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Abstract: Virtual reality (VR) and augmented reality (AR) are engaging interfaces that can be of
benefit for rehabilitation therapy. However, they are still not widely used, and the use of surface
electromyography (sEMG) signals is not established for them. Our goal is to explore whether there is
a standardized protocol towards therapeutic applications since there are not many methodological
reviews that focus on sEMG control/feedback. A systematic literature review using the PRISMA
(preferred reporting items for systematic reviews and meta-analyses) methodology is conducted. A
Boolean search in databases was performed applying inclusion/exclusion criteria; articles older than
5 years and repeated were excluded. A total of 393 articles were selected for screening, of which
66.15% were excluded, 131 records were eligible, 69.46% use neither VR/AR interfaces nor sEMG
control; 40 articles remained. Categories are, application: neurological motor rehabilitation (70%),
prosthesis training (30%); processing algorithm: artificial intelligence (40%), direct control (20%);
hardware: Myo Armband (22.5%), Delsys (10%), proprietary (17.5%); VR/AR interface: training
scene model (25%), videogame (47.5%), first-person (20%). Finally, applications are focused on
motor neurorehabilitation after stroke/amputation; however, there is no consensus regarding signal
processing or classification criteria. Future work should deal with proposing guidelines to standardize
these technologies for their adoption in clinical practice.

Keywords: artificial intelligence; classification; control; motor rehabilitation; prosthesis; stroke;
surface electromyography signals; user interface

1. Introduction

Rehabilitation therapies currently include a variety of techniques and approaches that
have allowed specialized care of impaired patients up to personalized therapy, which is
becoming a leading strategy in public health [1]. Among them, a new category of reha-
bilitation systems and virtual environments for therapy has arisen, from telemedicine [2],
alterations of user interfaces and videogame controllers [3], to serious games [4], virtual
reality (VR), and augmented reality (AR) [5]. Conventional physical therapy (CPT) and
VR/AR therapies are believed to have a symbiotic relationship, where the latter increase
patients’ engagement and help them immerse in therapy, while CPT stimulates tactile and
proprioceptive paths by means of mobilization, strengthening, and stretching. Therefore,
the combination of both approaches could be beneficial to patients, bringing a more com-
prehensive and integrated treatment that can be clinically useful [5]. VR/AR environments
for rehabilitation are mainly used for stroke aftermath rehabilitation therapy and prosthesis
control training.
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Furthermore, the control of the interface and the feedback received by the user are crucial
to stimulate neurological pathways that aid in cases like neuromotor rehabilitation [6,7], or in
learning how to use a new prosthetic device [8].

The use of biological signals such as surface electromyography (sEMG), which is the
electrical representation of muscle activity, additionally improves the biofeedback benefits
of therapy with advantages such as avoiding fatigue [9,10].

A virtual environment is used by means of an interface; VR interfaces should comply
with certain conditions, i.e., no significant lag time to perceive it as a real time interaction,
have seamless digitalization, use a behavioral interface (sensorial and motor skills), and
have an effective immersion as close as possible to reality [11]. The use of virtual reality
technologies for rehabilitation purposes has recently increased [12–15], especially for motor
rehabilitation applications [16,17]. In the literature, it has been found that the main uses
of these technologies fall into two main areas: motor neurological rehabilitation [15,18,19]
and training for prosthesis control [20,21].

Feedback is very important during rehabilitation of new neuromotor pathways since
it helps the user to correct the direction of the movement or intention towards the right
track [15,20,22–25]. Instant feedback tells the brain and the body how to recalibrate in the
same way that it learned it the first time [22]. Moreover, as the user interaction in rehabili-
tation systems grows towards a closed loop approach there is a need for a wider variety
of feedback strategies, whether in the form of visual and audio-visual [26], tactile [27], or
haptic [28]. Some studies centered on feedback, report closed-loop [29,30] and open-loop
algorithms, among other combinations.

sEMG signals have been widely used as a control signal for rehabilitation systems
and applications for a long time now [31]. This approach has several advantages regarding
signal acquisition which allows the user to move freely depending on the type of hardware
used, including wearable arrays, wireless systems, and even implantable electrodes [32–34].
Additionally, there is a variety of electrodes and electrode types, shapes, and arrays that
can suit different applications and needs [35,36].

The use of sEMG signals as a control strategy has been widely explored in the myo-
electric prosthesis research area, but it is not until recent years that these control techniques
have migrated towards other therapy applications, for example, in the control of computer
interfaces and environments such as VR and AR [37]. sEMG signals bring about the pos-
sibility of a complex multichannel/multiclass type of control algorithm that enables, in
turn, the implementation of more intuitive user interfaces for the patient to perform [38].
This is important as it closes the loop of control/feedback interaction, and this special
quality promotes neuroplasticity pathways to emerge [39]. However, the use of biosignals
in VR/AR applications require more effort than other control strategies that involve other
sensor measurements or motion analysis.

On one hand, sEMG signals have been widely explored for control purposes [31]
and, on the other hand, VR/AR interfaces have been explored to improve the outcomes
of physical rehabilitation therapies [40,41]. Furthermore, as mentioned above, several
feedback techniques have been considered recently, but mainly as sensors that record a
variable and return a quantitative measure to the experimenter or provide the user feedback
that might feel unnatural [26–28].

Literature suggests that using sEMG signals to control VR/AR interfaces can provide
better outcomes when paired to CPT. In 2018, Meng et al. [9] performed a 20-day follow-
up experiment to prove the effectiveness of a rehabilitation training system based on
sEMG feedback and virtual reality that showed that this system has a positive effect on
recovery and evaluation of upper limb motor function of stroke patients. Then, in 2019,
Dash et al. [42] carried out an experiment with healthy subjects and post-stroke patients
to increase their grip strength. Both groups showed an improvement in task-related
performance score, physiological measures (using sEMG features), and readings from a
dynamometer; from the latter, both groups gained at least twice their grip ability. Later, in
2021, Hashim et al. [43] found a significant correlation of training time and the Box and
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Block Test score when testing healthy subjects and amputee patients in 10 sessions during
a 4-week period using a videogame-based rehabilitation protocol. They demonstrated
improved muscle strength, coordination, and control in both groups. Moreover, these
features added to induced neuroplasticity and enabled a better score in this test, which is
related to readiness to use a myoelectric prosthesis. More recently, in 2022, Seo et al. [44]
proposed to determine feasibility of training sEMG signals to control games with the goal
of improving muscle control. They found improvement in completion times of the daily
life activities proposed; however, interestingly, they report no significant changes in the Box
and Block Test. The contrasting results found should be further investigated for specific
clinical instruments or experimental settings.

Literature supports the hypothesis that sEMG signals can be a robust biofeedback
method for VR/AR interfaces that can potentially boost therapy effects. On top of an
increased motivation and adherence from patient to complete rehabilitation therapies [43],
the method also yields a different type of awareness to the patient of their own rehabilita-
tion progress. Furthermore, this type of therapy offers quantitative data to the therapist,
potentially allowing a better understanding of patient progress, which brings certainty to
the process.

Nonetheless, sEMG signals as control or feedback of a VR/AR interface merge has
not been investigated thoroughly, and even less so in the form of a systematic literature
review (SLR). sEMG signals can be better interpretated by patients as control and the
visual feedback completes the natural pathway they lost and are trying to get back through
rehabilitation therapy.

There are some SLRs that have analyzed VR and AR interfaces used for hand re-
habilitation, but some lack an adequate inclusion of feedback techniques [45], whereas
others include feedback and focus on the similarity of techniques among VR interfaces
for rehabilitation therapy and CPT [5]. Some studies use a computer screen interface to
address virtual rehabilitation therapies [46]. Although there are several articles reporting
individually the use of sEMG signals and VR/AR interfaces [9,43,44,47], there are no SLRs
focused on the use of for these interfaces.

Although some studies show sEMG signals paired with VR/AR environments, just a
few discuss if there are advantages in clinical results compared to conventional therapy
groups, and there is a shortage of standardized protocols when sEMG signals are used
for rehabilitation therapy purposes [37,48,49]. Hence, there is not enough information
in the literature to determine if these biosignals used as control or feedback of VR/AR
systems improve the positive outcomes of neuromotor rehabilitation therapies and whether
they promote, e.g., neuroplasticity or support training of myoelectric control for prosthesis
fitting. It is also important to know if the hardware used is commercially available or
proprietary/developed, and if the signal processing techniques used are similar enough
to be compared. Likewise, it is important to learn the rehabilitation target to which this
technology has been applied to and if they have been tested with healthy subjects or patients,
and if this technology is aimed for a clinical environment or only for research protocols.

To address these matters, our goal and contribution to the field is to explore and
analyze if sEMG signals can be used as control and/or biofeedback for VR/AR interfaces,
and to find out if the proposed techniques converge on a standard of care protocol, since
there are not many methodological reviews to date that focus on sEMG control/feedback.
Therefore, we considered it essential and necessary to carry out an exhaustive review of the
published scientific literature regarding this topic. In this paper we applied the PRISMA
(preferred reporting items for systematic reviews and meta-analyses) methodology [50]
for a systematic literature review (SLR) to find out how AR and VR interfaces are used in
rehabilitation applications that are controlled through sEMG signals. To complete this task,
we collected relevant articles dealing with state-of-the-art AR and VR environments used
for rehabilitation purposes based on sEMG signals used as control or biofeedback.
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2. Materials and Methods

The PRISMA methodology was followed to conduct the SLR search [50]. A set of six
academic and scientific databases were searched: PubMed/Medline, IEEE Xplore, Science
Direct, Scopus, EBSCO, and Google Scholar. The search included titles, abstracts, and
keywords of articles written in the English language. The search was conducted from
January 2017 to March 2022.

Search query and selection criteria—The aim of the SLR was to find and analyze the
state-of-the-art of motor neurological rehabilitation based on VR/AR interfaces, focusing
on those using sEMG control covering feature extraction and classification algorithms. The
search query was performed in three steps (Figure 1). Step 1—Identification: from the
articles resulting from the Boolean search of keywords in databases, titles, abstracts, and
keywords; they are looked over to eliminate duplicates and unrelated articles. Step 2—
Screening eligibility: articles were selected if dealing with any form of VR/AR interfaces for
rehabilitation controlled by sEMG, while excluding those that cannot be retrieved, the ones
that aim at other research focus, those that do not use sEMG as control or feedback, the ones
that use sEMG for assessment purposes, and those that do not include a virtual interface.
Step 3—Including: the filtered articles are selected for analysis after full text reading.
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Research questions—The main information to be extracted from the SLR, to find out
the use of sEMG control for rehabilitation using VR/AR application, is summarized in the
following series of research questions (RQ):

RQ1: What is the share in the use of VR and AR interfaces in rehabilitation?
RQ2: Which is the target anatomical region aimed to be rehabilitated?
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RQ3: What type of rehabilitation therapy is the interface used for?
RQ4: What are the characteristics of VR/AR interfaces when used for rehabilitation?
RQ5: How are sEMG signals used to interact with VR/AR interfaces for rehabilitation?
RQ6: What hardware is used for signal acquisition?

Inclusion and exclusion criteria—The keywords used for a Boolean search through the
databases were: ((Virtual Reality) OR (Augmented Reality)) AND (Rehabilitation) AND
(Surface Electromyography) AND (Control OR Feedback). Articles from peer-reviewed
conference proceedings, indexed scientific journals, books, and chapters are included.
After this examination, articles that are duplicated or unrelated to the scope of this paper
were removed. The remaining articles were explored for other related keywords such as:
interface, videogame, stroke, and prosthesis. Those which were considered relevant and
belong to recent advances in the techniques of interest were selected for analysis in the SLR.

Data extraction and analysis—This section describes the proposed classification for the
selected articles, including original and review articles (Figure 2). The articles were filtered
into three classes: first class consisted of sEMG control algorithms and was subdivided
into pattern recognition and direct control; the second class was the mode of rehabilitation
application that can be either for neurological rehabilitation (e.g., stroke) or for amputation
rehabilitation in the form of training for prosthesis control. Finally, the third class took
up the categories of VR/AR interface interaction, including the training scene model,
first-person mode, and videogame interfacing.
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3. Results

The Boolean search of keywords in electronic databases accounted for 795 studies
(Step 1—Identification). Articles dealing with any form of VR/AR interfaces for rehabili-
tation controlled by sEMG signals were selected (Figure 3). First, irrelevant articles were
removed, including those eliminated for being duplicated and those older than January
2017, summing up to 573 articles.

Then, articles unrelated to the focus topic and those that could not be retrieved were
eliminated (Step 2—Screening eligibility), subtracting 104 additional articles.

Finally, those that do not use sEMG as control or feedback (27), the ones that use sEMG
signals just for evaluation (22), and those that do not include a virtual or augmented reality
interface (42) were excluded (Step 3—Including), leaving us with 40 articles for full text
reading and analysis.



Electronics 2022, 11, 2271 6 of 22

Electronics 2022, 11, x FOR PEER REVIEW 6 of 26 
 

 

Finally, those that do not use sEMG as control or feedback (27), the ones that use 
sEMG signals just for evaluation (22), and those that do not include a virtual or augmented 
reality interface (42) were excluded (Step 3—Including), leaving us with 40 articles for full 
text reading and analysis. 

 
Figure 3. Number of records identified from each database for the systematic literature review. 

From the 40 works analyzed, 2 were review articles, 2 were book chapters, and the 
remaining (36) were original articles. Some 82.5% (33) of literature articles were oriented 
to upper limb, and 17.5% (7) to lower limb. Patients were included in 15 articles (37.5%), 
with 7 concerning amputee patients and 8 concerning post-stroke patients. A total of 
67.5% (27) of the articles included abled-bodied healthy subjects in their trials. All the 
articles (40) used visual feedback through the VR or AR interfaces, but a few used a second 
type of feedback, such as 2 articles that included fatigue and closed-loop feedback to 
regulate intensity [51,52], while another 2 papers used audio feedback [47,53], 2 relied on 
tactile feedback [53–55], 1 had haptic feedback, and 1 asked the subject to think of the 
movement (to be detected through electroencephalography (EEG)) as well as to perform 
it [56]. Just 3 articles mentioned exoskeletons for movement assistance triggered by sEMG 
signals [56–58], and 1 article used functional electrical stimulation (FES) for movement 
assistance [59]; all 4 of them belong to neurorehabilitation applications. 

3.1. RQ1: What Is the Share in the Use of VR and AR Interfaces in Rehabilitation? 
From the analyzed articles, we found that 57.5% (23) of them use a VR interface 

environment for rehabilitation purposes (Table 1). Some 27.5% (11) of the articles propose 
a virtual interface that operates as a computer interface (CI) (Table 2). Meanwhile, 4 (10%) 
of them use AR interfaces as biofeedback (Table 3). 

Mostly, VR and CI interfaces show an environment to be controlled by the user to 
complete an action or different movements repetitions. There are three main variations: 
videogame interface (11 for VR, 7 for CI), imitation tasks named training scene model (2 
articles for both cases VR and CI), and first person, e.g., outreach tasks (10 for VR and 11 
for CI). In the case of AR interfaces, 3 correspond to a videogame or serious games 
interfaces [60–62], and 1 to a training scene model [63]. 

Figure 3. Number of records identified from each database for the systematic literature review.

From the 40 works analyzed, 2 were review articles, 2 were book chapters, and the
remaining (36) were original articles. Some 82.5% (33) of literature articles were oriented
to upper limb, and 17.5% (7) to lower limb. Patients were included in 15 articles (37.5%),
with 7 concerning amputee patients and 8 concerning post-stroke patients. A total of 67.5%
(27) of the articles included abled-bodied healthy subjects in their trials. All the articles
(40) used visual feedback through the VR or AR interfaces, but a few used a second type
of feedback, such as 2 articles that included fatigue and closed-loop feedback to regulate
intensity [51,52], while another 2 papers used audio feedback [47,53], 2 relied on tactile
feedback [53–55], 1 had haptic feedback, and 1 asked the subject to think of the movement
(to be detected through electroencephalography (EEG)) as well as to perform it [56]. Just
3 articles mentioned exoskeletons for movement assistance triggered by sEMG signals [56–58],
and 1 article used functional electrical stimulation (FES) for movement assistance [59];
all 4 of them belong to neurorehabilitation applications.

3.1. RQ1: What Is the Share in the Use of VR and AR Interfaces in Rehabilitation?

From the analyzed articles, we found that 57.5% (23) of them use a VR interface
environment for rehabilitation purposes (Table 1). Some 27.5% (11) of the articles propose a
virtual interface that operates as a computer interface (CI) (Table 2). Meanwhile, 4 (10%) of
them use AR interfaces as biofeedback (Table 3).

Mostly, VR and CI interfaces show an environment to be controlled by the user to
complete an action or different movements repetitions. There are three main variations:
videogame interface (11 for VR, 7 for CI), imitation tasks named training scene model
(2 articles for both cases VR and CI), and first person, e.g., outreach tasks (10 for VR and
11 for CI). In the case of AR interfaces, 3 correspond to a videogame or serious games
interfaces [60–62], and 1 to a training scene model [63].

In total, 18 (52.94%) of the articles concerning VR or CI interfaces use a videogame or a
serious game as interface with 7 of them, for CI, showing tests performed by patients with
positive performance results [42,43,47,51,64–66], and 3 for VR interfaces [53,67,68].

There were 2 VR and 2 CI articles presenting interfaces based on a training scene
model, with only 2 of them showing results for patient use [69,70]. Meanwhile, 5 (13.8%)
articles use a first-person approach for their interface, however, only 3 show results with
patients and do not report performance metrics [29,56,70–72].
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Only [61] reports the use of the AR interface with patients (five amputees). Melero et al. [60]
use a Microsoft Kinect to locate upper limbs of three abled-bodied subjects; when sEMG
signals show a perfect performance of the activity, the subject scores a point. They report a
77% accuracy in hand gesture classification.

There is a widespread conception of what a VR interface is implied to have and look
like. However, most articles use a conventional videogame computer interface, and only
8 (22.2%) report using a headset [61,69,72–74], an environment [65,68], or immersive VR [75].

3.2. RQ2: Which Is the Target Anatomical Region Aimed to Be Rehabilitated?

There are two types of pathologies to which the VR/AR interfaces are targeted: post-
stroke paresis rehabilitation and training for myoelectric prosthesis use. From the arti-
cles that include patients in their studies (40%), these are mainly upper limb amputees
(50%) [6,43,56,61,65,67,68,70], post-stroke with hemiparesis patients (43.75%) (which may
need both upper and/or lower limb rehabilitation) [42,47,51,53,64,66,69], and there is
1 study where authors tested their environment with a patient that presented a bilateral
upper-limb congenital transverse deficiency [72].

Most of the developments are focused on upper limb rehabilitation (82.5%), which
include all the AR interfaces described above. Even though there are more cases of lower
limb amputations and paresis than upper limb amputations [76], upper limb disability has
been reported as a larger burden than lower limb impairment or loss [77].

3.3. RQ3: What Type of Rehabilitation Therapy Is the Interface Used for?

Neurological motor rehabilitation is the goal of 28 (70%) of the analyzed articles, while
12 (30%) present interfaces used for training the amputee patient for future myoelectric
prosthesis use.

3.4. RQ4: What Are the Characteristics of VR/AR Interfaces When Used for Rehabilitation?

We found the interfaces can be divided into three types: videogame, first-person, and
training scene model.

The less common interface is the training scene model (15% of analyzed articles), only
used in 2 (8.69%) VR interfaces, in 2 (18.18%) CI interfaces, and 2 (50%) AR interfaces. Here,
the user is shown an arm and/or hand that performs the movements the user is sending
for control or biofeedback. The next type of interface is first-person with 16 (40%) interfaces
found. This type of interface is trying to embed the user in the environment, as if they were
going through it; most of the times the user can see either their arms and hands or some
tool used to attain the goal of the game. Finally, the videogame interface is based on the
movement of a character to perform a given task within a designed environment, and each
virtual movement is related to a real movement from the impaired hand. The articles show
11 (27.5%) videogame type for VR interfaces, and 7 (17.5%) for CI interfaces; no videogame
interfaces were reported for AR interfaces in the analyzed articles.

3.5. RQ5: How Are sEMG Signals Used to Interact with VR/AR Interfaces for Rehabilitation?

Regarding the user interaction with the interface, the main aspect to be described
is sEMG control, which is based on acquiring and classifying muscle activity to detect
volitional activity, and in some cases, which type of hand gesture is being performed. To
accomplish this, several types of classifiers are presented within the analyzed articles.

Regarding signal processing algorithms, Li et al. [55] reported the use of the wavelet
transform to process sEMG signals and to extract features for further classification us-
ing support vector machines (SVM). However, 13 articles (32.5%) reported the use of
pattern/gesture recognition to differentiate among hand grasps.

Support vector machine is used in 4 (10%) articles, only 3 of them report performance (with
96.3%, 95%, and 99.5% (healthy subjects)/94.75% (stroke patients), respectively) [9,51,52,55].
Another 4 (10%) articles use neural networks, and 1 reports a 97.5% performance using a
convolutional neural network [63], while another 1 uses a deep learning model [73], and
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1 more a probabilistic neural network [64]. Only 1 article uses linear discriminant analysis
for classification of grasps [67]. The Myo Software® is used for classification of hand grasps
in 2 articles [59,61], and [6] reports the use of a Kalman filter-base decode algorithm. The
above-mentioned techniques are state-of-the-art classification methods for sEMG control,
which is based on pattern/gesture recognition and accounts for 32.5% (13) of the upper
limb prosthesis training papers analyzed.

Furthermore, classic control approaches such as proportional control and threshold-
based classification are found within the analyzed articles, with 2 articles for the former [47,60]
which also considers the strength of the muscle contraction, and 4 (10%) concerning the
latter [54,56,62,78]. Additionally, 4 (10%) articles [53,68,78,79] consider the intention of
motion to generate a control or activation signal. The remaining ones either do not specify
or are unclear or ambiguous regarding their classification method.

3.6. RQ6: What Hardware Is Used for Signal Acquisition?

For sEMG signal acquisition, 9 (22.5%) of the analyzed articles report the use of a
Myo Armband (Thalmic Labs, Kitchener, Canada) with all applications related to the use
and training for upper limb prosthesis; this accounts for 75% of the upper limb prosthesis
applications reported. Another 4 (10%) articles used a model of Delsys© sEMG acquisition
system (Delsys Inc., Natick, MA, USA); both hardware systems are considered among
the three best acquisition systems regarding the quality of their signals and the high
classification accuracy achieved with them [80]. A further 7 (17.5%) research articles present
applications using proprietary hardware. Refs. [73,74] use the Leap Motion (Ultraleap,
San Francisco, CA, USA) hardware to acquire arm/hand movements as an extra input for
system control. Melero, et al. used the Microsoft® Kinect as a second acquisition input
for control [60].

Finally, exoskeletons are used by [56–58], triggered by the events detected from sEMG
signals, to promote correct trajectories during rehabilitation therapy.

For biofeedback, visual interfaces are used in all cases, but some also incorporate other
types of feedback. For instance, Wang et al. [51] use fatigue to adapt the level of difficulty
of the videogame interface; Dash et al. [47] present an audiovisual stimulus to the user, as
do as Llorens et al. [53], where they incorporate tactile user feedback to the audiovisual
modality; Li et al. [29] use electrotactile feedback for a closed-loop control application
with a VR environment; Ruiz-Olaya et al. [58] use visual and haptic feedback, whereas
Covaciu et al. [81] use visualization of the functional movement through the VR interface
as feedback.

The following tables shows the most relevant characteristics of the articles analyzed.
When the article did not include information regarding a certain topic the slot is left blank.
The first table shows results for VR interfaces (Table 1), the next one presents the summary
of articles dealing with AR interfaces (Table 2), and finally, the last one regards computer
interfaces found among the analyzed articles (Table 3).
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Table 1. VR interfaces used for motor rehabilitation based on sEMG Control.

First
Author, Year

Type of
Rehabilitation

Type of
Interface Interaction

Subjects
Anatomical

Region
Acquisition
Hardware

Feature
Extraction

Classification
Algorithm and

Performance
FeedbackHealthy

Subject Patient

Mazzola, S.,
2020
[73]

Neurological
Motor

Rehabilitation

VR
3D Upper Limbs
Precision-based

block staking task

Comparison of
sEMG signals by
means of RMS

Voltage

24 -

Upper limb/
flexor carpi radialis,
extensor digitorum,

biceps brachii, triceps
brachii

bilateral

Vive Pro
HMDLeap Motion

Delsys Trigno
wireless

Electrodes
4-channels

RMS from sEMG +

Compare RMS +

level from sEMG
Signal (with and
without the VR

Interface)

Visual feedback

Lydakis, A.,
2017
[69]

Neurological
Motor

Rehabilitation

VR
Videogame

Interface

Movement
Imitation

3D Avatar
(1) Assessment

experiment
(2) Action

observation
(3) Combined
motor imagery

and action
observation

- 4
post-stroke

Upper limb/
Musculi flexor pollicis

longus, flexor
digitorum superficialis

and flexor carpi
radialis

Myo Armband+
R7 AR Glasses +
IMU g.Hlamp

RMS from sEMG + Thresholds Visual feedback

Woodward,
R.B.,
2019
[67]

Prosthesis
Training

VR
Virtual forest

virtual crossbow in
real-time

sEMG control of
real-time hand

grasps
16

4
amputees

(3 transradial,
1 wrist

dislocation)

Upper limb/
Forearm

Hand gestures (no
motion, hand open,

hand close, wrist
pronation,

wrist supination, wrist
flexion, and wrist

extension)

Custom-fabricated
sEMG acquisition

armbands
included six pairs
of stainless-steel
dome electrodes

TI ADS1299 bioin-
strumentation

chip

Movement
velocity

(advanced
proportional

control algorithm)

Speed (smoothed)

MRV, WVL, ZC
SSC, and ARF
from sEMG +

Pattern
recognition
3D Target

Achievement
Control Test

LDA ***

Visual feedback

Summa, S.,
2019
[74]

Neurological
Motor

Rehabilitation

VR
Robotic platform

(Dynamic Oriented
Rehabilitative

Integrated
System–DORIS) +
motion analysis +

sEMG

Training of
equilibrium

and gait

Game experiences
for VR

- -

Lower limb
Core

Equilibrium
and gait

Unreal VR
Headset +

Leap Motion +
Vicon/sEMG

Server
–

DORIS

- - Visual feedback

Kluger, D.T.,
2019
[6]

Prosthesis
Training

VR
Virtual Modular
Prosthetic Limb

Closed-loop
virtual task - 2 amputees

(transradial)
19 contact sensors

at the hand
MAV + from

sEMG

Modified Kalman-
filter-based

decode
Visual feedback
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Table 1. Cont.

First
Author, Year

Type of
Rehabilitation

Type of
Interface Interaction

Subjects
Anatomical

Region
Acquisition
Hardware

Feature
Extraction

Classification
Algorithm and

Performance
FeedbackHealthy

Subject Patient

Meng, Q.,
2019
[9]

Neurological
Motor

Rehabilitation

VR
Rehabilitation Game

Virtual
rehabilitation

game
8 -

Upper limb/
Wrist flexion–

extension

Property
Design

Moving average
window

Autoregressive
model

(AR)parameter
model in time

domain

SVM ***
Recognition of

action

96.3%

Visual feedback

Nissler, C.,
2019
[68]

Prosthesis
Training

VR
Environment

Serious Games
(Unity)

Box and Block Test

At virtual
living room and

kitchen

15
1 amputee

(uses
prosthesis)

Upper limb Myo Armband - Intent detection Visual feedback

Covaciu, F.,
2021
[81]

Neurological
Motor

Rehabilitation

VR
Collect Apples Foot movements 10 - Lower limb/

Ankle

Gyroscope
Accelerometer

Myoware
-

KNN ***
5-fold

cross-validation

81.35%

Visual/functional
feedback

Llorens, R.,
2021
[53]

Neurological
Motor

Rehabilitation

VR
Pick up Apples that

grow before they
disappeared

Intention of action
while

administering
transcranial direct

current
stimulation

- 29

Upper limb/
brachioradialis,

palmaris longus, and
flexors and extensors

of the fingers

Myo Armband -

Intention of action
while

administering
transcranial direct

current
stimulation

Audiovisual and tactile
feedback

Li, K.,
2019
[29]

Neurological
Motor

Rehabilitation

VR
Environment
Virtual Hand

Control with
sEMG

Electrotactile
stimulation

module

Force proportional
to intensity

10 - Upper limb

Multichannel
sEMG

Acquisition
System Elonxi Ltd.

sEMG intensity -

Visual Feedback:
Numerical

indicators of force and
deformation

ElectrotactileStimulation

Closed-loop

Cardoso, V.F.,
2019
[75]

Neurological
Motor

Rehabilitation

VR
Immersive

Serious Game

EEG
sEMG

Robotic
Monocycle

8
(5 males) - Lower limb

Property sEMG
acquisition
4-channels

- - Visual feedback

Li, X.,
2019
[55]

Neurological
Motor

Rehabilitation

VR
Kitchen Scene

(open door, clean
table, ventilator, cut

food)

Control with
sEMG 4 - Upper limb

Wireless
acquisition

module

MAV, RMS, SD
from sEMG +

MAV, singular
values of wavelet

coefficients

SVM, PNN ***

95% for
wavelet

coefficients

Visual feedback
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Table 1. Cont.

First
Author, Year

Type of
Rehabilitation

Type of
Interface Interaction

Subjects
Anatomical

Region
Acquisition
Hardware

Feature
Extraction

Classification
Algorithm and

Performance
FeedbackHealthy

Subject Patient

Bank, P.,
2017
[78]

Neurological
Motor

Rehabilitation

VR
Imitation Game

Control with
sEMG 18 -

Upper limb/
wrist

flexor carpi radialis
and extensor carpi

radialis

Porti7
22 bits A/D
fs = 2000 Hz

MVC from
sEMG +

Task Performance
96.6%

Effort
100%

Co-contraction
99.8%

Visuomotor
tracking

Ruiz-Olaya,
A.F.,
2019
[58]

Neurological
Motor

Rehabilitation

VR
Environments

and/or
Headsets

Control left/right
position of virtual

car

High-density
surface sEMG

EEG

- -
Upper limb, lower

limb, full body
Exoskeletons

Several - .
Visual feedback

Haptic
Exoskeleton

Castellini, C.,
2020
[82]

Neurological
Motor

Rehabilitation

VR/AR
Avatar

Upper Limb
Interaction

Control with
sEMG - - Upper limb - MVC from

sEMG +

ML ***
Pattern

Recognition

Visual feedback
(Positive psychological

effects)

Raz, G.,
2020
[71]

Neurological
Motor

Rehabilitation

VR
Environment

Headset
Sit in real table

Arms represented
in virtual world

- - Upper limb - - - Visual feedback

Bhagat, N.A.,
2020
[56]

Neurological
Motor

Rehabilitation

VR
Outreach task

BMI detects
motion intention
from sEMG and

EEG motor intent
to

trigger
exoskeleton for

assistance

-
10

chronic
post-stroke

Upper limb/
biceps brachii, triceps

brachii
Proprietary sEMG RMS from sEMG +

sEMG threshold
+

EEG motor intent

Think of movement
Visual feedback

Heerschop,
A.,

2020
[83]

Prosthesis
Training

VR
Serious

Games:Control a
grabber, free
catching task,
following task

Control from
sEMG 43 - Upper limb/

flexor-extensor of wrist

Otto Bock
13E200

Electrodes
2-channels

- - Visual feedback

Liew, S.L.,
2022
[59]

Neurological
Motor

Rehabilitation

VR
Serious Games

Control from
sEMG to trigger

FES *
- - Upper limb/

lower limb Several - - Visual feedback
FES * activation
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Table 1. Cont.

First
Author, Year

Type of
Rehabilitation

Type of
Interface Interaction

Subjects
Anatomical

Region
Acquisition
Hardware

Feature
Extraction

Classification
Algorithm and

Performance
FeedbackHealthy

Subject Patient

Ida, H.,
2022
[84]

Neurological
Motor

Rehabilitation

VR
Videogame

Postural
adjustment after

perturbation
(rReal vs VR)

Single-leg obstacle
avoidance task

10 - Lower limb Myopac RUN Mean + SD from
sEMG + - Visual feedback

Montoya-
Vega, M.F.,

2019
[52]

Prosthesis
Training

VR
Serious Games
Force Defense

Change difficulty
of videogame
depending on

fatigue

12 - Upper limb/
biceps brachii Myo Armband Fatigue Motor Learning Muscle fatigue as

feedback

Mazzola, S.,
2020
[73]

Neurological
Motor

Rehabilitation

VR
Gesture-level hand

tracking

Stack blocks using
dominant hand 24 -

Upper limb/
flexor carpi radialis,
extensor digitorum,
biceps brachii and

triceps brachii
Bilateral

Delsys Trigno
wireless

electrodes

Amplitude
RMS from sEMG +

Completion Task
Time

- Visual feedback

Kisiel-
Sajewicz, K.,

2020
[72]

Neurological
Motor

Rehabilitation

VR
Headset

Virtual Upper
Extremity

Reaching task
precision fine

grasping
1 1 Upper limb OTbioLab

ELSCHO064LS

MVC, Sub-MVC
(20% MVC) from

sEMG +
- Visual feedback

* IMU—inertial movement unit, FES—functional electrical stimulation. *** SVM—support vector machine, ML—machine learning, ANN—artificial neural network, LDA—linear
discriminant analysis, DL—deep learning, KNN–K-nearest neighbor, PNN—probabilistic neural network, CNN—convolutional neural network. + Features acronyms: SSC–slope sign
changes, ZC–zero crossings, RMS–root mean square, WL–waveform length, MDF–median frequency, MNF–mean frequency, MAV—mean average value, MPF—mean power frequency,
SE—self-ordering entropy, MRV—mean relative value, WVL—waveform vertical length, ARF—auto-regressive features, MVC—maximum voluntary contraction, ASS—absolute value
of the summation of square root, MSR—mean value of square root.
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Table 2. CI interfaces used for motor rehabilitation based on sEMG control.

First
Author, Year

Type of
Rehabilitation

Type of
Interface Interaction

Subjects
Anatomical

Region Acquisition Hardware
Feature

Extraction
Classification

Algorithm and
Performance

FeedbackHealthy
Subject Patient

Wang, L., 2017
[51]

Neurological
Motor

Rehabilitation

VR
Videogame

Interface

Training scene
model 4 4

post-stroke
Upper limb/

hand gestures eego™sports, Delsys SE, MPF from sEMG +

SVM *** to
identify

action patterns
–

99.5% healthy
subjects (4)

94.75% stroke
patients (4)

EEG and
sEMGfatigue

status to adapt
level of difficulty

Lai, J.,
2017
[79]

Prosthesis
Training

VR
Real-time

interaction

Visual feedback real
time

response of sEMG
control

1 - Upper Limb/
Forearm

Danyang
Prosthetic
Electrodes

4-channel and UBS6351
NI

×5 20 repetitions
trials

SVM ***
Training and

pattern
recognition

Visual feedback

Dash, A., 2019
[47]

Neurological
Motor

Rehabilitation

VR
Videogame

Interface
Basketball tower, 3

goal posts

sEMG biofeedback
for strength

inference and EDA
for tonic mean

6
6

post-stroke
hemiplegic

Upper limb/
flexor carpi
radialis and

extensor carpi
radialis longus

Biopac MP150 fs = 1000 Hz MAV from sEMG + Levels of strength Audio-visual
feedback

Trifonov, A.A.,
2020
[57]

Prosthesis
Training

VR
Movement
Imitation

Replicates
movements in VR,

sEMG used as
input of an

exoskeleton that
places the limb at

given
coordinates

1 - Upper limb

Proprietary AD8232
2-channels

–
Exoskeleton

RMS, MAV from
sEMG +

ANN ***
(Two layers:

Kohonen and
Grossberg)

Visual feedback

Nasri, N.
2020
[64]

Neurological
Motor

Rehabilitation

VR
(Unity)

Serious Games
sEMG control - 4 Upper limb/

hand gestures Myo Armband -

DL Model

Conv-GRU
architecture

Visual feedback

Dash, A.,
2020
[42]

Neurological
Motor

Rehabilitation

VR
(Unity)

Fountains,
Basketball court

sEMG control
triggered grip

exercise (move VR
objects according to

hand gesture)

8 12
post-stroke Upper limb Biopac MP150

MAV + from sEMG

sEMG-controlled
dynamic positioning of

VR object

- Visual feedback

Lukyanenko, P.,
2021
[70]

Prosthesis
Training

VR
Representation of
a prosthetic hand

Activate
virtual hand
using EMG

- 2 Upper limb

Chronically implanted
EMG (ciEMG) electrodes

Ripple
Grapevine system
collected ciEMG

fs = 2000 Hz
15–350 Hz filter

MAV + from EMG KNN mapping
technique Visual feedback
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Table 2. Cont.

First
Author, Year

Type of
Rehabilitation

Type of
Interface Interaction

Subjects
Anatomical

Region Acquisition Hardware
Feature

Extraction
Classification

Algorithm and
Performance

FeedbackHealthy
Subject Patient

Hashim, N.,
2021
[43]

Neurological
Motor

Rehabilitation

VR
Videogames

Crate Whacker,
Race the Sun,
Fruit Ninja,

andKaiju Carnage

1-h
sessions
4-week

rehabilitation
program

Box and Block Test

sEMG
Assessment

5

5
amputees

Transradial

Upper limb/

forearm
Myo Armband

MVC + from sEMG to
randomly select

a game
-

Visual feedback

Timer and score
visible

Quinayás, C.,
2019
[65]

Prosthesis
Training

VR
Environment to
locate & grasp
object (Unity)

Hand grasps: rest,
open hand, power,
and precision grip

20 trials

- 1 Upper limb/
forearm

Property sEMG Bracelet
fs = 1000 Hz

ASS, MSR from
sEMG +

Online recognition
of motion
intention

86.6%

Visual feedback

Yassin, M.M.,
2021
[85]

Neurological
Motor

Rehabilitation

VR
Cellphone Apps

(Patient +
therapist)

Car game (gauge
& bar)

Control from sEMG 5 - Upper limb

Property sEMG
microcontroller—based
on ARM Cortex 32- bit

M3 architecture

RMS+ from sEMG - Visual feedback
(gauge and bar)

Ma, L.,
2018
[66]

Neurological
Motor

Rehabilitation

VR
Videogame

Interface
(Hamster,

Flappy Bird)

Picture guidance
Gesture recognition
of hand movement

generates game
character movement

6
validation

only

9
post-stroke
(pre-, mid-,
post-rehab)

(5–right
hemiplegia)

Upper limb/
hand grasps

(relax, open hand,
close hand)

Delsys
4-channels,

dry electrode, fs = 2000 Hz

SSC, ZC, RMS, WL,
MDF, and MNF from

sEMG +

ML ***
2-fold model

fusion of Stacking
–

95% in healthy
subjects

90% 2 post-rehab
patients’

hemiplegic side

Visual feedback

*** SVM—support vector machine, ML—machine learning, ANN—artificial neural network, LDA—linear discriminant analysis, DL—deep learning, KNN—K-nearest neighbor, PNN—
probabilistic neural network, CNN—convolutional neural network. + Features acronyms: SSC—slope sign changes, ZC—zero crossings, RMS—root mean square, WL—waveform length,
MDF—median frequency, MNF—mean frequency, MAV—mean average value, MPF—mean power frequency, SE—self-ordering entropy, MRV—mean relative value, WVL—waveform
vertical length, ARF—auto-regressive features, MVC—maximum voluntary contraction, ASS—absolute value of the summation of square root, MSR—mean value of square root.
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Table 3. AR Interfaces used for motor rehabilitation based on sEMG control.

First
Author, Year

Type of
Rehabilitation

Type of
Interface Interaction Subjects Anatomical

Region Acquisition Hardware Feature
Extraction

Classification
Algorithm and

Performance
Feedback

Melero, M.,
2019
[60]

Prosthesis
Training

AR
Visualization of
muscle activity

Dance game
Imitation

Score when movements are
performed correctly

Perform choreographed
dance containing hand

gestures involved in upper
limb rehabilitation therapy

3 - Upper limb/
hand gestures

Wired intramuscular sEMG
recording
implant

4-channels
Myo Armband

Microsoft
Kinect

10 trials

Myo Armband
Software

77% Accuracy
Hand Gesture
Classification

Visual feedback

Gazzoni, M.,
2021
[62]

Neurological
Motor

Rehabilitation

AR
Superimposed

muscles
Smartglasses

Control from sEMG 1 - Upper limb/
lower limb

Due
14-channels RMS from sEMG + Threshold sEMG

Liu, L.,
2020
[63]

Prosthesis
Training

AR
Imitation game Exercise finger movements 100 - Upper limb/

aand Myo Armband Spectogram

CNN *
Pattern

Recognition
10 gestures

97.8%

Visual feedback

Palermo, F.,
2019
[61]

Prosthesis
Training

AR
Portable

Environment

AR Environment renders a
table, a hand and bottle, a
screwdriver, tennis ball,

pen, can
Control with sEMG

5
5

amputees
Transradial

Upper limb
Microsoft
HoloLens

Myo Armband
-

Pattern
recognition with

Myo Software
Visual feedback

* CNN—Convolutional Neural Network. + Features acronyms: SSC—slope sign changes, ZC—zero crossings, RMS—root mean square, WL—waveform length, MDF—median
frequency, MNF—mean frequency, MAV—mean average value, MPF—mean power frequency, SE—self-ordering entropy, MRV—mean relative value, WVL—waveform vertical length,
ARF—auto-regressive features, MVC—maximum voluntary contraction, ASS—absolute value of the summation of square root, MSR—mean value of square root.
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4. Discussion

VR/AR technologies can be used as a visual guide to perform an activity, or to immerse
in a different environment, but they can also be controlled using a variety of sensors or
biosignals where a natural movement of the body generates a response in the environment
displayed as movement or control of an avatar [11]. A simple example would be to adapt
the environment so that when the subjects walk, it moves too, and they can explore it.
Several rehabilitation strategies can emerge from these interactions [2,7,9,17,86,87]. In this
paper we presented the analysis of 40 articles that deal with the use of sEMG signals to
control or feedback a VR/AR interface for rehabilitation purposes, which provides a global
framework of the most common applications found.

VR is characterized as being an immersive interface or environment [11]. Despite this,
it was found that 11 out of the 34 articles (32.35%) proposing VR interfaces interact with the
user through a computer interface. The effects of these type of interfaces should be further
investigated since they present advantages (less expensive, ready to use, needs less space
to be used) and disadvantages (lack of immersion, allows distractions).

The application of AR technology has more challenging requirements to emulate
virtual items over real life environments, which could be a room, furniture, or an open
field. This visualization is commonly made through a screen that shows a virtual object
projected over a real time image or video of the experimentation room [88]. A way to
overcome this issue requires technology that can be as advanced as a holographic projector.
On the other hand, this type of interface is much more immersive; as its name suggests, it
is closer to reality, trying to erase the limits between the virtual and the real world. So, an
AR interface could have a potentially higher impact on the user’s brain and consequently
on rehabilitation therapy [5,41,88].

Videogame and first-person interfaces engage the patient by allowing them to train
actively, compared to traditional rehabilitation therapy where monotonous repetitions are
typical. This type of therapy approach is copied by training scene model interfaces.

On the other hand, VR/AR technologies have great potential, since they can com-
pletely change the perception of the user’s own motor functions, potentially restructuring
body proprioception, vital for neurorehabilitation applications, neuroplasticity, and motor
rehabilitation in general. For example, Osumi et al. found that VR therapy helped alleviate
phantom limb pain effectively, compared to CPT [87]. The interaction achieved with these
technologies highly improve patient engagement with therapy, adherence to treatment,
and excitement to come back [9,42,43,82]. Specifically, Castellini et al. [82] mentioned a
positive psychological effect from VR/AR interfaces used in rehabilitation.

Acquisition hardware is a sensitive subject because is the first link to the user, a
mistake here can cause chaos in the system. Melero et al. [60] and Palermo et al. [61] use
the Myo Armband for signal acquisition which allows them to have a more compact and
portable system. In total, 9 articles report the use of this band. Different models of the
Delsys acquisition system are reported in other articles [51,66,73]. Both systems are not
only in the top 3 devices for sEMG signals acquisition [80], but are also very small, portable,
and convenient to use, which translates into an easier way to use this technology in a
clinical environment, consequently involving more patients in the tryouts. Several authors
chose to develop their own hardware, which come with advantages (specific design to
fulfill specific needs) and disadvantages (manufacture can be problematic, especially to
miniaturize the electronics).

Surprisingly, 32.5% of the articles did not mention the processing algorithms, type
of classifier used, classification performance, etc., and a few more mentioned it but were
very ambiguous—they neither reported the protocol followed for therapy, the evaluations
performed to the technique selected, or the effectiveness of the technique for therapy
purposes. Reporting this data is highly important disregarding the clinical section of the
results. The use of sEMG signals and their processing aiming rehabilitation applications is
still scattered and heterogenous, and there is no consensus to select the methodology for
processing algorithms, signal features, classification approach, and performance evaluation.
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We consider it would be very important for authors to state the signal processing and
classification algorithm designed or used, and their performance metrics, which could be
among the technical guidelines that could be proposed to homogenize the protocols.

All these environments are controlled using sEMG signals and provide feedback
through a visual, tactile, or functional stimulus. It becomes obvious that virtual therapy is
also based on repetitions and practice, like CPT, but the manner the patient can interact
with it is what makes it as engaging and addictive as ludic videogames.

Motor rehabilitation and neurorehabilitation are both intended to help the brain adjust
to a new way to function, to re-learn how to control an impaired limb, and even to generate
new paths to communicate with the limb, a process best known as neuroplasticity [89].
Neuroplasticity is based on principles such as goal-oriented practice, multisensorial stim-
ulation, explicit feedback, implicit knowledge of performance, and action observation,
among others [89]. These qualities are implicit to the use of VR/AR interfaces [5], and
when they are aggregated to the improvement of muscle control, coordination, and control
of movements or contractions [43], therapy can take an upturn in the best interest of the
patient. An outstanding aspect is that patient betterment will have quantitative recordings
that could ultimately yield specific changes in their therapy to target the aspects that need
the most attention.

Some authors [16] propose sEMG signals as a popular form of biofeedback, nev-
ertheless, there have been developments where they combine two biosignals [51,90,91].
Electroencephalography (EEG) and sEMG are non-invasive biopotentials that offer plenty
of information regarding brain and muscle activity in clinical and daily life contexts. In-
terestingly, sEMG signals are commonly considered an undesired noise source in EEG
recordings. Cortico-muscular (EEG–sEMG) coherence is a new analysis tool that studies
the functional connection between the brain (EEG) and muscle (sEMG) electrical activity.
EEG–sEMG coherence has been used for assessment of neuronal recovery [91] in rehabil-
itation applications, including those based on virtual reality [92]. Moreover, it has been
shown that EEG–sEMG coherence, measured from a single EEG and a single sEMG channel,
can be used as a control signal for distinction of hand movements [93] with potential for
rehabilitation applications. Furthermore, simultaneous recording and analysis of multiple
sEMG and EEG signals in key body and scalp zones can help to evaluate potential effects
and interrelations between types and parameters of AR/VR during rehabilitation interven-
tions, on the activity of central and peripheral central nervous system structures related
to movement control, planning, and execution. Moreover, since VR/AR technologies are
oriented to visual simulation during body movements, EEG–sEMG coherence or other
combined parameters could be an alternative to evaluate relations between visual attention
to objects in the VR/AR interface and visual information processing in the brain and motor
responses in the body.

Considering the above evidence, it is not rare that only a few developments have
reached a commercial environment and therefore been applied in the clinic [94]. All the
analyzed articles are still in a research and development stage and do not mention their
use for therapy; on the contrary, they propose larger studies as future work, meaning that
even though this is a promising technology, more and larger studies are necessary to prove
its efficiency.

To have access to a wide variety of human movements and dynamic interaction,
through VR/AR therapy, is an additional benefit that has the potential to generate new
solutions in rehabilitation. This information could be useful, especially if there were specific
guidelines or protocols to standardize the acquisition of other sensors or signals, as there are
for sEMG signals [95], as well as other data used for control and feedback. This would allow
to propose the design of a database to house standardized reports for documentation and
filing regarding signal recordings, acquisition hardware, environmental or user conditions,
and experimentation.

Finally, there is a major gap regarding the standard of care protocols or guidelines
to perform VR/AR therapies for rehabilitation. To further evaluate the advantages of
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these developments, a structured methodology should be proposed and followed. It could
include session time and frequency, maximum number of activations per limb, proper
guides to use external aids such as exoskeletons, FES, orthosis, or prosthetics, type of
movements to be commanded according to the pathology or target therapeutic application,
along with a larger list of requirements.

Future Directions

Future directions in sEMG-based control of VR/AR interfaces for rehabilitation appli-
cations include several features. Hardware implementations of acquisition systems that
come closer to a wearable device where most of the system could be integrated will be
significant. Hybrid multisignal inputs accompanied by signal processing algorithms that
incorporate the contributions of several systems of the body being analyzed simultaneously
could be the first proposal of a novel approach for a complex and robust control that adapts
to the patient dexterity level and moves up and down with them through difficulty levels.

It will be very important to go beyond the current widespread interfaces with visual
feedback for these systems–one option could be to incorporate tactile and haptic feed-
back, based on information from gyroscope and accelerometer sensors. These hardware
systems combined with VR/AR interfaces will promote a richer environment to develop
rehabilitation therapies, where several metrics related to the patient’s movement could be
monitored and used as feedback to promote motor rehabilitation and neuroplasticity. Some
applications have shown that using exoskeletons or FES can be beneficial to help the patient
in training muscles and neural pathways to practice the correct movement trajectories
during therapy. Moreover, there is a need for more cohesive technologies (hardware and
software) that allows the user, patient, and care provider to perform this type of therapy in a
real-life environment. For this technology to become a regular therapy it must be integrated
and ready to use, without the complications of too many wires or lengthy donning and
doffing procedures.

Personalized therapy is also within reach by means of VR/AR technologies, since
these interfaces can adapt the complexity level to patient performance and be updated
as the patient improves their control over the impaired limb. In this paper, we have
examined examples where researchers use biofeedback to adjust the complexity of the task,
e.g., fatigue, correct position (proprioception), or performance of repetitions, e.g., the TAC
test proposed by Simon et al. [96]. Personalization includes videogame difficulty levels for
the VR/AR interfaces which can be controlled as in a regular ludic videogame, except in
therapy the user can downgrade levels. This characteristic could be very useful in case of
muscular fatigue, which is very common during therapies. This little detail might allow
patients to complete more repetitions or to endure larger therapy sessions; also, changes in
sEMG signals during therapy can be considered too, i.e., retraining the control algorithm
mid-session to lower the patient’s muscular strength demand.

5. Conclusions

This SLR provides a global framework of the most common application of sEMG
signals for control/feedback of VR/AR interfaces. Nowadays, the use of these signals for
rehabilitation is still scattered and heterogenous. There is no consensus regarding the selec-
tion methodology of sEMG signal processing algorithms, signal features, the classification
approach, the performance evaluation, and even less about its use in applications for reha-
bilitation. There are no reports of these interfaces being adopted in clinical practice. Future
work should be targeted to propose a set of guidelines to standardize these technologies
for clinical therapies.
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