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Abstract: During the past few years, software-defined networking (SDN) has become a successful
architecture that decouples the control plane from the data plane. SDN has the capability to monitor
and control the network in a central fashion through a softwarization process. The central element is
the controller. For the current SDN architectures, there is an essential need for multiple controllers.
The process of placing the controllers efficiently in an SDN environment is called the controller
placement problem (CPP). Earlier CPP solutions focused on improving the propagation delays through
the capacity of the controllers and the dynamic load on the switches. In this paper, we develop a novel
algorithm called dynamic feedback algorithm for controller placement for SDN (DFBCPSDN). DFBCPSDN is
compared with the varna-based optimization (VBO) towards solving the CPP. We used the VBO as the
reference model to this work since it is relatively a new algorithm. Moreover, the VBO extensively
outperformed many other existing models. To the best of our knowledge, this is one of the first
attempts to minimize the total average latency of SDN using feedback control theoretic techniques.
Experimental results indicate that the DFBCPSDN outperforms the VBO algorithm implemented in
two well-known topologies, namely Internet2 OS3E topology and EU-GÉANT topology. We observe
that for uncapacitated CPP, the DFBCPSDN outperforms the VBO for Internet2 OS3E and EU-GÉANT
topologies by 11% and 9%, respectively, in terms of total average latency. On the other hand, for
capacitated CPP, the DFBCPSDN algorithm outperforms the VBO reference model by 10% and 8%,
respectively.

Keywords: SDN; feedback control theoretic; controller placement; latency; varna-based optimization;
ARMA models

1. Introduction

Software-defined networking is an emerging paradigm which provides a separation
between the control plane and the data plane [1–7]. The data plane is responsible for
forwarding the traffic based on the controllers’ decisions. The network traffic is handled
by the control plane. The control plane is responsible for producing sufficient rules and
policies to the forwarding devices, whether these forwarding devices are switches or
routers [8–11]. When a new flow is sent to the switch, the switch sends a specific message
to its corresponding controller to setup the flow rules along with the best flow path.
The controller in charge manages the routing of flows through interacting with switches
securely. A control plane guides the switches on how packets should be forwarded by
configuring new flow rules and policies [12].

In a WAN environment, a single controller is not sufficient to handle the entire overload
of switches that are physically distributed, since it cannot guarantee the desired latencies
among switches and controllers. A server has limited capacity in order to handle a large
number of messages generated by its associated switches [13–16]. As a result, SDN-based
WANs use multiple controllers to increase the network’s performance. Hence, in this
work, we assume multiple controller hierarchy. The controller placement problem (CPP)
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is not a trivial problem. Placing a controller should be based on crucial metrics such as
average delay between the switches and the controller, maximum delay between the switch
and the controller, and intercontroller latency. The capacity of the controller reflects the
number of incoming packets processed by the controller per second. CPP is categorized
into two subcategories: (1) the capacitated controller placement problem (CCPP) and (2) the
uncapacitated controller placement problem (UCPP). The uncapacitated category refers to
infinite capacity buffered controllers; on the other hand, the capacitated category refers to
controllers having finite capacities [17–19]. The controller’s capacity refers to the processing
rate of the incoming messages. Controllers in the uncapacitated category are assumed to
have unlimited packet processing power and are capacity-independent. On the other hand,
the controllers in the capacitated category could have either equal or unequal capacities [20].

The performance of the controller [21] is a crucial factor to achieve the desired scalabil-
ity. Heller et al. [22,23] discussed the CPP as a facility location problem which is considered
as an NP-hard problem. To solve the CPP, researchers studied the CPP as a partitioning
problem where large networks are partitioned into smaller network clusters where one
controller is hired per cluster [24]. Network partitioning reduces the overall complexity
for complicated networks. Gao et al. [25] introduced a node swarm optimization (PSO)
algorithm to minimize the total average latency of the network. Propagation delay is
the time taken for packets to travel between any two network elements (switches or con-
trollers). Usually, propagation delays are measured in terms of hops or distances between
the network nodes, whether the network element is a controller or a switch.

If a switch, associated with a controller, sends a message to another switch asso-
ciated with another controller, this is achieved through intercontroller communication
(ICC) [26,27]. ICC is implemented using border gateway protocol (BGP) [28]. The larger the
number of the controllers, the more complicated the intercontroller communication needed
to handle the network to achieve an improved overall network performance. Therefore,
minimizing the total number of controllers plays an important role towards increasing
the SDN’s performance. Although assigning one controller per switch minimizes the
switch-to-controller propagation delay, it also leads to an increase in the intercontroller
communication overhead. This leads to a reduction in the controller’s utilization [21]. Most
of the research on controller capacity limitation focuses on both the performance and the
capacity of the SDN controllers [29,29–31].

An example of the capacity limitation is the c-bench [32,33]. The c-bench is a simulator
tool that is used to measure the number of controller flows per second. The SDN controller
is able to control a set of switches due to the limited available resources. The NOX con-
troller is an example of a controller that can handle up to 30,000 flows setups per second.
In such cases, load balancing among controllers is required to increase the performance
of SDN. The switch workload could handle a certain number of incoming and outgoing
requests. An overloaded switch could drop packets and, hence, degrade the overall SDN
performance. The overall nodal delay is the total switch-to-controller delays in addition
to the intercontroller delays. In general, researchers seek to maximize the SDN’s perfor-
mance by minimizing the total nodal delay of the network [11,12,25,34–39]. To the best of
our knowledge, there is no approach to consider all the above factors at once for a given
solution to the controller placement problem. In this paper, we tackle different scenarios
for CCPP and UCPP including different distances among various network elements and
also the workloads measured at switches. We consider both cases, whether the weights are
the same and different. The weights on the links between any two network components
reflect the propagation delay between these components.

This paper is organized as follows: Section 2 has the related work. Section 3 has the
mathematical model for controller placement problem. Section 4 has the VBO reference
model. Section 5 has the proposed model DFBCPSDN. Section 6 has the results and analysis.
Section 7 has the conclusion and the future work.
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2. Related Work

This section provides a short overview of selected literature that deals with the con-
troller placement problem. We noticed that work in [18,40–43] does not take the capacities
of the controllers and switches into consideration. Static environments assume that the
burden on the controllers could not be distributed to other underutilized controllers since
those environments have fixed traffic. Traffic is assumed to be measured in terms of propa-
gation delay, the hop number, or a number of packets transferred between switches and
controllers. Heller et al. [18] has modeled the CPP through clustering the controllers into
groups of controllers in order to minimize the average latency at switches and controllers
during the controller placement process. The authors in [18] modeled the CPP problem
using the minimum k-median model. The k-median problem is considered an extension to
the k-mean problem where it divides the network into k-clusters; each cluster computes the
median rather than the mean. The work in [18] focused on only static environments that ig-
nore the workload at the controllers, controller–controller latency, and various failure cases.
It is intuitive that a controller might fail if the workload is not taken into consideration.
Load balancing is crucial in such scenarios. The capacity of the controller refers to the rate
of the arriving packets.

Another direction towards reducing the CPP effect is through optimization. Optimiza-
tion techniques have been used by several research groups such as Sallahi et al. [20,44].
The model used by Sallahi el al. [44] depends on activating and deactivating controllers
and links to improve the overall performance of the network using the CPLEX optimizer to
find the optimal number of controllers to minimize the cost through a mathematical model.
The problem with the proposed model is that it is only applicable for small areas. In the
literature, the clustering-based techniques were addressed on many occasions [45–50].
Moreover, optimization-based techniques were also addressed in research by numerous
authors [51–54]. The work in [51,52,55–57] has studied the workload factor in addition
to the weights among various switches of the network. The partitioning of large scale
network into smaller domains first started via the FlowVisor architecture [58]. FlowVisor
uses multiple controllers, where each controller manages a domain. Liao et al. [55] pro-
posed clustering the large-scale SDN network into smaller domains, where one controller
manages each partitioned domain. Density-based controller placement has outperformed
k-center for the CPP [59]. Previous work in [25,51,52,56,60] discussed the CPP solutions
through heuristic-based optimization techniques. Gao et al. [25] proposed a node swarm
optimization (PSO) algorithm to solve the CPP based on heuristic solutions. In the pro-
posed solution, the authors were able to find the optical placement, but the algorithm
proposed needed to know the number of controllers in advance. Sherwood et al. [58]
proposed the FlowVisor model that was one of the first models to introduce utilizing
multiple controllers for SDN architectures. The proposed model is based on splitting the
large-scale network into several clusters, where each cluster is controlled and administered
by a single controller.

Density-based clustering is one of the contributions that is based on the partitioning
techniques proposed by Liao et al. [55]. Liao et al. [55] have used clustering that is based on
density to divide the large-scale SDN network into smaller clusters that are administered
and controlled by a controller. The authors in [55] proved that density-based controller
placement outperformed the k-center technique proposed by Yao et al. [59]. According to
the literature, the CPP is considered to be an NP-hard problem. The work in [25,51,52,56,60]
discussed the CPP and provided heuristic and optimization solutions for it. Gao et al. [25]
introduced a node swarm optimization-based algorithm to solve the CPP. The authors
in [25] found optimal controller placements, but the proposed techniques assume to know
the number of controllers in advance. The controller’s capacity parameter was not studied
with the effect of the loads on the switches. The work proposed by [51,52,55–57] has
considered both the controllers’ capacities and the switches’ workloads. The proposed
work has only taken the unit weight among the switches of the network into consideration.
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The work proposed by Mohanty et al. [61] developed a model that depends on op-
timization techniques to reduce the overall latency. The authors in [61] also claimed to
find the adequate number of controllers while maintaining the minimized overall latency.
The main disadvantage of the proposed approach is that load balancing among controllers
is not guaranteed and, hence, overloaded controllers might fall, and hence the model needs
to recover from cascaded failures through fault tolerance techniques.

The work proposed by Huang et al. [62] developed a genetic-based algorithm and
gradient descent optimization technique. The authors used the genetic-based algorithm
to search for suitable CPP solutions, while the gradient descent was used for evaluation
purposes. The drawback of the proposed model is the high complexity of the model due to
the time utilized by the genetic algorithm to search for the suitable controller, and hence
the algorithm is not considered as a transparent algorithm due to its overhead. The authors
also focused on the control plan utilization in the proposed model and did not study
the sufficient workload on the controllers that might lead to overloading the controllers,
and hence might require the fault tolerance algorithm to recover from cascading failures
scenarios as well.

Tao et al. [63] focused on the total flow request cost through considering the switches’
weights, switching to controller routing costs, and intercontroller routing costs. The main
focus of the work proposed by Tao et al. [63] is to balance the load among controllers for
a fixed number of controllers. In order to find the position of the controllers, the authors
used the minimization of the linear function of the load balance factor in addition to the
total flow request. In this work, latencies are not taken into consideration for decision
making, and hence this approach is considered slow and might lead to low-performance
decisions for the CPP solutions.

In this paper, we study both the unit-weighted edges among switches and the con-
troller’s capacities. We suggest to use the propagation delays as weights based on modifying
the density-based controller placement algorithm. The switch workload is measured as the
packets sent to the controller per second. We use different scenarios for the workloads at the
switches. We categorized the workloads into same/different workloads. Same/different
workloads indicate that the switches generate messages with the same/different rates
to their associated controllers. If the associated controllers have the same or different
capacities, this is considered an indication that the controller has equal or different packet
processing power, respectively.

3. Mathematical Model for the Controller Placement Problem

In this work, we assume that the network topology is represented as a graph of
the tuple G(S; E), where S represents the set of switches and E represents the set of edges
connecting switches to their corresponding controllers. We started by analyzing the network
topology and then cluster the network into smaller partitions. A controller is deployed
per cluster. Due to the increase in the demand of the daily traffic, one controller is not
sufficient to handle such traffic. The capacity of the controller and the workloads on the
switches are crucial elements for decision making. When we consider the capacity of the
controllers and the workloads on the switches, our proposed model outperformed other
techniques. The proposed algorithm is called dynamic feedback control theoretic algorithm
(DFBCPSDN). DFBCPSDN is compared with a well-known reference model that uses the
varna-based optimization (VBO) to solve the CPP. The average switch-to-controller delay is
computed by Equation (1),

avgSW2CTRLdelay

∏ (CP) =
1
n ∑

sw∈S
( min

cp∈CP
)d(sw, ctrl) (1)

The maximum switch-to-controller delay is represented by Equation (2).
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maxSW2CTRLdelay

∏ (CP) = min
CP⊆SW

max
sw⊆SW

min
CP⊆CP

(2)

The average controller-to-controller delay is provided in Equation (3),

avgCTRL2CTRLdelay

∏ (CP) =
1

pinter
∑

ctrli,ctrlj∈CP
d(ctrli, ctrlj) (3)

The maximum controller-to-controller delay is provided in Equation (4),

maxCTRL2CTRLdelay

∏ (CP) = max
ctrli ,ctrlj∈CP

d(ctrli, ctrlj) (4)

where:

• d(sw, ctrl) is the shortest path between switch sw ∈ SW and controller ctrl ∈ CTRL.
• d(ctrli, ctrlj) is the shortest path between controllers ctrli, ctrlj ∈ CP.
• CP ⊆ SW is the set of all possible placements for controllers.
• pinter is the total number of intercontroller paths.

The total average delay is computed by Equation (5).

Totalavg−delay(CP) =
1
n ∑

sw∈SW
min

ctrl∈CP
d(sw, ctrl) +

1
pinter

∑
ctrli ,ctrlj∈CP

d(ctrli, ctrlj) (5)

The total maximum delay could be computed by Equation (6).

Totalavg−delay(CP) = min
CP⊆SW

max
sw∈SW

min
ctrl∈CP

d(sw, ctrl) + max
ctrli ,ctrlj∈CP

d(ctrli, ctrlj) (6)

The main purpose of this work is to minimize the total average delays which could be
mathematically modeled by Equation (7). Equation (8) guarantees that the overall loads on
the switches do not exceed the capacity of the associated controller.

minTotalavg−delay(CP) (7)

Subject to:
∑

sw∈SW(ctrl)
wl(sw) ≤WL(ctrl), ∀ctrl ∈ CP. (8)

where WL(ctrl) is the workload capacity of the controller and wl(sw) is the workload at
the switch sw.

4. Reference Model: Varna-Based Optimization (VBO) for CPP

This section discusses the varna-based optimization (VBO) reference model [20], which
we used in this research article as the reference model. The reason we used the VBO as
the reference model is that the VBO is a relatively new approach that addresses the CPP.
In addition to this, it was compared with numerous numbers of other models. The term
varna indicates a class. The VBO tackles the CPP through deciding how many controllers
are required for optimal placement. The VBO considered different scenarios for different
workloads at the switches and capacities at the controllers.

The weight of the links between two switches reflects the delay between them. Dif-
ferent weights are studied in the experiments conducted in the paper. Using the same
weight links indicates that the links have the same number of hops, while different weights
indicate that the links have various delays. The load on the switch is computed as the
number of packets sent to their corresponding controller per second. Controller capacity
reflects the number of messages processed by the controller per second.
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In the VBO algorithm, nodes are classified into two classes. The two classes are
assumed to be (Class A and Class B). The classes are chosen based on the capability of the
nodes. Nodes that have higher capabilities belong to class A, while nodes that have lower
capabilities belong to class B. The remaining nodes are classified as class B nodes. Class
A nodes are able to use the best route and refrain from using the worst routes. Class B
nodes are able to interact with other nodes through peer communication. Class sizes are
assumed to be α for class A and the remaining nodes are for class B, where α is the fraction
of the entire population. The authors in [20] assumed that α could take values from 0.05
to 0.2. The value of α used is 0.10 for experimentation purposes. The authors used the
peer constants c1 = 1.50 and c2 = 1.25. These values are used to control the search regions
among alternatives. The value of c1 is chosen to be higher than c2, since this value gives a
higher chance of a promising solution around a node that has the best solution. The authors
in [20] assumed that class A nodes move towards the best route while moving away from
the worst route, as given by Equation (9).

Xi′ = Xi + rA × (Xbest − Xworst) (9)

For every node Xi in class B, the VBO randomly selects a node from the whole
population, referred to as Xpeer.

If the capability of the node Xi is better than Xpeer, the VBO moves that node towards
the best solution and away from the peer solution, as shown in Equation (10)

Xi′ = Xi + c1 × rB(Xbest − Xpeer) (10)

If the capability value of the node Xi is worse than that of Xpeer, the VBO moves the
node towards Xpeer, as shown in Equation (11)

Xi′ = Xi + c2 × rB(Xpeer − Xi) (11)

If both nodes have the same capability value, then the new position is updated as
twice that of the current position, as shown in Equation (12)

Xi′ = 2× rB × Xi (12)

The VBO performs the following: (1) Calculates the positions of the new nodes for
class A using nodes with minimum and maximum latency. (2) Calculates the positions of
the new nodes for class B by using latencies of peer nodes. (3) Calculates the latency of
each new node using objective function f . (4) Compares the latency of the new node with
the latency of the old node. (5) Finds the optimum placements.

5. Proposed Model: DFBCPSDN for CPP

This section has the proposed model referred to as dynamic feedback model for
controller placement (DFBCPSDN). DFBCPSDN uses feedback control theoretic techniques
for placing the controller for SDN networks. DFBCPSDN calculates the utility function to
appropriately place the controller. DFBCPSDN takes the placement decision based on a
set of parameters such as the propagation delay and percentage of packet losses. DFBCPSDN
controller placement depends on the average workload at the controller and the number of
switches associated with each controller.

The block diagram of the feedback control system used in this paper is shown in
Figure 1. The proposed model is referred to as DFBCPSDN. DFBCPSDN determines the
controller placement selection through feedback ARMA approaches. The actuator module
detects the proper place for each controller. If the utility function returns a value that is
different than the target reference value, the range of the accepted values, the controller’s
control law takes a proportional action to determine the controller placement. As shown in
Figure 1, a system under control is distinguished by a parameter called the controlled output
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parameter. The control output parameter (COP) is a parameter we seek to achieve a certain
value for, but the problem is that the COP cannot not be accessed in a direct way.

Figure 1. Block diagram for Feedback Control System for the DFBCPSDN model.

On the other hand, a tuning parameter (TP) is the parameter we use to tune the
controlled output parameter in order to achieve the target reference value. TPs have direct
impacts on the COP. The TP is a parameter that could be manipulated and updated directly
by an administrator. The TP has an influence and impact on the COP through the feedback
mechanism. DFBCPSDN uses the controller placement index (CPI) as the COP. The CPI
identifies the location of the controller. The COP sends a feedback of the sensor module that
reads the COP and compares it with the target value. The difference in the values between
the reference value and the COP read value constitutes the error value. The error value is
used as an input to the control law module placement engine module. Based on the error
value, the tuning parameter value is computed. The error value affects the controller’s
output decision through the control law engine.

Figure 2 has the feedback control system for the DFBCPSDN model. The controller
engine uses the control function that updates the tuning parameter. The place module is
responsible for executing the appropriate placing algorithm based on ARMA approaches.
The monitor module is used to detect the current value of the utility function of the SDN.
The output is fed back to the comparator to be compared with a specific reference value.
The value of the reference value is assumed to be 90% in this model. DFBCPSDN functions
in two phases, as shown in Figure 3: (1) The system identification phase, which is responsible
for modeling the system mathematically, and (2) the control law phase, which is responsible
for detecting the stable regions for selecting the roots of the controller.

Figure 2. Feedback control for SDN networks.
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Figure 3. Classical control theory design.

DFBCPPC uses the weighted utility function shown in Equation (13)

DFBCPPC = v1 ∗ τ + v2 ∗ ρ + v3 ∗ α (13)

DFBCPPC computes the place of the controller according to τ, which represents the
propagation delay, ρ represents the packet loss rate, and α represents the controller latency.
Experiments were conducted to select the appropriate weights for v1, v2, and v3, as shown
in Table 1.

Table 1. Selected values for the weights.

v1 v2 v3

1 0.7 0.2 0.1

2 0.1 0.7 0.2

3 0.2 0.7 0.1

For each switch, a dynamic list of candidate controller places is constructed in descend-
ing order based on the DFBCPPC utility function. The dynamic list is updated through
a feedback control theoretic technique mechanism. Switches start by connecting to the first
controller in the list. All controllers’ places are assumed to be reachable and accessible by
all switches. In classical engineering environments, physical laws govern the relationships
between the outputs and the inputs. This process is referred to as first-principles techniques.
The main barrier for not using the first-principle modeling in the computing system domain
is that some unrealistic assumptions are made. For that reason, using empirical approaches
for developing transfer functions through the autoregressive moving average (ARMA)
approach is more feasible for SDNs [64]. As shown in Figure 3, DFBCPSDN uses the classical
control theoretic methodology. The classical control theoretic technique works in two stages:
(1) the system identification phase and the (2) controller design phase.

In the system identification phase, transfer functions are constructed to model different
system modules. DFBCPSDN uses the autoregressive moving average (ARMA) mathemati-
cal model for the system identification phase, and least square regression is used for ARMA
parameter estimation. DFBCPSDN relies on having a tuning parameter that is easy to control.
This tuning parameter has an influence on a controlled output parameter. The system
desires to ultimately achieve a certain target value for the controlled output parameter.
The controlled output parameter is a parameter that is needed to be controlled but cannot be
adjusted directly, and hence the tuning parameter comes into place. The tuning parameter
could be directly tuned and has an impact on the controlled output parameter.

In the controller design phase, a particular control law is used. Root locus is used to
select the appropriate roots, hence finding the stable regions where the control law values
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are selected. In the following sections, more discussion about the system identification
phase and the control law phase used for the controller module is explained in more detail.

5.1. DFBCPSDN System Identification through the ARMA Model

DFBCPSDN performs the system identification through Autoregressive Moving Average
(ARMA) model. System identification phase deals with linear regression to model SDN
elements. The time domain of the ARMA model is expressed as shown in Equation (14).
Equation (14) expresses the output of the element. The output in the time domain is referred
to as y(t), while the input in the time domain is referred to as x(t).

We assumed n series of old weighted values of the output and m weighted values
of input values, as shown in the ARMA model shown in Equation (14). The values of i
and j are the index values of the parameters. Transfer functions are mathematical models
that express the relationship between the outputs and the inputs. Equation (15) has the
Z-transform equivalence for Equation (14). These transfer functions were used in the Z
transform. The Z transform is considered as the frequency model of the time domain that
is easier to deal with mathematically. The main goal is to design the appropriate gain that
results in a stable system. The proposed model adds feedback that adds more control over
the desired value of the controlled output parameter using the tuning parameter.

y(t) =
n

∑
i=1

ai × y(t− i) +
m

∑
i=0

bj × x(t− j) (14)

In order to ease the mathematical modeling and derivation of the ARMA model,
a frequency Z-domain version of ARMA is derived as shown in Equation (15).

H(z) =
Y(z)
X(z)

=
∑m

j=0 bj × zn−j

zn − (∑n
i=1 ai × zn−i)

(15)

The ARMA model in the time domain is applied to two modules: the place and the
monitor modules as shown in Equation (16).

plcsi ,dj
(t) = a1 plcsidj

(t− 1) + b0 pcsidj
(t) (16)

The variable plc represents the decision on the placement of the controller in the time
domain. plc is a function in the tuning parameter pc. The ARMA model in the frequency
domain for the place and the monitor modules is expressed in Equation (17).

PLACEsidj
(z) =

PLCsidj
(z)

PCsidj
(z)

=
b0z

z− ai
(17)

5.2. DFBCPSDN Control Law and Gain Selection

DFBCPSDN uses the controller placement pc variable as the tuning parameter for
placing the controller input of the control law, as expressed in Equation (18). The DFBCPSDN
engine module uses the proportional integral (PI) controller. The distinguishing feature
of the PI controller is the ability to use the two control terms of proportional and integral
influence on the controller output to apply accurate and optimal control, as expressed in
Equation (18).

pcsi ,dj
(t) = pcsidj

(t− 1) + Ksidj
esidj

(t− 1) (18)

The error value is calculated as the difference between the reference value required by
the master controller and the received values from the SDN’s switches of the suggested
parameters towards selecting the next master controller, as shown in Equation (19).

esi ,dj
(t) = re fsidj

(t)− scsidj
(t) (19)
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In order to be able to compute a stable gain K, root locus is used for gain selection. The
root locus plot is shown in Figure 4. The gain K is chosen to be 0.5 to obtain the closed-loop
root of 0.59.

Figure 4. Root locus for the DFBCP model.

DFBCPSDN uses least squares regression to estimate the values of the parameters
of the ARMA model a1, and b0. a1 is estimated to be 0.794 and b0 is estimated to be
0.648. The goodness of the model is measured using R2. R2 is measured to be 89.7% as
an indication of the linearity of the model. Equation (20) has the Z-transform equivalence
for Equation (17) that describes the relationship between the selected backup to master
controller and the tuning parameter.

PLACEsidj
(z) =

PLCsidj
(z)

PCsidj
(z)

=
b0z

z− a1
(20)

The engine module transfer function for the control law that relates the master control
to the appropriate tuning parameter is given in Equation (21) to model the SDN controller
master module derived.

ENGINEsidj
(z) =

PCsidj
(z)

Esidj
(z)

=
Ksidj

z− 1
(21)

The overall transfer function that relates the selected controller to the reference value
could be given the transfer function stated in Equation (22).

T(z) =
PLC(z)

R(z)
=

K× z× (z× b0)

(z− 1)× (z− a1) + K× z× (z× b0)
(22)

DFBCPSDN uses least squares regression to estimate the values of the parameters of
the ARMA model a1, and b0. a1 is estimated to be 0.4364 and b0 is estimated to be 0.2898. It
is found that the a1 that measures the goodness of the model is no lower than 87.5% for the
controllers. The DFBCPSDN algorithm is provided in Algorithm 1. The algorithm shown in
Algorithm 1 describes the initialization process and the procedure to modify the transfer
functions to adapt to the underlying dynamic system.
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Algorithm 1 DFBCPSDN Algorithm.
Input: v, reference target, η, Termination criteria
Output: FBPlacement, FBUtilityfunction

1: procedure DFBCPSDN(FBPlacement, FBUtility f unction)
2: CLUSTER = Initialize cluster of controllers for different classes
3: η = Number of switches in a cluster
4: Randomly initialize each of the controllers as χ1, χ2, χ3, . . . χN whole population
5: Set re f erencetarget to 90%
6: Calculate the utility function v for each controller
7: while Termination criteria is not met do
8: Sort controllers’ locations in ascending order based on utility function
9: χbest = Get maximum utility function at the controller

10: χworst = Get minimum utility function at the controller
11: χpeer = Get the utility function to the tentative controller placement
12: end while
13: for i← 1 to η do do
14: χpeer = randomly choose a controller position not in χi
15: Compute current utility function:
16: plcsi ,dj

(t) = a1 plcsidj
(t− 1) + b0 pcsidj

(t)
17: pcsi ,dj

(t) = pcsidj
(t− 1) + Ksidj

esidj
(t− 1)

18: esi ,dj
(t) = re fsidj

(t)− scsidj
(t)

19: end for
20: Compare χpeer to the χworst and χbest
21: if utility function≤ re f erencetarget then
22: Controller placement← succeeding available placement location f rom the list
23: else
24: if utility f unction>re f erencetarget then
25: Controller placement← precedent available placement location f rom the list
26: end if
27: end if
28: while COP− TARGET > THRESHOLD do
29: FBPlacement = Get node having maximum utility function
30: FBUtilityfunction = utility function corresponding to FBPlacement
31: end while
32: return FBPlacement, FBUtilityfunction
33: end procedure

6. Results and Analysis

We used MATLAB as the platform for the simulation in addition to Python for clus-
tering purposes. The system consists of Windows 10 (64-bit) with Intel Core i7-4770 CPU
at 3.40 GHz and 16 GB RAM. For all experiments, we used a population size of 1000.
In this section, we show the comparative results of both the proposed DFBCPSDN and the
VBO reference models. Experimental results show that DFBCPSDN outperforms the VBO
reference model in two scenarios, the Internet2 OS3E and EU-GÉANT [65]. The proposed
DFBCPSDN model gives a higher convergence rate as compared with the VBO reference
model. We show the cumulative results for both the ARMA-based solutions and VBO
solutions for the CPP.

Figure 5 has the Internet2 OS3E topology, while Figure 6 has the EU-GÉANT topology.
Both these topologies were used during the experimentation phase. We used a set of
well-known network topologies for our experiments and used the DFBCPSDN and VBO
algorithms for finding controller placements in a given topology. The topologies used are
Internet2 OS3E topology and EU-GÉANT topology. Figure 7 shows the convergence graphs
for the controller placement problem for the uncapacitated scenario for the Internet2 OS3E
topology. Figure 7 has the relationship of the function of evaluation among the average
rate of latency. DFBCPSDN outperformed the VBO by 11%. Figure 8 has the relationship



Electronics 2022, 11, 2273 12 of 17

of the function of evaluation among the average rate of latency when using EU-GÉANT.
DFBCPSDN outperformed the VBO by 9%. The average rate of latency drops at 30 switches
is due to the saturation of switches around 30, so the total average latency saturates at that
number, and then the more the number of switches, the trend moves on in an increasing
fashion.

Figure 5. Internet2 OS3E topology.

Figure 6. EU-GÉANT topology.

Figure 7. Convergence plots for uncapacitated controller placement problem for Internet2 OS3E topology.
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Figure 8. Convergence plots for uncapacitated controller placement problem for EU-GÉANT.

Figure 9 has the convergence plots for the controller placement problem for the capac-
itated scenario when used in an Internet2 OS3E topology. DFBCPSDN outperformed the
VBO by 10%. Figure 10 has the convergence plots for the capacitated controller placement
problem for EU-GÉANT topology. DFBCPSDN outperformed the VBO by 8%.

Figure 9. Convergence plots for capacitated controller placement problem for Internet2 OS3E topology.



Electronics 2022, 11, 2273 14 of 17

Figure 10. Convergence plots for capacitated controller placement problem for EU-GÉANT topology.

7. Conclusions and Future Work

Controller placement is an important problem in the large-scale SDN. An efficient
controller placement solution attempts to minimize the total average latency of SDN
network components to maximize overall SDN performance. This work discusses and
analyzes the clustering-based solutions for controller placement. We propose a novel
dynamic feedback control mechanism for controller placement; the proposed model is
referred to as DFBCPSDN. In this work, we conducted a set of experiments to compare the
results of the DFBCPSDN with a reference model, which is the Varna-based optimization
(VBO). The reason we selected the VBO is that the VBO is one of the latest algorithms
that uses optimization techniques to reduce the overall latency. In previous work in the
literature, the VBO has outperformed other models, and hence was a good candidate for
our comparison purposes. In this work, we used different scenarios and topologies to
conduct the comparison. The comparison was conducted in various scenarios using two
topologies: the Internet2 OS3E topology and the EU-GÉANT topology. DFBCPSDN used
feedback control theoretic techniques based on ARMA models. Experiments show that for
the uncapacitated CPP, DFBCPSDN significantly outperforms the VBO for the Internet2
OS3E and EU-GÉANT topologies by 11% and 9%, respectively. Experiments also showed
that for capacitated CPP, the DFBCPSDN algorithm outperforms the VBO reference model
by 10% and 8%, respectively, in terms of total average latency.

A future work to this research is to add more artificial intelligent approaches to
determine the controller placement criteria. Another direction is to test the model with
more sophisticated topologies and more numbers of switches and controllers. A future
work to add to this work is to measure more performance metrics. Load balancing among
controllers is also considered a future aspect to this work.
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