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Abstract: A backup power supply system can provide electrical energy for load in harsh environ-
ment without power grid, and plays a very important role in natural disaster rescue and military
application. Compared with traditional energy sources, the proton-exchange membrane fuel cell
has the advantages of good low temperature start-up performance, low noise, high efficiency and
high power density, and no carbon emission, which gradually becomes the main energy source of the
backup power supply system. This paper designs the backup power system topology of the “dual
fuel cell and lithium battery” and researches energy management strategy based on fuzzy control
(FC). Considering that it is difficult for the fuzzy controller to obtain the optimal membership function
parameters according to working conditions, this paper aims to reduce the hydrogen consumption
of the system, uses the whale optimization algorithm to optimize the membership function of the
fuzzy controller, and proposes an energy management strategy based on whale optimization fuzzy
control (WO-FC). The energy management strategies are verified and compared by simulations. The
results show that the membership function of the optimized fuzzy controller based on WO-FC energy
management strategy has changed greatly: The hydrogen consumption of the system obviously
decreased compared with no optimization, and the overall efficiency of the fuel cell also signifi-
cantly improved. To be more precise, the energy management strategy based on WO-FC reduces the
hydrogen consumption of the system by 5.35% and improves the overall efficiency of the fuel cell
by 1.56%.

Keywords: backup power supply; fuel cell; energy management; fuzzy control; whale optimization algorithm

1. Introduction

In recent years, power interruptions caused by failure of the power systems or natural
disasters have occurred from time to time. A backup power has an important impact on
natural disaster rescue, military operations, and industrial sectors and people’s livelihood
protection. It not only provides electric energy for lighting, medical rescue, and life
support equipment in disaster areas, but also provides a guarantee for the reliable operation
and uninterrupted power supply of various military communication and reconnaissance
equipment in the suburban field and other environments.

At present, the energy sources commonly used in backup power supply system mainly
include diesel generators and batteries. The diesel power generation backup power supply
system is based on diesel such as fuel and generates electricity to the load through the
diesel generator. However, the diesel generator not only has the disadvantage of generating
loud noise in the process of power generation but also continuously produces toxic and
harmful gases, causing environmental pollution [1]. While the battery backup power
supply system has little environmental pollution, since the single battery pack energy
density is low, it is necessary to improve the power of the system by increasing the number
of battery packs; thus, the long backup time of the battery is also one of its unavoidable
shortcomings. In recent years, the proton-exchange membrane fuel cells, as a high-efficiency
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power generation device, have been shown to convert chemical energy into electrical output
and have higher energy density than a battery with the same power [2]. Proton-exchange
membrane fuel cells are clean and pollution-free and have the advantages of fast startup
and low noise [3–5]; hence, fuel cells are replacing diesel generators and batteries as the
main energy source of backup power supply systems. However, due to the problems of
soft output characteristics, slow dynamic response, and short lifespan of fuel cells, they are
usually used in parallel with supercapacitors or lithium batteries to form a hybrid power
system [6,7]. Reasonably distributing energy flow among energy sources of hybrid power
systems has an important impact on giving full play to the advantages of each energy
source and improving the fuel economy and overall performance of the system, which is
also the core of energy-management strategy research [8].

In this regard, scholars and researchers have carried out relevant studies on energy
management strategies of hybrid power systems. Generally speaking, energy management
strategies can be divided into two categories: rule-based energy management strategies and
optimization-based energy management strategies [9]. Rule-based energy management
strategies usually rely on the experience and subjective ideas of designers or experts to
design, which has the advantages of low implementation difficulty and low computation
although it is difficult to obtain good results in the face of complex load conditions [10,11].
The optimization-based energy management strategy can optimize the energy management
strategy according to established control objectives to obtain better control effects, but
it is often difficult to realize and reduce the amount of calculation [12,13]. Compared
with the traditional control algorithm, the fuzzy controller also has better performance
in anti-interference, system parameter adaptation, and response speed [14,15]. It is very
suitable for a fuel-cell emergency power system with nonlinear and strong time delay as
designed in this article.

Since the birth of fuzzy logic control, through the application and development of
many researchers, it has fully proved its advantages in solving complex system modeling
and control problems. The well-known Mamdani-type fuzzy inference system [16] makes
it possible to implement actual controllers based on language rules without the need for
an accurate system model. Chen et al. [17] proposed a fuzzy control strategy of parameter
adaptive tuning for fuel-cell hybrid power systems, which could maintain the battery SOC
in the set state. Ming et al. [18] first formulated the rule-based algorithm, then proposed
an energy-management strategy based on fuzzy control to improve it, and carried out
simulation verification in three typical working conditions. Currently, some researchers
adopted the control method based on fuzzy logic to improve the robustness of the control
system. However, in the process of energy management strategy design based on fuzzy
control, the design of membership functions and fuzzy control rules is usually based on
expert knowledge and practical engineering experience and often has strong subjectivity.
Therefore, the fuzzy control energy management strategy cannot achieve a good control
effect in the operation of emergency power systems.

Based on the above, Sohani et al. [19] used a genetic algorithm to optimize the pa-
rameters of an energy management strategy based on fuzzy control in order to obtain the
optimal distribution of fuel-cell hybrid electric vehicle energy flow. Currently, most of the
research focuses on the fuel economy optimization of the powertrain by genetic algorithms.
However, these control strategies ignore the impact of drastic power changes on the life
of fuel cells. To solve this problem, Ahmadi et al. [20] adopted the method of introducing
a penalty factor to affect the adaptation value. The iteration results not only optimized
fuel economy but also optimized fuel-cell durability. In addition, Yin et al. [21] used a
particle swarm optimization algorithm to optimize the fuzzy controller. However, these
control strategies often have difficulty in parameter settings, requiring large amounts of
calculation, and only aim at a single optimization objective in the optimization process,
ignoring the influence of drastic power variation on the life of the fuel cell.

The main contribution of this paper is to design the fuel-cell backup power system
structure of the “dual fuel cell + lithium battery”. According to the characteristics of each
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energy source and the distribution principle of energy flow in the fuel-cell backup power
supply system, an energy management strategy based on fuzzy control is designed. The
whale optimization algorithm is a new intelligent optimization algorithm proposed in
recent years; it is more competitive than other optimization algorithms in terms of conver-
gence speed, implementation difficulty, and optimization accuracy. Therefore, the whale
optimization algorithm is used to optimize the membership function of fuzzy controllers
globally in order to realize the simultaneous optimization of hydrogen consumption and
fuel-cell output power fluctuation.

This paper is organized as follows: Section 2 designs the topology of fuel-cell backup
power supply systems. In Section 3, the energy management strategy based on fuzzy control
is designed. Section 4 introduces the optimization process of membership function of fuzzy
controllers by the whale optimization algorithm and designs an energy management
strategy based on whale optimization fuzzy control. Finally, the simulation results and
conclusion analysis of energy-management strategies are presented in Section 5.

2. System Design

Figure 1 shows the topology structure of the fuel-cell backup power supply system.
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Figure 1. Topology structure of the fuel-cell backup power supply system.

During the operation of the system, due to the hysteresis of the output of the fuel
cell itself, the system uses the lithium battery as the auxiliary energy source. Before the
load power suddenly changes and the fuel-cell output becomes stable, the lithium battery
mainly supplies the load. Fuel cells are employed upon load increasing. Therefore, the
lithium battery and the fuel cell are connected in parallel on the bus bar, and an inverter is
connected to the rear stage of the bus bar to provide electrical energy for the load.

In order to further improve the reliability of the fuel-cell backup power supply system
during operation, this paper adopts the main energy source structure of dual-fuel cells,
which are connected to the DC bus through a one-way Buck DC/DC converter and con-
trolled by their respective independent controllers. This structure can still work normally
in the case of a failure in a single reactor in low load demands and can improve the output
power fluctuation of a single reactor. The energy management controller completes the
power distribution between the fuel cell and the lithium battery by controlling the input
current of the DC/DC converter according to the load demand.

3. Fuzzy Controller Design

The fuzzy controller usually consists of five parts: fuzzification, rule base, database,
inference engine, and defuzzification [22], as shown in Figure 2.



Electronics 2022, 11, 2325 4 of 12

Electronics 2022, 11, 2325 4 of 13 
 

 

3. Fuzzy Controller Design 

The fuzzy controller usually consists of five parts: fuzzification, rule base, database, 

inference engine, and defuzzification [22], as shown in Figure 2. 

Inference 

Engine

Database

Fuzzification Defuzzification

Rule Base

Controlled 

Object

Input
Output

Fuzzy Controller
 

Figure 2. Composition of fuzzy controller. 

The design of the fuzzy controller in this paper adopts the Mamdani structure with 

dual-input and single-output. The load demand power, Pload, and the lithium battery SOC 

are taken as the input variables of the fuzzy controller; the total output power, Pfc, of the 

two fuel-cell modules is taken as the output variable; the output power of two fuel-cell 

modules is evenly distributed. 

Considering the large amount of calculation for some types of membership function 

and the requirements of real-time controllers and easy parameter adjustment in fuel-cell 

backup power supply systems, triangle and trapezoid functions are more suitable as the 

research objects of membership function design. In this paper, the power range of load 

requirement is set as 0–8 kW, and the health range of lithium battery SOC is set as 30–

80%. After scaling the three variables, the domains of Pload, lithium battery SOC, and fuel-

cell module Pfc are [−4, 4], [−2, 2], and [−4, 4], respectively. 

The fuzzy subsets of the three variables are divided into VL, L, M, H, VH, which are 

very small, small, medium, large, and very large, respectively. The fuzzy control rules are 

shown in Table 1. The output power of the fuel cell should be higher when the load de-

mand is high and the lithium battery SOC is low, while the output power of the lithium  

Table 1. Fuzzy control rules. 

Pfc 
SOC 

VL L M H VH 

Pload 

VL M M L VL VL 

L M M M L VL 

M H M M M L 

H H H M M M 

VH VH H H H M 

Battery should be appropriately increased when the load demand is low and the lithium battery 

SOC is high. 

4. Fuzzy Controller Design Based on Whale Optimization Algorithm 

4.1. Whale Optimization Algorithm 

As a new intelligent optimization algorithm proposed in recent years, the whale op-

timization algorithm is more competitive than similar optimization algorithms in terms 

of convergence speed, implementation difficulty, and optimization accuracy [23]. There-

fore, the whale optimization algorithm is used to optimize the membership function of 

the fuzzy controller in the further study of this paper. 

The optimization process of the whale optimization algorithm mainly includes three 

stages: the prey encirclement stage, the bubble net attack stage, and the prey search stage. 

The equations for updating the position in the prey encirclement stage are as follows: 

Figure 2. Composition of fuzzy controller.

The design of the fuzzy controller in this paper adopts the Mamdani structure with
dual-input and single-output. The load demand power, Pload, and the lithium battery SOC
are taken as the input variables of the fuzzy controller; the total output power, Pfc, of the
two fuel-cell modules is taken as the output variable; the output power of two fuel-cell
modules is evenly distributed.

Considering the large amount of calculation for some types of membership function
and the requirements of real-time controllers and easy parameter adjustment in fuel-cell
backup power supply systems, triangle and trapezoid functions are more suitable as the
research objects of membership function design. In this paper, the power range of load
requirement is set as 0–8 kW, and the health range of lithium battery SOC is set as 30–80%.
After scaling the three variables, the domains of Pload, lithium battery SOC, and fuel-cell
module Pfc are [−4, 4], [−2, 2], and [−4, 4], respectively.

The fuzzy subsets of the three variables are divided into VL, L, M, H, VH, which are
very small, small, medium, large, and very large, respectively. The fuzzy control rules
are shown in Table 1. The output power of the fuel cell should be higher when the load
demand is high and the lithium battery SOC is low, while the output power of the lithium

Table 1. Fuzzy control rules.

Pfc
SOC

VL L M H VH

Pload

VL M M L VL VL
L M M M L VL
M H M M M L
H H H M M M

VH VH H H H M
Battery should be appropriately increased when the load demand is low and the lithium battery SOC is high.

4. Fuzzy Controller Design Based on Whale Optimization Algorithm
4.1. Whale Optimization Algorithm

As a new intelligent optimization algorithm proposed in recent years, the whale
optimization algorithm is more competitive than similar optimization algorithms in terms
of convergence speed, implementation difficulty, and optimization accuracy [23]. Therefore,
the whale optimization algorithm is used to optimize the membership function of the fuzzy
controller in the further study of this paper.

The optimization process of the whale optimization algorithm mainly includes three
stages: the prey encirclement stage, the bubble net attack stage, and the prey search stage.

The equations for updating the position in the prey encirclement stage are as follows:

→
D =

∣∣∣∣→C · →W∗(t)− →W(t)
∣∣∣∣ (1)

→
W(t + 1) =

→
W∗(t)−

→
A·
→
D (2)
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where
→
W(t) is the position of whales in the population at the current moment;

→
W∗(t) is the

optimal position reached by the population so far; t is the number of iterations currently

experienced; and
→
A and

→
C are the vectors of coefficients, which can be adjusted to make

the whales in the population gradually approach the whales in the optimal position at the
current time.

The calculation of
→
A and

→
C are as follows:

→
A = 2

→
a ·→r −→a (3)

→
C = 2

→
r (4)

where
→
r is a random vector in [0, 1] and

→
a decreases linearly from 2 to 0 as the number of

iterations increases.
In the bubble net attack stage, the hunting methods of humpback whales are divided

into two types: the shrinking and wrapping mechanism and the spiral approximation
mechanism. During this stage, whales will encircle their prey in a spiral path and continu-
ously shrink the encirclement. Each individual whale in the population has a 50% chance
to update its position through the shrinking and wrapping mechanism or the spiral approx-
imation mechanism. The position update of the shrinking and wrapping mechanism is
completed by Equation (2), and the position update of the spiral approximation mechanism
is as follows: →

D′ =
∣∣∣∣ →W∗(t)− →W(t)

∣∣∣∣ (5)

→
W(t + 1) =

→
D′·ebl · cos(2πl) +

→
W∗(t) (6)

where
→
D′ is the distance between the current position of whales in the population and

the optimal position reached by the population so far; b is the constant coefficient, which
determines the logarithmic spiral shape; and l is the random number between [−1, 1].

The equations for updating the position in the prey search stage are as follows:

→
D =

∣∣∣∣→C ·→Wrand −
→
W
∣∣∣∣ (7)

→
W(t + 1) =

→
Wrand −

→
A·
→
D (8)

where
→
Wrand is the position of a whale randomly selected from the population at the current

moment and taken as the target for other whales to approach.
Therefore, the whale optimization algorithm selects the position update equation to

update the position of the whales in the population according to the value of the random

number, p, and the coefficient vector,
∣∣∣∣→A∣∣∣∣:

→
W(t + 1) =



→
W∗(t)−

→
A·
→
D p < 0.5,

∣∣∣∣→A∣∣∣∣ ≤ 1
→
Wrand(t)−

→
A·
→
D p < 0.5,

∣∣∣∣→A∣∣∣∣ > 1
→
D′·ebl · cos(2πl) +

→
W∗(t) p ≥ 0.5

(9)

where p is the random number between [−1, 1].
In this paper, the position of the whale is encoded by the parameter to be optimized

in the membership function of the fuzzy controller. The initial position of each whale is
randomly generated within the range of its parameter variation, and the fitness of each
whale and the three-stages mathematical model of algorithm are calculated for iterative
updates of whale positions according to the optimization objective function. When the
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algorithm reaches the termination condition, the whale in the optimal position at that time
is the global optimal solution, and the encoding of its position is the optimal parameter of
the membership function.

4.2. Optimization Objective Function

In the fuel-cell backup power supply system designed in this paper, the energy source
consists of two fuel-cell modules and an auxiliary battery. In order to improve the economy
of the system, the main goal of this paper’s optimization of the energy management strategy
is to reduce the hydrogen consumption of the fuel-cell module. The equation for calculating
the hydrogen consumption of the system fuel cell is shown in (10):

M f c =
N

ELH

∫ p f cs

η f c(p f cs)
dt (10)

where M f c is the total hydrogen consumption of the fuel-cell module of the system; ELH

is the low calorific value of hydrogen, which is 1.2 × 105 J/g; η f c is the efficiency of the
fuel cell using hydrogen to generate electricity; Pf cs is the output power of a single fuel cell
module; and N is the number of fuel-cell modules, which is set at 2.

The relationship curve between the efficiency of fuel cells using hydrogen to generate
electricity and its output power, Pf cs, is shown in Figure 3.
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After fitting the efficiency curve in Matlab, the mathematical model of the efficiency of
the fuel cell using hydrogen to generate electricity and its output power is shown as follows.

η f c =

{
a1Pf cs

4 + a2Pf cs
3 + a3Pf cs

2 + a4Pf cs + a5 Pf cs ≤ 1000
b1Pf cs

5 + b2Pf cs
4 + b3Pf cs

3 + b4Pf cs
2 + b5Pf cs + b6 Pf cs > 1000

(11)

Specific parameters are shown in Table 2.

Table 2. Efficiency parameters of fuel cell.

Parameter Value

α1 9.283 × 10−13

α2 −1.551 × 10−9

α3 −1.415 × 10−7

α4 1.343 × 10−3

α5 −0.0175
b1 5.218 × 10−19

b2 −8.524 × 10−15

b3 5.115 × 10−11

b4 1.468 × 10−7

b5 1.7 × 10−4

b6 0.4961
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When designing the optimization objective function, in order to protect the fuel-cell
and prolong its service life, the output power should be kept stable and the fluctuation
should be reduced as much as possible [24]. The output power fluctuation of the fuel-cell
module should be increased as a secondary optimization objective.

∆Pf cs(k) = Pf cs(k)− Pf cs(k− 1) (12)

∆Pf cs,min ≤ ∆Pf cs ≤ ∆Pf cs,max (13)

where ∆Pf cs(k) is the fluctuation of fuel-cell module output power at time k, and ∆Pf cs,min
and ∆Pf cs,max are the minimum and maximum value of transient fluctuation of fuel-cell
output power per second, respectively.

Therefore, the optimization objective function, J, designed in this paper is as follows:

J = λ1M f c + λ2∆P2
f cs (14)

where λ1 and λ2 are the weight value; ∆Pf cs is the fluctuation of fuel-cell module output
power; M f c is the total hydrogen consumption of the system fuel-cell module.

At the same time, in order to avoid the phenomenon of overcharge and overdischarge
of the lithium battery and so that the SOC can always be within a healthy range, the
fluctuation range of the SOC of the lithium battery should also be considered as a secondary
optimization target. The calculation equations for SOC fluctuation amount and constraint
conditions of lithium battery SOC are as follows:

SOC =
Q0 −

∫ t
0 i(t)dt

Qmax
(15)

∆SOC(k) = SOC(k)− SOC(k− 1) (16)

SOCmin ≤ SOC(k) ≤ SOCmax (17)

where Q0 and Qmax are the initial capacity and maximum capacity of lithium battery,
respectively; i is the current of the lithium battery; ∆SOC(k) is the fluctuation of SOC at
moment k; and SOCmin and SOCmax are, respectively, the lower limit and upper limit of
the health range of auxiliary battery SOC. This paper takes 30% and 80%, respectively.

4.3. Optimization Solution

In this paper, the population size of whales is set at 30, the dimension of the solution
space is 8, and the maximum number of iterations is 100. The simulation model of the
fuel-cell backup power supply system is built in the Matlab/Simulink environment by
combining the whale optimization algorithm with the system model simulation to solve
the optimization objective function. The solution parameters are shown in Table 3.

Table 3. Solution parameters.

Parameter Value

Size of population 30
Maximum number of iterations 100

Dimension of solution space 8
Hydrogen low calorific value ELH 1.2 × 105 J/g

Maximum hydrogen utilization efficiency η f c.max 55%
Upper of SOC Health range SOCmax 80%
Lower of Health range cap SOCmin 30%

Lithium battery initial SOC 60%
Weight value λ1, λ2 8, 2

As observed from Figure 4, the objective function value tends to converge after about
28 iterations. At this point, a set of optimal membership functions is obtained. This paper
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adopts the offline optimization method. It can be seen from the optimization process that
the calculation speed and convergence speed meets the requirements.
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5. Simulation and Analysis of Results

In order to verify the effectiveness of the energy management strategy proposed in
this paper, a simulation model of the fuel-cell backup power system was established. The
rated power of single fuel-cell module was 4.5 kW, the capacity of lithium battery was
2 kWh, the rated voltage was 48 V, and the simulation step size Ts was set as 0.1 s. Figure 8
shows a set of load power requirements according to actual working conditions, which is
used for the optimization and simulation verification of the fuzzy controller.
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The energy management strategies before and after optimization are substituted into
the simulation model for verification. Figure 9 shows the power curve of the energy man-
agement strategy based on FC, and Figure 10 shows the curve of the energy management
strategy based on WO-FC. As observed from the two figures, the output power curve of
a single fuel cell of the energy management strategy based on WO-FC proposed in this
paper decreases slightly and is relatively gentle compared with that before optimization.
By comparing the efficiency curve in Figure 3, it can be seen that the efficiency of a fuel
cell using hydrogen for power generation is the highest at about 1 kW and then efficiency
decreases gradually with the increase in output power. According to (11), the real-time effi-
ciency curve of fuel cells based the two energy management strategies shown in Figure 11
is obtained. Figure 11 shows that the real-time hydrogen utilization power generation
efficiency of fuel cells is significantly higher for the WO-FC energy management strategy,
which indicates that the energy-management strategy based on WO-FC can effectively
reduce the hydrogen consumption of the system and improve system efficiency.
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Figure 12 shows the SOC curves of lithium batteries based on the two energy man-
agement strategies. It can be seen from the Figure that based the two energy-management
strategies, lithium battery SOC is always within the healthy range set in this paper, and
that, based on the WO-FC energy management strategy, the final value of lithium battery
SOC is 56.70%.

Electronics 2022, 11, 2325 11 of 13 
 

 

 

Figure 12. SOC curves of lithium batteries based on two energy management strategies. 

In order to quantitatively analyze the advantages of system hydrogen consumption 

based on the WO-FC energy-management strategy, the optimization effect of hydrogen 

consumption of fuel-cell backup power supply systems is defined as follows: 

= 1 / ) 100%WO FC FCM M  （
 (18) 

where MWO-FC is the hydrogen consumption of the system based on the WO-FC energy 

management strategy; and MFC is the hydrogen consumption of the system based on the 

FC energy management strategy. 

The overall efficiency of fuel cells [25] is defined as follows: 

, / ( ) 100%
fcall P fc LHP dt ME    

(19) 

where M is the total hydrogen consumption of the fuel-cell module in its entire working 

condition. 

The hydrogen consumption of the system based on the two energy management 

strategies are shown in Table 4. 

Table 4. Hydrogen consumption of the system. 

Energy Management  

Strategy 

SOC Initial 

Value 

SOC Final 

Value 

Hydrogen Con-

sumption of the 

System 

Overall  

Efficiency of 

Fuel Cells 

FC 60% 60.29% 19.25 g 52.68% 

WO-FC 60% 56.70% 18.22 g 54.24% 

As observed from Table 4, compared with the FC energy-management strategy be-

fore optimization, the WO-FC energy-management strategy reduces the hydrogen con-

sumption of the system by 5.35% and the overall efficiency of fuel cell increased by 1.56%. 

6. Conclusions 

This paper proposes a method to optimize the membership function in the fuzzy con-

troller by applying the whale optimization algorithm and verifies the effectiveness of the 

energy management strategy before and after optimization by using the simulation model 

of the fuel-cell backup power supply system. An optimization objective function was de-

signed to reduce hydrogen consumption, and the optimal membership function parame-

ters were obtained using a joint solution with the simulation model. Finally, the simula-

tion results verify that, compared with the FC energy management strategy, the WO-FC 

energy management strategy reduces the hydrogen consumption of the system by 5.35%, 

and the overall real-time efficiency of the fuel cell significantly improved. 

Figure 12. SOC curves of lithium batteries based on two energy management strategies.



Electronics 2022, 11, 2325 11 of 12

In order to quantitatively analyze the advantages of system hydrogen consumption
based on the WO-FC energy-management strategy, the optimization effect of hydrogen
consumption of fuel-cell backup power supply systems is defined as follows:

µ = (1−MWO-FC/MFC)× 100% (18)

where MWO-FC is the hydrogen consumption of the system based on the WO-FC energy
management strategy; and MFC is the hydrogen consumption of the system based on the
FC energy management strategy.

The overall efficiency of fuel cells [25] is defined as follows:

ηall,Pf c
=
∫

Pf cdt/(MELH)× 100% (19)

where M is the total hydrogen consumption of the fuel-cell module in its entire working condition.
The hydrogen consumption of the system based on the two energy management

strategies are shown in Table 4.

Table 4. Hydrogen consumption of the system.

Energy
Management

Strategy

SOC Initial
Value

SOC Final
Value

Hydrogen
Consumption
of the System

Overall
Efficiency of

Fuel Cells

FC 60% 60.29% 19.25 g 52.68%
WO-FC 60% 56.70% 18.22 g 54.24%

As observed from Table 4, compared with the FC energy-management strategy before
optimization, the WO-FC energy-management strategy reduces the hydrogen consumption
of the system by 5.35% and the overall efficiency of fuel cell increased by 1.56%.

6. Conclusions

This paper proposes a method to optimize the membership function in the fuzzy
controller by applying the whale optimization algorithm and verifies the effectiveness of
the energy management strategy before and after optimization by using the simulation
model of the fuel-cell backup power supply system. An optimization objective function
was designed to reduce hydrogen consumption, and the optimal membership function
parameters were obtained using a joint solution with the simulation model. Finally, the
simulation results verify that, compared with the FC energy management strategy, the
WO-FC energy management strategy reduces the hydrogen consumption of the system by
5.35%, and the overall real-time efficiency of the fuel cell significantly improved.

Author Contributions: Conceptualization, Y.Z.; validation, Y.C. and Y.Z.; data curation, Y.C.; writing—
original draft preparation, Y.C.; writing—review and editing, Y.Z. and Y.C.; supervision, Q.C. All authors
have read and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China under grant 62173264.

Acknowledgments: The authors would like to express gratitude to all those who aided them in the
writing of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Marqusee, J.; Ericson, S.; Jenket, D. Impact of emergency diesel generator reliability on microgrids and building-tied systems.

Appl. Energy 2021, 285, 116437. [CrossRef]
2. Chavan, S.L.; Talange, D.B. Development and performance evaluation of energy efficient PEM fuel cell electric vehicle for smart

cities. In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017; pp. 1–5. [CrossRef]

http://doi.org/10.1016/j.apenergy.2021.116437
http://doi.org/10.1109/tenconspring.2017.8070039


Electronics 2022, 11, 2325 12 of 12

3. Han, Y.; Li, Q.; Wang, T.; Chen, W.; Ma, L. Multisource Coordination Energy Management Strategy Based on SOC Consensus for
a PEMFC–Battery–Supercapacitor Hybrid Tramway. IEEE Trans. Veh. Technol. 2018, 67, 296–305. [CrossRef]

4. Fernandez, A.M.; Kandidayeni, M.; Boulon, L.; Chaoui, H. An Adaptive State Machine Based Energy Management Strategy for a
Multi-Stack Fuel Cell Hybrid Electric Vehicle. IEEE Trans. Veh. Technol. 2020, 69, 220–234. [CrossRef]

5. Zhang, Z.; Guan, C.; Liu, Z. Real-Time Optimization Energy Management Strategy for Fuel Cell Hybrid Ships Considering Power
Sources Degradation. IEEE Access 2020, 8, 87046–87059. [CrossRef]

6. Marx, N.; Boulon, L.; Gustin, F.; Hissel, D.; Agbossou, K. A review of multi-stack and modular fuel cell systems: Interests,
application areas and on-going research activities. Int. J. Hydrog. Energy 2014, 39, 12101–12111. [CrossRef]

7. Li, T.; Liu, H.; Wang, H.; Yao, Y. Multiobjective Optimal Predictive Energy Management for Fuel Cell/Battery Hybrid Construction
Vehicles. IEEE Access 2020, 8, 25927–25937. [CrossRef]

8. Aznavi, S.; Fajri, P.; Asrari, A.; Sabzehgar, R. Energy Management of Multi-Energy Storage Systems Using Energy Path
Decomposition. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA,
29 September–3 October 2019; pp. 5747–5752. [CrossRef]

9. Pereira, D.F.; Lopes, F.D.C.; Watanabe, E.H. Nonlinear Model Predictive Control for the Energy Management of Fuel Cell Hybrid
Electric Vehicles in Real Time. IEEE Trans. Ind. Electron. 2021, 68, 3213–3223. [CrossRef]

10. Padmarajan, B.V.; McGordon, A.; Jennings, P.A. Blended Rule-Based Energy Management for PHEV: System Structure and
Strategy. IEEE Trans. Veh. Technol. 2016, 65, 8757–8762. [CrossRef]

11. Carignano, M.; Roda, V.; Costa-Castello, R.; Valino, L.; Lozano, A.; Barreras, F. Assessment of Energy Management in a Fuel
Cell/Battery Hybrid Vehicle. IEEE Access 2019, 7, 16110–16122. [CrossRef]

12. Zhang, Y.; Zhang, C.; Huang, Z.; Xu, L.; Liu, Z.; Liu, M. Real-Time Energy Management Strategy for Fuel Cell Range Extender
Vehicles Based on Nonlinear Control. IEEE Trans. Transp. Electrif. 2019, 5, 1294–1305. [CrossRef]

13. Zhang, Y.; Ma, R.; Zhao, D.; Huangfu, Y.; Liu, W. A Novel Energy Management Strategy Based on Dual Reward Function
Q-learning for Fuel Cell Hybrid Electric Vehicle. IEEE Trans. Ind. Electron. 2022, 69, 1537–1547. [CrossRef]

14. Yang, Z.; Guo, Q.; Chen, H.; Ding, S.; Miao, W.; Huang, J. The Fuzzy Logic Control Strategy for PEM Fuel Cell Hybrid Energy
System. In Proceedings of the 2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE), Chongqing,
China, 22–24 April 2022; pp. 187–191. [CrossRef]

15. Cui, P.; Ding, A.; Shen, Y.; Wang, Y.-X. Hybrid Fuel Cell/Battery Power System Energy Management by Using Fuzzy Logic
Control for Vehicle Application. In Proceedings of the 2019 IEEE 3rd International Conference on Green Energy and Applications
(ICGEA), Taiyuan, China, 16–18 March 2019; pp. 132–135. [CrossRef]

16. Bilodeau, A.; Agbossou, K. Control analysis of renewable energy system with hydrogen storage for residential applications.
J. Power Sources 2006, 162, 757–764. [CrossRef]

17. Chen, J.; Xu, C.; Wu, C.; Xu, W. Adaptive fuzzy logic control of fuel-cell-battery hybrid systems for electric vehicles. IEEE Trans.
Ind. Inform. 2016, 14, 292–300. [CrossRef]

18. Ming, L.V.; Ying, Y.; Liang, L.; Yao, L.; Zhou, W. Energy management strategy of a plug-in parallel hybrid electric vehicle using
fuzzy control. Energy Procedia 2017, 105, 2660–2665. [CrossRef]

19. Sohani, A.; Naderi, S.; Torabi, F.; Sayyaadi, H.; Akhlaghi, Y.G.; Zhao, X.; Talukdar, K.; Said, Z. Application based multi-objective
performance optimization of a proton exchange membrane fuel cell. J. Clean. Prod. 2020, 252, 119567. [CrossRef]

20. Ahmadi, S.; Bathaee, S.M.T. Multi-objective genetic optimization of the fuel cell hybrid vehicle supervisory system: Fuzzy logic
and operating mode control strategies. Int. J. Hydrogen Energy 2015, 40, 12512–12521. [CrossRef]

21. Yin, C.; Wang, S.; Yu, C.; Li, J.; Zhang, S. Fuzzy optimization of energy management for power split hybrid electric vehicle based
on particle swarm optimization algorithm. Adv. Mech. Eng. 2019, 11, 1687814019830797. [CrossRef]

22. Gujarathi, P.K.; Shah, V.; Lokhande, M. Fuzzy logic based energy management strategy for converted parallel plug-in hybrid
electric vehicle. In Proceedings of the 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam,
Malaysia, 4–5 August 2017; pp. 185–190. [CrossRef]

23. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
24. Pei, P.; Chen, H. Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review.

Appl. Energy 2014, 125, 60–75. [CrossRef]
25. Torreglosa, J.P.; Jurado, F.; García, P.; Fernández, L.M. Hybrid fuel cell and battery tramway control based on an equivalent

consumption minimization strategy. Control Eng. Pract. 2011, 19, 1182–1194. [CrossRef]

http://doi.org/10.1109/TVT.2017.2747135
http://doi.org/10.1109/TVT.2019.2950558
http://doi.org/10.1109/ACCESS.2020.2991519
http://doi.org/10.1016/j.ijhydene.2014.05.187
http://doi.org/10.1109/ACCESS.2020.2969494
http://doi.org/10.1109/ecce.2019.8912826
http://doi.org/10.1109/TIE.2020.2979528
http://doi.org/10.1109/TVT.2015.2504510
http://doi.org/10.1109/ACCESS.2018.2889738
http://doi.org/10.1109/TTE.2019.2958038
http://doi.org/10.1109/TIE.2021.3062273
http://doi.org/10.1109/ceepe55110.2022.9783241
http://doi.org/10.1109/icgea.2019.8880770
http://doi.org/10.1016/j.jpowsour.2005.04.038
http://doi.org/10.1109/TII.2016.2618886
http://doi.org/10.1016/j.egypro.2017.03.771
http://doi.org/10.1016/j.jclepro.2019.119567
http://doi.org/10.1016/j.ijhydene.2015.06.160
http://doi.org/10.1177/1687814019830797
http://doi.org/10.1109/icsgrc.2017.8070592
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.apenergy.2014.03.048
http://doi.org/10.1016/j.conengprac.2011.06.008

	Introduction 
	System Design 
	Fuzzy Controller Design 
	Fuzzy Controller Design Based on Whale Optimization Algorithm 
	Whale Optimization Algorithm 
	Optimization Objective Function 
	Optimization Solution 

	Simulation and Analysis of Results 
	Conclusions 
	References

