and G is the number of
groups. The feature vectors to be processed are first compressed by convolution, then expanded by
convolution, and then reshaped into G kernels of size K × K. The generated kernels are dot product
and summed with the feature vectors to be processed and the feature vectors in their surrounding
K × K range to obtain the processed feature vectors.

The number of feature channels processed by involution is constant. In order to adapt
to the change of channels in the U-Net network and to apply it better in the upsampling
and downsampling process, we add a convolution operation after each involution opera-
tion, as shown in Figure 2, and the involution block consists of Relu-involution-conv-BN
together. In addition, in the outermost layer of the network we do not use the involution
block but the convolution block containing Relu-conv-BN. The grey block and the blue
block together form the U-Net network, the purple block added in the middle layer is the
self-attentive block and the orange block is the residual block. The blue lines indicate jump
links, which place the low-dimensional features encoded by the encoder into the decoder

Figure 1. The blue block is the feature vector to be processed and the compressed purple block is the
feature vector after involution. h and w are the height and width of the feature, respectively, C is
the number of channels, r is the compression rate, K × K is the kernel size and G is the number of
groups. The feature vectors to be processed are first compressed by convolution, then expanded by
convolution, and then reshaped into G kernels of size K × K. The generated kernels are dot product
and summed with the feature vectors to be processed and the feature vectors in their surrounding
K × K range to obtain the processed feature vectors.

The number of feature channels processed by involution is constant. In order to adapt
to the change of channels in the U-Net network and to apply it better in the upsampling and
downsampling process, we add a convolution operation after each involution operation, as
shown in Figure 2, and the involution block consists of Relu-involution-conv-BN together.
In addition, in the outermost layer of the network we do not use the involution block
but the convolution block containing Relu-conv-BN. The grey block and the blue block
together form the U-Net network, the purple block added in the middle layer is the self-
attentive block and the orange block is the residual block. The blue lines indicate jump
links, which place the low-dimensional features encoded by the encoder into the decoder
to be merged with its feature vector and decoded together in the next step. The addition
of jump links allows valid features to pass directly through the network layer, preserving
low-dimensional features and avoiding spatial redundancy of information.

Electronics 2022, 11, 2201 6 of 15

Electronics 2022, 11, x FOR PEER REVIEW 6 of 15

to be merged with its feature vector and decoded together in the next step. The addition
of jump links allows valid features to pass directly through the network layer, preserving
low-dimensional features and avoiding spatial redundancy of information.

Generator

Skip Connection

SelfAttention Block

Resnet Block

Relu+Conv+BN

Involution Block

SimHei
Generated Chinese

calligraphy

Real Chinese
calligraphy

SimHei

Real or
Fake pair？

Discriminator

BNRe
lu

In
vo

Co
nv

Figure 2. The generator is used to convert the printed fonts (SimHei) to the target calligraphic font.
The discriminator is used to determine the authenticity of the image. The blue block is the involu-
tion block, the gray block is the convolution block, the purple block is the self-attentive block and
the orange block is the residual block.

3.2.2. Discriminators
The discriminator we use is patchGAN, where the printed font image and the real

calligraphic font image form a real image pair, and the print image and the generated
calligraphic font image form a false image pair. These two pairs are given to the discrim-
inator to discriminate and give predicted values. PatchGAN is able to maintain a certain
high resolution and detail in the style migration task, and also ensures that there is a cor-
respondence between the input image and the output image. There is a correspondence
between the input and output images.

3.3. Loss functions
We train the network in an end-to-end way. Given a pair of samples (𝑥, 𝑦), 𝑥 and 𝑦 represent the printed and calligraphic fonts of the same Chinese character, respec-

tively.
The loss of the generator includes both adversarial loss and pixel loss. Adversarial

loss can be expressed as: ℒ = −𝔼 ~ ()[logD(G(𝑥), 𝑥)] (1)

The generator G aims to learn the mapping G: 𝑥 → 𝑦, and hand over the printed
font 𝑥 and the generated calligraphy font G(𝑥) to the discriminator D. The output of the
discriminator D is a probability value taking values from 0 to 1. When D (·) = 0 it means
that the probability is minimal and the discriminator considers G(𝑥) to be a false calligra-
phy font; When D (·) = 1 it indicates that the probability is maximum and the discriminator
considers G(𝑥) to be a true calligraphy font. The generator expects the discriminator to
judge G(𝑥) as true, and the output is close to 1.

In order to ensure that the generated calligraphy font G(𝑥) is closer to the real cal-
ligraphy font 𝑦, a pixel loss is also added, represented as follows: ℒ = −𝔼 , [||𝑦 − G(𝑥)||] (2)

Figure 2. The generator is used to convert the printed fonts (SimHei) to the target calligraphic font.
The discriminator is used to determine the authenticity of the image. The blue block is the involution
block, the gray block is the convolution block, the purple block is the self-attentive block and the
orange block is the residual block.

3.2.2. Discriminators

The discriminator we use is patchGAN, where the printed font image and the real
calligraphic font image form a real image pair, and the print image and the generated
calligraphic font image form a false image pair. These two pairs are given to the discrimi-
nator to discriminate and give predicted values. PatchGAN is able to maintain a certain
high resolution and detail in the style migration task, and also ensures that there is a
correspondence between the input image and the output image. There is a correspondence
between the input and output images.

3.3. Loss Functions

We train the network in an end-to-end way. Given a pair of samples (x, y), x and y
represent the printed and calligraphic fonts of the same Chinese character, respectively.

The loss of the generator includes both adversarial loss and pixel loss. Adversarial
loss can be expressed as:

LadvG = −Ex∼Pdata(x)
[logD(G(x), x)] (1)

The generator G aims to learn the mapping G: x → y, and hand over the printed
font x and the generated calligraphy font G(x) to the discriminator D. The output of the
discriminator D is a probability value taking values from 0 to 1. When D (·) = 0 it means that
the probability is minimal and the discriminator considers G(x) to be a false calligraphy
font; When D (·) = 1 it indicates that the probability is maximum and the discriminator
considers G(x) to be a true calligraphy font. The generator expects the discriminator to
judge G(x) as true, and the output is close to 1.

In order to ensure that the generated calligraphy font G(x) is closer to the real calligra-
phy font y, a pixel loss is also added, represented as follows:

Lpixel = −Ex,y[
∣∣∣∣∣∣y−G(x)

∣∣∣∣∣∣1] (2)

Electronics 2022, 11, 2201 7 of 15

The loss of the discriminator is likewise divided into two parts, the cross-entropy
loss between the printed font x and the real calligraphic font y, and the cross-entropy loss
between the printed font and the calligraphic font G(x) generated by x, denoted as follows:

LadvD = Ex∼Pdata(x) , y∼Pdata(y)
[logD(x, y)] +Ex∼Pdata(x)

[log(1−D(x, G(x)))] (3)

The data is generated during the adversarial process between the generator and
the discriminator, and the two of them play each other so that the model is constantly
updated in order to generate a better calligraphic picture. Equation (1) can be merged with
Equation (3) as the loss of the whole model in the confrontation. The goal of the generator
is to minimize it, while the goal of the discriminator is to maximize it. The display is
as follows:

L∗ = argmin
G

max
D
LadvD (4)

The final objective is:

G∗ = argmin
G

max
D
LadvD + λLpixel (5)

Here λ controls the weight of the item.

4. Experiment
4.1. Experiment Setting
4.1.1. Data Preparation

Chinese calligraphy is divided into five main types: cursive, seal script, running
script, clerical script and regular script. The cursive script, with its continuous strokes and
gracefulness in the midst of chaos, is ornamental, and the structure of the cursive script
differs considerably from that of the printed form, making it a better test of the model’s
performance. Running script and regular script are more standardized and closer to printed
font, and are the two calligraphic types most used in everyday writing. Therefore, these
three calligraphic types were selected to build the dataset in this paper. An example of
calligraphic work is shown in Figure 3. To demonstrate the generalization of the model, the
four calligraphers chosen for this paper all have different styles of work. The collection of
calligrapher’s font images is a tedious task, and due to the limited number of characters
involved in the original calligraphic works, we were able to collect a smaller number of
unduplicated calligraphic characters, which led to the small size of our dataset. Each callig-
rapher’s work contains approximately 2000 images. A random selection of 1800 images
were used as the training set and the remaining 200 images were used as the test set. The
images in the dataset are 64 × 64 pixels and all input images are expanded to 256 × 256
before entering our model.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 15

The loss of the discriminator is likewise divided into two parts, the cross-entropy loss
between the printed font 𝑥 and the real calligraphic font 𝑦, and the cross-entropy loss
between the printed font and the calligraphic font G(𝑥) generated by x, denoted as fol-
lows: ℒ = 𝔼 ~ () , ~ ()[logD(𝑥, 𝑦)] + 𝔼 ~ ()[log(1 − D(𝑥, G(𝑥)))] (3)

The data is generated during the adversarial process between the generator and the
discriminator, and the two of them play each other so that the model is constantly updated
in order to generate a better calligraphic picture. Equation (1) can be merged with Equa-
tion (3) as the loss of the whole model in the confrontation. The goal of the generator is to
minimize it, while the goal of the discriminator is to maximize it. The display is as follows: ℒ∗ = arg min max ℒ (4)

The final objective is: 𝐺∗ = arg min max ℒ + λℒ (5)

Here λ controls the weight of the item.

4. Experiment
4.1. Experiment Setting
4.1.1. Data Preparation

Chinese calligraphy is divided into five main types: cursive, seal script, running
script, clerical script and regular script. The cursive script, with its continuous strokes and
gracefulness in the midst of chaos, is ornamental, and the structure of the cursive script
differs considerably from that of the printed form, making it a better test of the model’s
performance. Running script and regular script are more standardized and closer to
printed font, and are the two calligraphic types most used in everyday writing. Therefore,
these three calligraphic types were selected to build the dataset in this paper. An example
of calligraphic work is shown in Figure 3. To demonstrate the generalization of the model,
the four calligraphers chosen for this paper all have different styles of work. The collection
of calligrapher’s font images is a tedious task, and due to the limited number of characters
involved in the original calligraphic works, we were able to collect a smaller number of
unduplicated calligraphic characters, which led to the small size of our dataset. Each cal-
ligrapher’s work contains approximately 2000 images. A random selection of 1800 images
were used as the training set and the remaining 200 images were used as the test set. The
images in the dataset are 64 × 64 pixels and all input images are expanded to 256 × 256
before entering our model.

Sun Guoting Liang Qiusheng

Guan Jun Wang Xizhi
Figure 3. Examples of four different calligraphic works in the dataset.

Figure 3. Examples of four different calligraphic works in the dataset.

Electronics 2022, 11, 2201 8 of 15

4.1.2. Network Architectures and Optimizer

The number of filters in the encoder were 64, 128, 256, 256 and 256 and the decoder was
structured in the reverse order of the encoder. The Relu in the encoder was leakyRelu [25],
with a slope of 0.2. The decoder was normal ReLU except for the last layer, which had an
activation function of Tanh [26], which mapped the resultant values between −1 and 1.
The type of batch normalization was instance normalization [27]. The number of groups
was G = 4 in involution, the compression ratio was r = 4, and the size of the kernel was
K = 7. The discriminator was a 70 × 70 patchGAN [3]. The model was implemented in
Pytorch. In our experiments, the initial learning rate was 0.0002, the batch size was 1 and
the optimizer was Adam [28]. The value was 100.

4.1.3. Evaluation Metrics

In addition to relying on vision to determine the accuracy of the font, we also calculated
the Structural Similarity Index (SSIM) and the Peak Signal to Noise Ratio (PSNR) to assess
the performance of the model:

1. SSIM is used to measure the structural similarity between the real image and the gen-
erated image. It consists of three components: structural correlation loss, luminance
distortion and contrast distortion. SSIM is expressed as:

SSIM(R, F) = ∑
r, f

2µrµ f + C1

µ2
r + µ2

f + C1
×

2σrσf + C2

σ2
r + σ2

f + C2
×

σr f + C3

σrσf + C3
(6)

where R and F indicate the real image and the generated image, respectively. r and f
denote the image patch of R and F in a local window of size h × w. µr and µ f present the
mean values of corresponding image patches. σr and σf indicate the standard deviation of
real and generated image patches, respectively. The range of SSIM is [0, 1]. The higher the
similarity between the real image and the generated image, the closer the value of SSIM is
to 1.

2. PSNR is the most common and widely used objective measure of image quality. It
is the logarithm of the mean squared error MSE between the real image and the
generated image relative to (2n − 1)2. The formula is as follows:

PSNR = 10× log10(
(2n − 1)2

MSE
) (7)

MSE =
1

mn ∑m−1
i=0 ∑n−1

j=0 I(i, j)− K(i, j)2 (8)

where I and K denote the reference image and target image, respectively, representing pixel
points, and m and n are the length and width of the image.

4.2. Ablation Study
4.2.1. Effect of Involution

We compared the models with and without involution, and the results are shown in
Figure 4. The calligraphic characters generated by the model without involution show
distorted strokes and a few missing strokes. The addition of involution effectively im-
proved the distortion of the strokes and improved the accuracy and readability of the font.
The results of the quantitative analysis are shown in Table 1, with both SSIM and PSNR
improving with the addition of involution.

Electronics 2022, 11, 2201 9 of 15Electronics 2022, 11, x FOR PEER REVIEW 9 of 15

Input

Ground Truth

Without
Involution Block

With
Involution Block

Figure 4. The results of our model with/without involution block evaluated on Wang Xizhi subset.

Table 1. Quantitative evaluation of the performance of the model with/without involution block.

 SSIM PSNR
Without Involution Block 0.64 13.7

With Involution Block 0.70 17.1

4.2.2. Effect of Res-SA Block
We considered the residual block and the self-attentive block as a whole, called the

Res-SA Block. The model with the Res-SA block removed was compared with our model,
and the results are shown in Figure 5. The calligraphic characters generated by the model
without the addition of the Res-SA block had some incorrect connections between strokes
that should not occur during correct writing. In contrast, the addition of the Res-SA block
improved these problems. The data in Table 2 also illustrate the ability of the Res-SA block
to improve the quality of the generated images.

Input

Ground Truth

Without
Resnet + SA

With
Resnet + SA

Figure 5. The results of our model with/without Res-SA block evaluated on Wang Xizhi subset.

Table 2. Quantitative evaluation of the performance of the model with/without Res-SA block.

 SSIM PSNR
Without Res-SA Block 0.67 16.8

With Res-SA Block 0.70 17.1

Figure 4. The results of our model with/without involution block evaluated on Wang Xizhi subset.

Table 1. Quantitative evaluation of the performance of the model with/without involution block.

SSIM PSNR

Without Involution Block 0.64 13.7
With Involution Block 0.70 17.1

4.2.2. Effect of Res-SA Block

We considered the residual block and the self-attentive block as a whole, called the
Res-SA Block. The model with the Res-SA block removed was compared with our model,
and the results are shown in Figure 5. The calligraphic characters generated by the model
without the addition of the Res-SA block had some incorrect connections between strokes
that should not occur during correct writing. In contrast, the addition of the Res-SA block
improved these problems. The data in Table 2 also illustrate the ability of the Res-SA block
to improve the quality of the generated images.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 15

Input

Ground Truth

Without
Involution Block

With
Involution Block

Figure 4. The results of our model with/without involution block evaluated on Wang Xizhi subset.

Table 1. Quantitative evaluation of the performance of the model with/without involution block.

 SSIM PSNR
Without Involution Block 0.64 13.7

With Involution Block 0.70 17.1

4.2.2. Effect of Res-SA Block
We considered the residual block and the self-attentive block as a whole, called the

Res-SA Block. The model with the Res-SA block removed was compared with our model,
and the results are shown in Figure 5. The calligraphic characters generated by the model
without the addition of the Res-SA block had some incorrect connections between strokes
that should not occur during correct writing. In contrast, the addition of the Res-SA block
improved these problems. The data in Table 2 also illustrate the ability of the Res-SA block
to improve the quality of the generated images.

Input

Ground Truth

Without
Resnet + SA

With
Resnet + SA

Figure 5. The results of our model with/without Res-SA block evaluated on Wang Xizhi subset.

Table 2. Quantitative evaluation of the performance of the model with/without Res-SA block.

 SSIM PSNR
Without Res-SA Block 0.67 16.8

With Res-SA Block 0.70 17.1

Figure 5. The results of our model with/without Res-SA block evaluated on Wang Xizhi subset.

Electronics 2022, 11, 2201 10 of 15

Table 2. Quantitative evaluation of the performance of the model with/without Res-SA block.

SSIM PSNR

Without Res-SA Block 0.67 16.8
With Res-SA Block 0.70 17.1

4.2.3. Effect of Input Fonts

KaiTi has its own stroke style, which is closer to Wang Xizhi’s calligraphic style than
SimHei. In order to test the effect of the input font on the model generation effect, we
used KaiTi and SimHei as input fonts and Wang Xizhi’s calligraphic characters as target
fonts, respectively, to train the model. The test results are shown in Figure 6. The results
of the quantitative analysis are shown in Table 3. The experiments showed that when the
input font is KaiTi, all three models produce calligraphic images with improved accuracy
of strokes, the most obvious performance being cycleGAN. The results of the quantitative
analysis also show that using KaiTi as the input font produces higher quality calligraphic
characters. It can be concluded that the input font has an impact on the results, and the
closer the input font is to the target font style, the better the model generates images, but
the degree of impact varies between models.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 15

4.2.3. Effect of Input Fonts
KaiTi has its own stroke style, which is closer to Wang Xizhi’s calligraphic style than

SimHei. In order to test the effect of the input font on the model generation effect, we used
KaiTi and SimHei as input fonts and Wang Xizhi’s calligraphic characters as target fonts,
respectively, to train the model. The test results are shown in Figure 6. The results of the
quantitative analysis are shown in Table 3. The experiments showed that when the input
font is KaiTi, all three models produce calligraphic images with improved accuracy of
strokes, the most obvious performance being cycleGAN. The results of the quantitative
analysis also show that using KaiTi as the input font produces higher quality calligraphic
characters. It can be concluded that the input font has an impact on the results, and the
closer the input font is to the target font style, the better the model generates images, but
the degree of impact varies between models.

Input

Ground
Truth

CycleGAN

Wang Xizhi

SimHei KaiTi

Pix2Pix

Ours

Figure 6. Generated results on the Wang Xizhi subset when using KaiTi and SimHei characters as
input.

Table 3. Quantitative evaluation of the impact of input font on the model.

Input Font
CycleGAN Pix2Pix Ours

SSIM PSNR SSIM PSNR SSIM PSNR
SimHei 0.51 9.6 0.62 13.4 0.70 17.1
KaiTi 0.58 11.0 0.63 14.1 0.73 18.5

4.3. Comparison with Existing Methods
We chose two baseline methods to compare with our method, one is Pix2Pix and the

other is cycleGAN, both of which are representative in the area of style conversion. We
chose SimHei as the input font because it has consistent stroke thickness and does not
contain any font style. Experimental data in Section 4.2.3 can show that when the input
font is stylistically similar to the target font, it affects the quality of the generated font and
hence the judgement of the validity of the model. Therefore, choosing SimHei as the input
font will prevent the input font style from affecting the generated calligraphic characters
and thus test the performance of the model more accurately.

Figure 6. Generated results on the Wang Xizhi subset when using KaiTi and SimHei characters
as input.

Table 3. Quantitative evaluation of the impact of input font on the model.

Input Font
CycleGAN Pix2Pix Ours

SSIM PSNR SSIM PSNR SSIM PSNR

SimHei 0.51 9.6 0.62 13.4 0.70 17.1
KaiTi 0.58 11.0 0.63 14.1 0.73 18.5

4.3. Comparison with Existing Methods

We chose two baseline methods to compare with our method, one is Pix2Pix and the
other is cycleGAN, both of which are representative in the area of style conversion. We

Electronics 2022, 11, 2201 11 of 15

chose SimHei as the input font because it has consistent stroke thickness and does not
contain any font style. Experimental data in Section 4.2.3 can show that when the input
font is stylistically similar to the target font, it affects the quality of the generated font and
hence the judgement of the validity of the model. Therefore, choosing SimHei as the input
font will prevent the input font style from affecting the generated calligraphic characters
and thus test the performance of the model more accurately.

4.3.1. Qualitative Comparison

The images of calligraphic characters generated by the baseline method and our
proposed method are shown in Figure 8. The performance on the four different datasets
shows that our method generates a higher quality image. The specific analysis is as follows:

1. CycleGAN: CycleGAN is able to effectively capture the style of the target calligraphic
fonts, for example, Liang Qiusheng’s font has sharp strokes at one end and rounded
strokes at the other, and Guan Jun’s font has thin strokes, which are reflected in the
generated calligraphic fonts. However, the mapping of the font structure is poor,
unable to escape the constraints of the printed font structure, and there is a certain
degree of missing stroke problem.

2. Pix2Pix: Compared to cycleGAN, Pix2Pix leans more towards the target calligraphic
font in terms of stroke structure, and the stylistic features are better represented.
However, the edges of the strokes are blurred. Guan Jun’s results show that the
generated fonts have more stroke errors. Wang Xizhi’s results show that the generated
fonts have more serious problems such as strokes sticking together and blurred edges.

3. Ours: Compared to cycleGAN, our model produces calligraphic characters with more
accurate font structure and a more pronounced calligraphic style; compared to Pix2Pix,
the edges are clear and free of adhesion, which is more effective. Overall, our model
has an advantage over the baseline model in terms of both style and font structure.
As Sun Guiting’s stylistic features are most different from those of printed scripts, and
there are cases where the strokes are contiguous, the model is relatively less effective
in learning this type of calligraphy, resulting in a small number of stroke errors in the
resulting script, but this does not affect legibility.

4.3.2. Quantitative Comparison

We calculated the corresponding SSIM and PSNR values derived from the performance
of the different models under the four datasets and the results are shown in Table 4. The
bolded numbers are the best generation results achieved by the three models for different
styles. It can be seen that our model outperforms cycleGAN model and Pix2Pix model.

Table 4. Quantitative evaluations of our method and other two methods.

Method
Sun Guoting Liang Qiusheng Guan Jun Wang Xizhi

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

CycleGAN 0.53 9.4 0.53 10.1 0.57 11.1 0.51 9.6
Pix2Pix 0.63 11.3 0.64 13.5 0.67 14.6 0.62 13.4

Ours 0.65 11.4 0.73 18.2 0.78 19.9 0.70 17.1

In addition, we selected partial test results to generate line graphs of their SSIM and PSNR,
and the results are shown in Figure 7. In Guanjun, our model performs best, significantly
better than the other two. Additionally, in Sun Overdrive, the difference with Pix2Pix is
smaller, with the two generating essentially the same results for certain characters.

Electronics 2022, 11, 2201 12 of 15

Electronics 2022, 11, x FOR PEER REVIEW 12 of 15

scripts, and there are cases where the strokes are contiguous, the model is relatively
less effective in learning this type of calligraphy, resulting in a small number of stroke
errors in the resulting script, but this does not affect legibility.

4.3.2. Quantitative Comparison
We calculated the corresponding SSIM and PSNR values derived from the perfor-

mance of the different models under the four datasets and the results are shown in Table
4. The bolded numbers are the best generation results achieved by the three models for
different styles. It can be seen that our model outperforms cycleGAN model and Pix2Pix
model.

Table 4. Quantitative evaluations of our method and other two methods.

Method
Sun Guoting Liang Qiusheng Guan Jun Wang Xizhi

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR
Cy-

cleGAN
0.53 9.4 0.53 10.1 0.57 11.1 0.51 9.6

Pix2Pix 0.63 11.3 0.64 13.5 0.67 14.6 0.62 13.4
Ours 0.65 11.4 0.73 18.2 0.78 19.9 0.70 17.1

In addition, we selected partial test results to generate line graphs of their SSIM and
PSNR, and the results are shown in Figure 8. In Guanjun, our model performs best, sig-
nificantly better than the other two. Additionally, in Sun Overdrive, the difference with
Pix2Pix is smaller, with the two generating essentially the same results for certain charac-
ters.

Figure 8. Partially generated image SSIM value line graph. Figure 7. Partially generated image SSIM value line graph.

The model behaves differently in different styles of calligraphic characters, not only in
relation to the stylistic similarity between the target calligraphic font and the input font,
but also in relation to its font structure. In general, our model can be applied to different
styles of calligraphic characters and outperforms the other two classical models.

4.4. Model Analysis

The GAN loss and L1 loss curves for the training process are given in Figure 9. It can
be seen that the GAN loss was constantly fluctuating, indicating that our network was well-
trained, whereas the L1 loss was continuously decreasing until it was stable, indicating that our
reconstructed image continued to be close to the real image as the training cycle increased.

We give the results obtained from testing at different epochs using the Wang Xizhi
dataset, as shown in Table 5. As the epoch increased, the quality of the calligraphic fonts
generated by the model increased, reaching the best when epoch = 250.

Table 5. Performance of the model under different epochs.

Epoch SSIM PSNR

50 0.638 14.42
100 0.671 16.07
150 0.687 16.45
200 0.689 16.61
250 0.702 17.13
300 0.702 17.12

Electronics 2022, 11, 2201 13 of 15

Electronics 2022, 11, x FOR PEER REVIEW 11 of 15

4.3.1. Qualitative Comparison
The images of calligraphic characters generated by the baseline method and our pro-

posed method are shown in Figure 7. The performance on the four different datasets
shows that our method generates a higher quality image. The specific analysis is as fol-
lows:
1. CycleGAN: CycleGAN is able to effectively capture the style of the target calligraphic

fonts, for example, Liang Qiusheng’s font has sharp strokes at one end and rounded
strokes at the other, and Guan Jun’s font has thin strokes, which are reflected in the
generated calligraphic fonts. However, the mapping of the font structure is poor, un-
able to escape the constraints of the printed font structure, and there is a certain de-
gree of missing stroke problem.

Input Ground
Truth CycleGAN pix2pix Ours

Liang Qiusheng

OursCycleGAN pix2pixGround
Truth

Input

Guan Jun

Input Ground
Truth

CycleGAN pix2pix Ours

Sun Gunting

Input Ground
Truth

CycleGAN pix2pix Ours

Wang Xizhi
Figure 7. Example results of the baseline methods and our method on the same dataset.

2. Pix2Pix: Compared to cycleGAN, Pix2Pix leans more towards the target calligraphic
font in terms of stroke structure, and the stylistic features are better represented.
However, the edges of the strokes are blurred. Guan Jun’s results show that the gen-
erated fonts have more stroke errors. Wang Xizhi’s results show that the generated
fonts have more serious problems such as strokes sticking together and blurred edges.

3. Ours: Compared to cycleGAN, our model produces calligraphic characters with
more accurate font structure and a more pronounced calligraphic style; compared to
Pix2Pix, the edges are clear and free of adhesion, which is more effective. Overall,
our model has an advantage over the baseline model in terms of both style and font
structure. As Sun Guiting’s stylistic features are most different from those of printed

Figure 8. Example results of the baseline methods and our method on the same dataset.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 15

The model behaves differently in different styles of calligraphic characters, not only
in relation to the stylistic similarity between the target calligraphic font and the input font,
but also in relation to its font structure. In general, our model can be applied to different
styles of calligraphic characters and outperforms the other two classical models.

4.4. Model Analysis
The GAN loss and L1 loss curves for the training process are given in Figure 9. It can

be seen that the GAN loss was constantly fluctuating, indicating that our network was
well-trained, whereas the L1 loss was continuously decreasing until it was stable, indicat-
ing that our reconstructed image continued to be close to the real image as the training
cycle increased.

We give the results obtained from testing at different epochs using the Wang Xizhi
dataset, as shown in Table 5. As the epoch increased, the quality of the calligraphic fonts
generated by the model increased, reaching the best when epoch = 250.

Figure 9. The curve of the L1 loss and GAN loss as epoch increased.

Table 5. Performance of the model under different epochs.

Epoch SSIM PSNR
50 0.638 14.42
100 0.671 16.07
150 0.687 16.45
200 0.689 16.61
250 0.702 17.13
300 0.702 17.12

5. Conclusions
In this paper, we propose a calligraphic font generation model that can directly trans-

form printed font images into calligraphic font images in the target style. The model is
based on Pix2Pix, and in the generator we use a new neural operator, involution, instead
of traditional convolution. Involution is able to focus on the relationship between spatial
distances, ensuring that the generated font strokes are structurally correct while enhanc-
ing the stroke details. In addition, we added a self-attentive module and a series of resid-
ual blocks to the middle layer of the generator to increase the network depth of the model
and give it better feature processing capabilities. We tested the model on four different
styles of calligraphy datasets. The experimental results show that the method has ad-

Figure 9. The curve of the L1 loss and GAN loss as epoch increased.

5. Conclusions

In this paper, we propose a calligraphic font generation model that can directly trans-
form printed font images into calligraphic font images in the target style. The model is
based on Pix2Pix, and in the generator we use a new neural operator, involution, instead
of traditional convolution. Involution is able to focus on the relationship between spatial

Electronics 2022, 11, 2201 14 of 15

distances, ensuring that the generated font strokes are structurally correct while enhancing
the stroke details. In addition, we added a self-attentive module and a series of residual
blocks to the middle layer of the generator to increase the network depth of the model and
give it better feature processing capabilities. We tested the model on four different styles
of calligraphy datasets. The experimental results show that the method has advantages
over other classical models in both visual perception and quantitative evaluation. In future
work, we will consider imbuing the generated calligraphic characters with brush and ink
textures to make the strokes more realistic and vivid.

Author Contributions: All authors contributed to this work. Writing—original draft preparation,
Y.S.; writing—review and editing, F.Y.; supervision, T.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported and funded by the Science and Technology Project of Hebei
Education Department (No. ZD2019131).

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zong, A.; Zhu, Y. Strokebank: Automating personalized chinese handwriting generation. In Proceedings of the AAAI Conference

on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; pp. 3024–3029.
2. Li, W.; Chen, Y.; Tang, C.; Yu, S. Example-based chinese calligraphy synthesis. In Proceedings of the 2018 International Conference

on Advanced Control, Automation and Artificial Intelligence, Shenzhen, China, 21–22 January 2018.
3. Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.
4. Jun-Yan, Z.; Taesung, P.; Phillip, I.; Alexei, A.E. Unpaired image-to-image translation using cycle-consistent adversarial networks.

In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.
5. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014;
pp. 2672–2680.

6. Brock, A.; Donahue, J.; Simonyan, K. Large scale gan training for high fidelity natural image synthesis. arXiv 2018,
arXiv:1809.11096.

7. Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 12–20 June 2019.

8. Mehdi, M.; Simon, O. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
9. Kaji, S.; Kida, S. Overview of Image-to-Image Translation Using Deep Neural Networks: Denoising, Super-Resolution,

Modality-Conversion, and Reconstruction in Medical Imaging. 2019. Available online: https://kyushu-u.pure.elsevier.com/ja/
publications/overview-of-image-to-image-translation-by-use-of-deep-neural-netw (accessed on 10 June 2019).

10. Souly, N.; Spampinato, C.; Shah, M. Semi supervised semantic segmentation using generative adversarial network. In Proceedings
of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5688–5696.

11. Zhang, F.; Gao, H.; Lai, Y. Detail-preserving cyclegan-adain framework for image-to-ink painting translation. IEEE Access 2020, 8,
132002–132011. [CrossRef]

12. Sanakoyeu, A.; Kotovenko, D.; Lang, S.; Ommer, B. A style-aware content loss for real-time HD style transfer. In Proceedings of
the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 698–714.

13. Choi, Y.; Choi, M.; Kim, M.; Ha, J.W.; Choo, J. StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-
Image Translation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt
Lake City, UT, USA, 18–23 June 2018.

14. Tian, Y. zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks. Available online: https://github.com/
kaonashi-tyc/zi2zi/ (accessed on 6 April 2017).

15. Zhou, P.; Zhao, Z.; Zhang, K.; Li, C.; Wang, C. An end-to-end model for chinese calligraphy generation. Multimed. Tools Appl.
2020, 80, 6737–6754. [CrossRef]

16. Li, G.; Zhang, J.; Chen, D. F2PNet: Font-to-painting translation by adversarial learning. Inst. Eng. Technol. 2020, 14, 3243–3253.
[CrossRef]

17. Chen, J.F.; Chen, H.; Xing, X.U.; Yan-Li, J.I.; Chen, L.J. Learning to write multi-stylized chinese characters by generative adversarial
networks. J. Univ. Electron. Sci. Technol. China 2019, 13, 2680–2686.

18. Mirza, M.; Osindero, S. Coconditional autoencoding adversarial networks for chinese font feature learning. arXiv 2018,
arXiv:1812.04451.

https://kyushu-u.pure.elsevier.com/ja/publications/overview-of-image-to-image-translation-by-use-of-deep-neural-netw
https://kyushu-u.pure.elsevier.com/ja/publications/overview-of-image-to-image-translation-by-use-of-deep-neural-netw
http://doi.org/10.1109/ACCESS.2020.3009470
https://github.com/kaonashi-tyc/zi2zi/
https://github.com/kaonashi-tyc/zi2zi/
http://doi.org/10.1007/s11042-020-09709-5
http://doi.org/10.1049/iet-ipr.2019.0476

Electronics 2022, 11, 2201 15 of 15

19. Jiang, Y.; Lian, Z.; Tang, Y.; Xiao, J. scfont: Structure-guided chinese font generation via deep stacked networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 4015–4022.

20. Lyu, P.; Bai, X.; Yao, C.; Zhu, Z.; Huang, T.; Liu, W. Auto-encoder guided gan for chinese calligraphy synthesis. In Proceedings
of the 2017 14th IAPR International Conference on Document Analysis and Recognition, Kyoto, Japan, 9–15 November 2017;
Volume 1, pp. 1095–1100.

21. Li, D.; Hu, J.; Wang, C.; Li, X.; She, Q.; Zhu, L.; Zhang, T.; Chen, Q. Involution: Inverting the inherence of convolution for visual
recognition. arXiv 2021, arXiv:2103.06255.

22. Badrinarayanan, V.; Handa, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for robust semantic
pixel-wise labelling. arXiv 2015, arXiv:1505.07293.

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

24. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

25. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
In Proceedings of the 4th International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

26. Agostinelli, F.; Hoffman, M.; Sadowski, P.; Baldi, P. Learning activation functions to improve deep neural networks. In Proceedings
of the 3rd International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

27. Dmitry, U.; Andrea, V.; Victor, L. Instance normalization: The missing ingredient for fast stylization. arXiv 2016, arXiv:1607.08022.
28. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2014.

	Introduction
	Related Work
	Generative Adversarial Networks
	Image-to-Image Translation
	Chinese Character Generation

	Methodology
	Involution
	Model Design
	Generator
	Discriminators

	Loss Functions

	Experiment
	Experiment Setting
	Data Preparation
	Network Architectures and Optimizer
	Evaluation Metrics

	Ablation Study
	Effect of Involution
	Effect of Res-SA Block
	Effect of Input Fonts

	Comparison with Existing Methods
	Qualitative Comparison
	Quantitative Comparison

	Model Analysis

	Conclusions
	References

