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Abstract: Complex integrated circuits (ICs) have complex functions and various working modes,
which have many factors affecting the performance of a single event effect. The single event effect
performance of complex ICs is highly program-dependent and the single event sensitivity of a typical
operating mode is generally used to represent the single event performance of the circuits. Traditional
evaluation methods fail to consider the cross effects of multiple factors and the comprehensive effects
of each factor on the single event soft error cross section. In order to solve this problem, a new
quantitative study method of single event error cross section based on a generalized linear model
for different test programs is proposed. The laser test data is divided into two groups: a training
set and a validation set. The former is used for model construction and parameter estimation based
on five methods, such as the generalized linear model and Ensemble, while the latter is used for
quantitative evaluation and validation of a single event soft error cross section of the model. In terms
of percentage error, the minimum mean estimation error on the validation set is 13.93%. Therefore,
it has a high accuracy to evaluate the single event soft error cross section of circuits under different
testing programs based on the generalized linear model, which provides a new idea for the evaluation
of a single event effect on complex ICs.

Keywords: processor; laser test; generalized linear model; ensemble method; confidence interval

1. Introduction

With the rapid development of aerospace technology and deeper exploration in space,
the requirements for performance of spacecraft are also increasing. Correspondingly, the
reliability and the radiation-hardened performance of complex integrated circuits (ICs)
are facing higher requirements [1]. Nowadays, with the reduction in the process size of
semiconductor devices, the single event effect (SEE), is seriously affecting the safety of
space missions, which is becoming more and more significant [2]. Therefore, it is necessary
to evaluate the SEE sensitivity of complex ICs before they are applied to space missions [3].
At present, the SEE evaluation methods of ICs recognized by the industry mainly include a
heavy ion test, a proton test, and other radiation tests. The SEE sensitivity of complex ICs
has a strong program dependence on which different users have different concerns and
applications, so the test programs cannot be traversed. In addition, due to the limited time
and high cost of the heavy ion accelerator, it is not suitable for all ICs to carry out radiation
tests. Therefore, several simulation methods and fault injection methods have been used to
study the SEE sensitivity of complex ICs.

VSenek et al. [4] proposed a Single Event Upset (SEU) simulation prediction method
based on the duty cycle to predict the SEU cross section of processors under different test
programs. A simple error rate prediction model was preliminarily established. However,
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the method of analyzing the duty factor was difficult to be applied to complex applications,
such as programs with conditional branches. Emmanuel et al. [5] carried out the SEU
simulation on processor under different programs based on fault injection, and applied a
new fault model of multi-fault injection to dual-fault injection. The model was designed to
represent a possible non-concurrent radiation-induced soft error, which was only useful for
specific processors in this paper. Gao jie, li qiang et al. [6] studied the relationship between
the dynamic and the static SEU rates of satellite microprocessors by using the concept of
program duty ratio and fault injection technology, which verified only by fault injection
but not by radiation experiments. Zhao Yuanfu et al. [7] proposed a method to predict the
SEE of complex ICs, which required a detailed analysis of different test programs and a
large amount of work. The prediction method has been verified by radiation experiments,
which has a good guiding significance.

The simulation method needs to establish different models for different circuits, which
is complicated and time-consuming, and the simulation results have relatively large errors
compared with the real test results. The method of fault injection has some problems
of precision, accuracy, and speed for the modeling. None of the above methods have
taken the cross influence of multiple factors and the comprehensive influence and accurate
quantification of SEE soft error cross section into account.

In view of the above shortcomings, laser SEE test data as small sample training set has
been used for modeling based on the generalized linear model. Quantitative evaluation
on the SEE cross section of the circuit under different test programs has been conducted
and the evaluation errors of training set and validation set under different methods are
verified, and they have been compared. It provides a new idea for the evaluation of SEE
soft error cross section in complex ICs. The SEU cross section of devices under different
test programs can be predicted by the new method without carrying out radiation tests on
all test modes. It can effectively solve the problem of evaluating the radiation performance
of complex ICs under different test modes and obtain high accuracy.

2. Circuit Descriptions and Radiation Experiments
2.1. Circuit Description

The research object is a 32-bit radiation-hardened microprocessor, which has all the
typical characteristics of complex ICs, such as large scale, high frequency, multiple modules
and complex functions. The system-level error detection and correction are adopted by
the radiation-hardened microprocessor. The circuit consists of an integer processing unit
(IU), a floating point processing unit (FPU), CACHE, register (REGFILE), a debugging
support unit (DSU), a serial port (UART), a storage/interrupt controller, a watchdog, a
timer, and other units, which realize data interaction through AMBA bus. The functional
block diagram of a microprocessor is shown in Figure 1.

Figure 1. Functional block diagram of the microprocessor.

2.2. Experiment Setting

In this paper, a set of function test programs is developed to simulate the typical
function state of a user, which makes the CPU instruction coverage reach 100%, and it also
covers all the logic units of the circuit. Taking P1–P4 test programs as the training test,
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they perform a single-precision integer operation and a double-precision floating point
operation in the CACHE open and closed states, respectively, which cover eight standard
test functions. P1 is a single-precision integer operation in CACHE ON mode, P2 is a single-
precision integer operation in CACHE OFF mode. P3 is the double-precision floating-point
operation in CACHE ON mode, and P4 is the double-precision floating-point operation in
CACHE OFF mode. P5–P8 test programs are designed as validation test programs. In order
to better verify the effectiveness of the model, this validation program has randomness,
and it does not require instruction coverage and logical unit coverage. The processor will
continuously access Refile data when executing different test programs. The statistics of
register usage of the target circuit under eight different test programs are shown in Table 1.

Table 1. Statistics of register usage under eight test programs.

Programs Register Reads
(Times)

Program Execution
Cycle T1 (s)

Average Register
Access Time T2 (us)

P1 ~29,843 0.063 2.11
P2 ~29,843 0.714 23.93
P3 ~327,660 0.072 0.22
P4 ~327,660 0.857 2.62
P5 ~74,468 0.330 17.48
P6 ~71,015 0.837 2.45
P7 ~301,430 0.524 21.20
P8 ~193,327 0.247 14.62

2.3. Radiation Experiments

The single event upset soft error cross sections (SEU cross sections) of the circuit under
different test programs are obtained by pulse laser test [8]. During the test, the working
voltage of the target circuit is set as the lowest level, where IO voltage is 2.97V and core
voltage is 1.62 V. The backside irradiation laser test is carried out using PL2210A-P17 pulsed
laser with 100 Hz frequency. The laser SEE test site is shown in Figure 2. The laser test data
of the training set is shown in Table 2, and the laser test data of the validation set is shown
in Table 3 in which the effective laser energy (i.e., laser energy focused in the active region
Eeff) has been equivalent to the LET value of heavy ion [9].

Figure 2. Laser SEE test site.

Table 2. Laser SEE soft error cross section of Training set (10−7 errors/cm2).

Test Programs
Equivalent LET 324pJ = 28.7

(MeV.cm2/mg)
432pJ = 37.5

(MeV.cm2/mg)
621pJ = 53

(MeV.cm2/mg)
950pJ = 80

(MeV.cm2/mg)

P1 11 31.8 51.7 114.3
P2 6.3 22 33 69.9
P3 16.9 46.5 72 147.8
P4 9.3 24.4 35 76.8
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Table 3. Laser SEE soft error cross section of validation set (10−7 errors/cm2).

Test Programs
Equivalent LET 135pJ = 13.1

(MeV.cm2/mg)
241pJ = 21.8

(MeV.cm2/mg)
241pJ = 21.8

(MeV.cm2/mg)
889pJ = 75

(MeV.cm2/mg)

P5 18.1 23.5 33.6 112.2
P6 21.1 16.5 26.0 59.6
P7 21.9 14.7 39.5 131.7
P8 4.8 11.7 15.2 70.8

The conversion relation between the initial laser energy E0 and the LET value of the
heavy ion is shown in Formula (1):{

Eeff = f(1− R)e−αh(1 + R′
)
E0

LET = 0.082Eeff + 2.07
(1)

where f is the effect factor of the spot, R is the reflectance of the device surface, R′ is the
metal layer reflectance of the device, α is the silicon substrate absorption coefficient of the
device and its measured value, and h is the Planck constant.

Four validation programs for P5–P8 were designed, and laser tests were carried out
under different laser energies, respectively. The obtained laser test data of P5–P8 are shown
in Table 3.

3. Modeling and Parameter Estimation

Compared with the data obtained by software simulation, the laser test data is closer
to the radiation sensitivity of the circuit in the actual radiation environment, so the model
established based on laser test data have a higher accuracy. There are 16 observations of
laser test data, which are typical small sample data, and the use of second-order and above
polynomial or tree models may lead to overfitting [10–12]. The generalized linear model is
linear with respect to the unknown parameters, but nonlinear with respect to the known
variables. The nonlinear functional relational quantization model between the independent
variable and the dependent variable can be established based on the linear parameters
and multiple bases. The corresponding model has a good fitting effect and prediction
accuracy. Therefore, the pulsed laser SEE test data of P1–P4 as the training set are used to
build the model based on the generalized linear model. Four methods of generalized least
squares method [10,11], the weighted least squares estimation method [13], the median
regression method [12], and the least trimmed squares method [12] are used to obtain the
estimation parameter of the generalized linear model. The four methods mentioned above
are combined with optimal weights, namely the Ensemble method as the fifth method.
Then, a laser test is performed on the target circuit under the P5–P8 validation programs,
and the obtained laser test data is used as the validation set to verify the generalized linear
model. The flow chart of the method to quantitatively evaluate the SEE soft error cross
section of complex ICs based on the generalized linear model is shown in Figure 3.

Firstly, the P1–P4 test program for the training set is written, and 16 groups of small
sample test data are obtained by laser test. The test data is used as the training set for
the generalized linear model. Then, GLS, WLS, MR, LTS, and Ensemble methods are
established and parameters are optimized on the target functions. The P5–P8 test programs
as the validation set are written and then the generalized linear model is used to predict
the SEE soft error cross section. Meanwhile, the soft error cross section under radiation is
obtained by laser test. By evaluating the prediction error and the confidence interval on the
test data, the precision of the quantitative prediction model is obtained.
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Figure 3. The flow chart of the method.

3.1. Model Building

The generalized linear model is established using Formula (2).

g(SEU) = β0 +
p

∑
i=1

βi fi(LET, times, T1, T2) + ε (2)

Formula (2) represents the quantitative relationship between SEU and its impact factor,
such as LET, times, T1, T2. Since the value of the SEU soft error cross section must be
positive, and the right side of the equation takes the value of the entire real number domain,
we take the logarithm of the SEU and put it into the model, that is, taken as the link
function of Poisson regression. The model is linear with respect to unknown parameters,
but nonlinear with respect to several known independent variables. Here, the function
fi(LET, times, T1, T2) can be made of any nonlinear function about independent variables
according to your observations and assumptions, such as neural networks, GBDT (gradient
boosting decision tree), spline functions, or polynomials about independent variables,
etc. [10,11]. In this paper, fi(LET, times, T1, T2) is taken as each independent variable
itself to minimize the number of parameters to prevent overfitting and to achieve better
predictions. The simulation software used for modeling and parameter estimation in this
paper is R-3.5.3.

At this point, the above model can be simplified to Formula (3)

Y = Xβ + ε (3)

Among them, Y = log(SEU) = (y1, y2, . . . , yn)
T , n is the number of experiments,

which is 16 in this paper, and SEU is a column vector of length n. Each column of X is
the number of registers read times (times), program execution cycle (T1), average register
access time (T2), LET and an intercept term (I) that is all 1, each row of X is an observation
data. The dimension of X matrix is n× 5. β is the unknown parameter column vector of
length 5 to be solved, and ε is the measurement error column vector of length n.

3.2. Variable Selection

There are multiple criteria such as Cp, AIC, and BIC for variable selection of the
model [11]. In this paper, AIC criterion is chosen for variable selection, which is the sum
of the negative average log-likelihood and the penalty term considering the number of
parameters. The lower the value, the better the prediction effect of the model. The result of
variable selection using the AIC criterion is shown in Figure 4.
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Figure 4. Variable selection using AIC criteria.

As can be seen from Figure 3, the final result of variable selection retains the number
of register reads (times), program execution cycle (T1), LET and the intercept term (I) that
is all 1, and it excludes the average register access time (T2).

3.3. Parameter Estimation

For different assumptions of measurement error or different loss functions, different
parameter estimates β̂ and predicted values of SEU cross section SÊU can be obtained. In
order to further analyze the experimental data and to obtain a more accurate and robust
model, the following four methods are firstly used to carry out model building, in which
the first two are based on the Gaussian distribution assumption, and the latter two are
robust parameter estimation methods, both of them are used to solve Formula (3), and β̂ is
the estimated value of β. Methods for parameter estimation are shown in Table 4.

Table 4. Methods for parameter estimation.

Methods for Parameter Estimation Formulas Parameter Description

GLS, generalized least squares [10,11]
β̂GLS = argmin

β

n
∑

i=1
(Yi − XT

i β)
2
=

(XT X)
−1XTY

Xi is the column vector formed for the i
row of the matrix X.

WLS, weighted least squares [13]

β̂WLS = argmin
β

n
∑

i=1
wi(Yi − XT

i β)
2

= (XTWX)
−1XTWY

W = diag{w1, w2, . . . , wn}, wi =
1

SEUi

Xi is the column vector formed for the i
row of the matrix X.

MR, median regression [12] β̂MR = argmin
β

n
∑

i=1

∣∣Yi − XT
i β
∣∣ To calculate the β̂MR, slack variables can

be introduced and the simplex method
can be used [13].

LTS [12], least trimmed squares

β̂LTS = argmin
β

h
∑

i=1
|ε|2

(i)

h =
[

n+p+1
2

]
|ε|(1) ≤ |ε|(2) ≤ . . . ≤ |ε|(n)

p is the number of columns of X, [m]
represents the largest integer not greater

than m. (|ε|(1), |ε|(2), . . . , |ε|(n))
T is the

vector sorted by absolute value from
smallest to largest for each element in

ε = (ε1, ε2, . . . , εn)
T .

The estimation parameter for the training set obtained by the above four methods are
shown in Table 5. It can be seen that the influence coefficients of LET and times obtained
by different methods are positive, while T1 is on the contrary, and the values of the four
methods are relatively close, that is, they increase with the growing of LET and times and
decrease with the increase of T1.
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Table 5. Estimation parameters for training set under different methods.

Column Names of X GLS WLS MR LTS

(Intercept) 1.71685 1.52232 2.34029 2.64312
LET 0.03934 0.04237 0.03053 0.02697

times 1.0578 × 10−6 1.18 × 10−6 8.26 × 10−7 7.48 × 10−6

T1 −0.78625 −0.79952 −0.78671 −0.83454

3.4. Model Optimization

Considering that each of the four methods in Section 3.3 may have advantages and
disadvantages, the Ensemble method [10,11], which performs optimized linear weighting
on the predicted values of these four methods by minimizing the combined variance,
is adopted to reduce the prediction variance, shrink the confidence interval, and make
predictions more robust. It can be seen from Formula (4) that after Ensemble, the variance of
the forecast value, which is the weighted average of the evaluation from the four methods
mentioned above, is reduced to minimize and thus becomes more reliable.

min
p

pTΣp

s.t.
4
∑

i=1
pi = 1

pi ≥ 0

(4)

Σ is the covariance matrix of the evaluation errors of the four methods.
The covariance matrix of these four methods in Section 3.3 calculated based on the

training dataset is shown in Table 6, where the diagonal is the variance of the evaluation
errors of the four methods. It can be seen that the evaluation variances of the two robust
parameter estimation methods, MR and LTS, are all less than 50, which means the standard
deviation of the evaluation errors of the SEU cross section prediction value is less than√

50 = 7.07. The covariance of the WLS method and the LTS method is the smallest, which
is −2.9, thus the correlation coefficient of these two is ρWLS,LTS = −2.9√

230.93∗48.53
= −0.03.

The negative correlation of these two is used by the Ensemble method to further reduce the
evaluation error variance of SEU.

Table 6. Covariance matrix of the evaluation errors of the four methods.

GLS WLS MR LTS

GLS 122.15 165.03 33.73 10.30
WLS 165.03 230.93 31.04 −2.90
MR 33.73 31.04 38.39 38.97
LTS 10.30 −2.90 38.97 48.53

The inner point method of constraint optimization algorithm [12,13] is used to calculate

the optimal weights p =


0.00118461
0.09161878
0.68351429
0.22368231

. It can be seen that MR method has the largest

weight, while GLS method has almost zero weight.

3.5. Evaluation Error

In order to verify the evaluation performance of the model on the test data, the above
five evaluation methods are used in the training set and the validation set to verify the
evaluation effect of the model, respectively. For the evaluation of error, root mean square
error (RMSE) [10,11], average error percentage, and other various evaluation indicators
are selected. The smaller the value, the smaller the evaluation error and the higher the
evaluation accuracy. The evaluation errors of the training set and the validation set under
different methods are shown in Table 7.
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Table 7. Evaluation errors of training set and validation set under different methods.

Evaluation Errors of Training Set under
Different Methods

Evaluation Errors of Validation Set under
Different Methods

Method GLS WLS MR LTS Ensemble GLS WLS MR LTS Ensemble

Root mean square error 10.74 14.87 6.22 8.03 6.40 8.92 11.11 6.44 7.57 6.41
Mean absolute error 9.11 11.31 4.38 5.05 4.76 7.58 9.34 5.03 6.03 4.83

Mean absolute error in percent % 22.38 30.98 12.96 16.73 13.33 19.39 24.15 14.0 16.4 13.93

Taking RMSE [10,11], the most commonly used evaluation method, as an example,
Ensemble and the MR method have relatively low RMSE in the training set and the
validation set, while the other three methods have relatively large evaluation errors in
validation set. The MR method, as one of the robust parameter estimation methods, shows
a lower evaluation error in the training set and the validation set compared with the GLS
and the WLS methods based on Gaussian distribution, indicating that the error of SEU data
collected in the experiment may be non-Gaussian distribution, or Gaussian characteristics
are not obvious due to small samples. It also verified the reliability of the MR and the
Ensemble methods in data modeling, that is, the quantitative evaluation model established
by us is effective, and it has a certain accuracy.

4. Confidence Interval Analysis

In the above section, the evaluation errors are compared. Considering the quantity of
data is small, the performance of five methods can be affected by accidental data, therefore
in this section further analysis on the confidence interval is carried out. The shorter
confidence interval means a smaller evaluation error variance and a higher reliability. So,
in this section, further comparison of confidence interval with five methods is performed.

In this paper, the bootstrap method based on statistical sampling is used to calculate
the confidence interval of SEU cross section. Multiple SEU cross sections can be obtained by
repeated sampling with replacements. The bootstrap times in this paper is set as B = 300.

Figures 5–8 show the evaluation value and a 95% confidence interval of the five
methods on the training set and the validation set, respectively. The evaluation error is the
difference between the evaluation value and the soft error cross section value observed in
the laser experiment. Gray bars representing known experimental values, points and line
segments of five colors are the respective evaluation values and confidence intervals of the
five methods. The narrower the confidence interval is, the higher the evaluation accuracy
is. Figures 7 and 8 show the probability density function of the evaluation error of the five
methods on the training set and validation set, which is calculated using kernel method
(gaussian kernel is used, bandwidth is determined based on cross-validation). It can be
seen that the value of the error corresponding to the highest density of Ensemble and MR
methods on the validation set is concentrated near zero, but the former is more concentrated
at zero than the latter. The error distribution of the other three methods is relatively flat,
and the error corresponding to the highest probability density is far from zero. As can be
seen from Figures 5–8 and Table 7, the Ensemble method has the best evaluation accuracy
RMSE and the narrowest confidence interval in the validation set, which can be used to
evaluate the SEE soft error cross section based on different test programs and laser energy.

Figure 5. Evaluations, 95% confidence intervals and real values of the five methods on the training set.
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Figure 8. Density function of evaluation errors of five methods on validation set.

5. Conclusions

A new method based on the generalized linear model for quantitative evaluation of
a SEE soft error cross section under different test programs is presented. Different test
programs are designed, and the data sets of a laser test under several test programs and
register calls of different test programs are divided into training and validation groups.
The training set is used for modeling and parameter estimation of the five methods, and
the validation set is used to evaluate the model accuracy. The evaluation value, evaluation
error, 95% confidence interval, and the probability density function of the five methods on
the training set and the validation set are computed. The results show that the quantitative
evaluation method of complex ICs based on generalized linear models can achieve a high
accuracy of 13.93%. Various factors of the SEE sensitivity of comprehensive effect and
quantitative evaluation are considered in the evaluation method. Quantitative evaluation
is suitable for small sample experiment data under different test programs, which is an
applicable innovation.
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