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Abstract: The algorithm of the clustering-based decision tree, which is a methodology of multimodal
fusion, has made many achievements in many fields. However, it is not common in the field of
transportation, especially in the application of automobile navigation. Meanwhile, the concept of
Spatio-temporal data is now widely used. Therefore, we proposed a vehicle routing Spatio-temporal
selection system based on a clustering-based decision tree. By screening and clustering Spatio-
temporal data, which is a collection of individual point data based on historical driving data, we
can identify the routes and many other features. Through the decision tree modeling of the state
information of Spatio-temporal data, which includes the features of the historical data and route
selection, we can obtain an optimal result, that is, the route selection made by the system. Moreover,
all the above calculations and operations are done on the edge, which is different from the vast
majority of current cloud computing vehicle navigation. We have also experimented with our system
using real vehicle data. The experiments show that it can output path decision results for a given
situation, which takes little time and is the same as the approximated case of networked navigation.
The experiments yielded satisfactory results. Our system could save a lot of cloud computing power,
which might change the current navigation systems.

Keywords: clustering-based decision tree; Spatio-temporal data; navigation system

1. Introduction

As a result of industrialization and migration from large cities and increasing popu-
lation, traffic in urban areas has risen [1]. This increase in the number of vehicles causes
delays for drivers’ trips, and, therefore, navigation has become a very important driving
concern [2]. Nowadays, almost every household’s vehicle is equipped with an onboard or
a portable GPS navigation system. The system works by locating its vehicle and receiving
and sending data to the cloud. The current GPS positioning algorithm is based on Spatio-
temporal data for real-time operation on a large scale [3]. The cloud calculates the real-time
road profile by sending the data information of the point through countless terminals and
provides a real-time latest route to the terminal by issuing navigation instructions to avoid
congested road sections [4]. From this, we can see that the pressure on the cloud to receive,
send, and process real-time data is very great, especially during peak traffic periods [5].

With the increasing number of vehicles, the timeliness (delay) and bandwidth limi-
tations of device processing naturally limit the Spatio-temporal-based cloud computing
model [6]. Thus, edge computing, which is on a smaller scale, has now become a new hot
topic [7]. By extending data and computing to the edge, network delay no longer poses a
problem and optimal decisions can be made promptly [8].
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At the same time, the route choice is often not the shortest route between the starting
point and the ending point. It might be a route that takes a longer distance but a shorter
journey time. Different route decisions are also made for different periods or different
weather conditions for the same starting and ending point. Thus, a good route decision
model can be obtained by learning from these past route decisions with drivers’ experience.
Data on the edge side obtain the Spatio-temporal features that the model needs.

Therefore, we proposed a clustering-based decision tree for vehicle routing Spatio-
temporal selection. Compared with existing offline route decisions, our system better
reflects the Spatio-temporal complexity of the road network and does not impose excessive
restrictions on the prerequisites for route decisions. By screening and clustering Spatio-
temporal data, which is a collection of individual point data based on historical driving data,
we can identify the routes and many other features. Through the decision tree modeling of
the state information of Spatio-temporal data, which includes the features of the historical
data and route selection, we can obtain an optimal result. Through edge computing, we can
directly choose a route by processing historical data at the edge, thus greatly reducing the
pressure of data transmission and processing between the cloud and the terminal during
navigation. In this way, the cloud can be liberated to handle other more important work.

In the following sections, related works, the principle of our system, the application of
our system to real-world datasets, and the presentation and comparison of the results will
be presented, respectively.

2. Related Work
2.1. Clustering-Based Decision Trees

Different researchers used various descriptive methods for combining clustering and
decision tree algorithms [9]. However, the common aspect is that these methods are usually
called “classification by clustering,” and the algorithms used are very specific (such as
K-means + ID3). In general, evident benefits from grouping in the classification have been
established [10]. In different domains, clustering is used to distinguish the features of
different datasets and decision trees are used in different outcome-oriented modeling.

For example, in the field of network and information security, researchers have pro-
posed a method of supervised anomaly detection [11]. This “K-means + C4.5” method
was developed by cascading two machine learning algorithms (K-means clustering and
a C4.5 decision tree). In the first stage, the region of similar instances represented by the
K-means cluster is solved based on the Euclidean distance between the computed data
and their cluster centroid. Then, the K-means are cascaded to the C4.5 decision tree by
using the instances in each K-means cluster to model the decision tree. From another
research study, it was learned that cascading machine learning algorithms can provide
better results than machine learning alone [12]. In addition, other researchers have used the
“K-means + ID3” method to cascade K-means clustering and ID3 decision tree learning
methods to identify and classify abnormal and normal activities in computer networks [13],
mechanical systems [14], and electronic circuits.

In addition, in the field of education, researchers have also used such methods in
student databases [15]. They used a K-means clustering algorithm and a decision tree algo-
rithm for data mining to predict students’ learning activities. This work is advantageous
for both teachers and students. With the help of highly accurate prediction results, it can
help teachers take appropriate measures at the right time to improve the quality of their
teaching. This can improve students’ performance and reduce failure rates.

In the field of health, researchers have also combined the K-means clustering algorithm
with the decision tree algorithm [16]. Through these research results, we found that
the accuracy of aggregated K-means clustering, and decision tree algorithms are better
than that of other algorithms, such as the genetic algorithm, classifier training algorithm,
and classification algorithm based on a neural network, in the proposed application to
spirometry data [17]. Other researchers have also proposed a new hybrid medical expert
system for effective medical diagnosis [18]. Their proposed hybrid system consists of two
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efficient algorithms: the genetic-based decision tree algorithm and the weighted K-means
clustering algorithm.

2.2. Spatio-Temporal Platform and Navigation Route

Spatio-temporal data, to a certain extent, is the user location and trajectory in-formation
data collected through the Location-based service [19]. Because of its Spatio-temporal
precision and large-scale user coverage, it has high commercial value and scientific research
value [20]. To achieve rapid response and massive data support capability of the cloud,
edge computing is gradually used in the Spatio-temporal platform in various fields [21–23].
With the push from cloud services, the pull from the Internet of Things (IoT), and the change
from data consumers to data producers, we increasingly need edge computing [24,25].
Edge computing refers to a new computing model in which computing is performed at
the edge of the network [26–28]. It offers several advantages. First, the edge computing
model migrates part of the computing tasks in the original cloud computing center to the
vicinity of the edge data source [29,30]. Moreover, compared with the traditional cloud
computing model, the edge computing model has additional advantages in terms of the
characteristics of big data, namely, volume, velocity, and variety [31]. Therefore, it is
necessary to better design edge devices and key supporting technologies for data security
based on edge devices to meet the reliability, security, and privacy protection services in
the edge computing model [32].

Most of the existing route planning research is still based on cloud real-time data
processing [33]. Some researchers used algorithms to simulate and predict routes. Some of
them are based on pedestrian trajectory prediction learning [34], some are based on super-
vised learning of experienced drivers’ route choices [35], and some are based on modeling
and learning of relevant information of cyber-physical systems at given points [36]. In
addition, researchers have done a lot of work on offline route decision methods. Some
researchers model the road network information as a circuit board with many resistors and
find the channel with the lowest resistance for route selection by local current comparison
methods [37]. However, a road with a large changing traffic flow cannot simply be viewed
as a constant value of resistance; it changes due to a range of other factors such as time of
day and weather. Some researchers have also investigated how to route buses or feeders
with a given origin and destination as well as scheduling arrangements [38]. This method
is mainly used for company shuttles or shuttle buses in cities and is not applicable to car
navigation that may have any starting or ending point. Through research, we found that
navigation routes, even under the influence of real-time traffic data, have a strong similarity
to historical data [39]. Moreover, the period and weather conditions will have a great
influence on navigation data of given starting and ending points [40]. Therefore, we should
make full use of the Spatio-temporal data platform to build a navigation computing system
to solve navigation problems more efficiently.

3. Methods
3.1. Spatio-Temporal Data Platform

The connection and modeling of the Spatio-temporal data platform are shown in
the following figures. What we use in our daily travel is an on-board or a portable GPS
navigation. As terminal devices, mobile phones or vehicle GPS cannot store a large amount
of data, which is often stored in the cloud, nor do they have strong computing power.
Therefore, the number of visits to the cloud is huge.

To reduce the cloud computing pressure, the urban traffic information platform, which
is based on IoT, gradually uses edge computing to achieve rapid response and massive data
support capability of the cloud. Therefore, as shown in Figure 1, we add a layer of edges. A
single edge layer covers a certain scale of land. We connect the cloud–edge-terminal layer
so that the computational pressure is unloaded to the edges, and then the Spatio-temporal
data platform is modeled.
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Figure 1. Spatio-temporal data platform.

When the whole city is divided into adjacent edge layers, the Spatio-temporal data
platform can play its role well. Each edge layer can collect the Spatio-temporal data infor-
mation of the vehicles in the area it is responsible for. The edge uploads this information to
the cloud and stores it locally. In this way, data are read through the interaction between
the edge layers. As shown in Figure 2, assuming that the two dark black edges in the upper
left corner and the lower right corner are the edge ranges of the departure point and the
arrival point respectively, it is possible to read in which period a vehicle has traveled from
the departure point to the arrival point through the interaction between these two edge
layers. Then, according to the read period and vehicle information, the Spatio-temporal
data of those vehicles are interactively read to the surrounding adjacent edges until the
historical Spatio-temporal data stored on the edges of all paths are obtained. In this way,
only all the historical vehicle path information of the given starting point and the arrival
point is read through the interaction between the edge layers. Through the analysis of this
Spatio-temporal data, better path decisions can be made.

Figure 2. Spatio-temporal data reading.
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3.2. Clustering-Based Decision Tree Route Selection

In this section, we present the proposed method to obtain historical drivers’ experience,
which leads to better results for clustering-based decision tree route selection. The method
consists of four stages: data preparation, clustering, decision tree design, and interpretation
of results, as depicted in Figure 3.

Figure 3. Modeling process.

3.2.1. Data Preparation

The first step is data preparation. This includes cleaning the dataset through the
process of removing duplicate records and eliminating noise data and national travel
data, extracting the required starting and ending locations and data information under the
influence of personal preferences, and converting data into a format specific to data mining
processing techniques.

3.2.2. Clustering

The main function of clustering is to cluster the routes of each piece of data after
reading the required data to determine how many output results there are.

The specific implementation method is the following: Mark the coordinates of the
given starting point and the target point and divide the grid on the map as the two
endpoints. Number each grid and represent all the collected valid data on the grid to get a
route diagram, as shown in Figure 4.

Figure 4. Dot connection diagram (raw).

Count the number of the grids passed by each route into a new variable. This gives us
a new feature of this piece of data. Clustering this feature of all valid data can identify how
many routes there are, as shown in Figure 5. The maximum number of categories is not set
for clustering results. However, if the proportion of a certain type of result is less than 1%,
it will be discarded to improve the accuracy of clustering results.
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Figure 5. Dot connection diagram (clustered).

There are several common clustering methods as follows: divisional clustering, hierar-
chical clustering, density clustering, model clustering, and spectral clustering. Since we
are using a large Spatio-temporal traffic dataset, which consists of many individual point
data containing temporal information, spatial information, and other valid information,
we chose to use the most appropriate divisional clustering for this dataset. The K-means
algorithm is representative of the divisional clustering algorithm. It has the advantages
of being simple and efficient even for large data sets, low time complexity, low space
complexity, etc. It can perfectly accomplish the ideas we need to achieve.

After determining the starting point and destination, we will have several planned
routes, which are zigzag lines. However, the historical data of automobiles are coordinates
of time and geographical location, which are a collection of points. Because of the difference
in receiving time and receiving frequency, the information of coordinate points recorded by
cars will not be the same even if they travel on the same route. Therefore, clustering the
data as described above can solve the problem well.

By observing the clustering results, we can distinguish the characteristic information
of vehicles on the grid map. Since each grid represents a geographical area, the feature that
a car has a grid represents that the car has passed through that area, so the clustering results
can distinguish the vehicles that travel through the same area. Further, all the categories of
the clustering results are all the different routes at the starting and ending points.

3.2.3. Decision Tree

The third step is the decision tree design stage, the goal of which is to design a set of
decision trees to solve the route selection of the corresponding starting and ending points
by filtering the refined attributes of the stage. In this case, we chose C4.5, which is a widely
accepted algorithm in the scientific community.

This step is very important to make visible the driving experience hidden in the clus-
tering results of the dataset. By analyzing the coordinates of the vehicles in the dataset, we
can obtain additional data features that can demonstrate driving experience. For example,
it is possible to analyze whether the coordinates pass through elevated roads to distinguish
between different preferred route decisions. In addition to the spatial information repre-
senting vehicle coordinates in the dataset, there is also temporal information representing
real-time time. Our analysis of this temporal information can also reveal some additional
data features. For example, drivers tend to avoid some congested roads in the morning
when making route decisions but make other decisions at other times when traffic is not
heavy, such as midday.

Before the decision tree, the user can select subjectively controllable options such as
whether to use the overhead. According to the user’s selection, the backend filters out the
available data that meet the condition in the valid data. Then, the decision tree calculation
is performed according to objective conditions (such as whether the period is a peak period,
whether it is a weekend, the weather conditions, etc.). By taking the state information
of objective conditions as the input and the route as the output, the decision tree can be
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modeled and generated. According to the decision tree model and the current state of the
user, the decision result is generated, and the route can then be selected.

To solve the problem of hyperparameters, some parameters need to be pre-set or
adjusted in the decision tree modeling process. Due to the huge amount of sample data,
the feature classification criterion “splitter” is chosen as “random”. The maximum depth of
the decision tree “max_depth” is adjusted to the number of input features. The minimum
number of samples required for internal node subdivision “min_samples_split” is set to
10 to avoid the influence of some maverick drivers’ route choices on the results. The
maximum number of leaf nodes “max_leaf_nodes” is set to the square of the number of
input features to prevent overfitting.

3.2.4. Interpretation of Results

The route selected by the result generated by the decision tree model is not a route
that fits the map. Therefore, we need to decompile the routes. We can read the entire period
data of the historical vehicle formation data of the first car driving through the route in
the model. By marking its entire positioning point on the map, we can then display the
complete route we need.

At this point, the whole process is over. Its pseudo code is shown in the Algorithm 1 below.

Algorithm 1 Prediction Model

Input:
Given historical data: X[vn, loc, t, st] = {X1, X2, . . . , Xn} . vn is vehicle number; loc is
geographical location, t is time, and st is the status of passengers.
Given a gridded map with every grid numbered: M[g1, g2, . . . , gm].
Given a prediction task: R[sp, ep, t]. sp is the start position; ep is the ending position.

Output:
The prediction model and the results of the prediction.

1: for i ∈ vn do
2: Xvn[loc, t, st] = X[vn, loc, t, st] //Divide the data according to vehicle number.
3: end for
4: for i ∈ vn and j ∈ t do //Extract data with the given start and ending position
5: if Xi[loc, j][st] <> Xi[loc, j + 1][st] and Xi[loc] = R[sp] then
6: for k ∈ (j, t) do
7: if Xi[loc, k][st] <> Xi[loc, k + 1][st] then
8: if Xi[loc] = R[ep] then
9: Data = Data + {Xi[loc, j, st], Xi[loc, j + 1, st], . . . , Xi[loc, k, st]}
10: end if
11: end if
12: end for
13: end if
14: end for
15: for i in Data and j in M do //Record the grids through which each data passes

16: Datai

[
route f eature

]
= Mj

17: end for
18: while //Cluster the new feature of all data to calculate the route selections

19: Cluster Datai

[
route f eature

]
20: Datai[route] = result o f the cluster
21: end while
22: while //Train the model
23: Train the Datai with the Decision Tree model
24: end while
25: route = Datai[R] //Input the task into the model to get the result
26: Return: The model result and the predicted results for the given task.
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3.2.5. Limitations

Our system will also have some limitations. First, the system cannot make decisions
for paths that are too short. If the given start and ending points are all within the coverage
of one edge layer, the distance is too short for the system to distinguish the paths. Second,
the system is unable to react to unexpected road condition information. Since the system
makes decisions based on historical data analysis, some unexpected traffic conditions, such
as a road is no longer allowed, will probably affect the accuracy of the system’s judgment.

4. Experiments and Results

We used the data of all Shanghai taxis from the Didi Company for a total of two
weeks from 7 to 21 April 2018. The dataset includes vehicle number, empty vehicle status,
reception time, latitude and longitude coordinates, velocity, direction, braking status, and
overhead status. The data density is 10 data transfers/minute/vehicle. The size of each
piece of data is about 100 Bytes, and the size of our total data set reaches 120 GB. The
dataset only shows Spatio-temporal information and status information of each taxi. No
human driver feedback is included. All the work below is based on this dataset. Due to non-
disclosure agreements, we only provide overview information of the dataset as described
above. We would like to thank Professor Lei Zhang, DiDi Global Inc. (Beijing, China), and
the National Transportation Information Co., Ltd. (Beijing, China). for providing the data
to us in order to complete this research.

Now, consider the following example: It is the weekend, the weather is good, and we
want to go to Xinzha Road from Shanghai West Railway Station but do not want to take the
elevated road. Let us see what route we will get through the algorithm. The program will
be implemented in the Python language.

4.1. Utilization of Edge Computing

We store the dataset in an edge computer and send commands to it with a mobile
phone. Edge computers can download the latest data from the cloud at a specific time every
week to ensure the timeliness of the data. The dataset and its operation can be realized in
the edge computer. Therefore, all the data processing can be realized by edge computing,
which will involve too much interaction with the cloud, thus reducing the pressure on
the cloud.

In this experiment, we store the database on a computer, labeled PC1, and treat it
as if it were in the cloud. Let us use another computer, labeled PC2, as the edge in this
experiment; PC2 can download data from PC1. At the same time, we use a mobile phone as
a terminal. We send instructions to the edge through the mobile phone. After that, the edge
directly calculates and processes the data through the instructions sent by the terminal
and the data downloaded from the cloud, and then it directly sends the results back to
the terminal mobile phone. In this process, only the side end downloads data from the
cloud, and there will be no access to the upload cloud or the process that requires cloud
computing. In response to the experiment we designed, except for downloading data from
PC1, PC2 did everything by itself.

4.2. Data Filtering

Due to the huge amount of data, we need to trim the dataset before we can process
it. We first clean and delete the missing data. Then, we take the first datum every three
minutes according to the time in the dataset, and we only take the first datum of each
vehicle in that minute, so that we can lighten the whole dataset by a factor of nearly 200.

By reading the empty car status in the data, we know when and where the car is
carrying passengers or letting passengers off by comparing before and after data. Therefore,
we can filter out the data of all the starting and ending points in all the datasets for
the given starting and ending points. This provides us with numerous time series of
vehicle travel.
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Through the date of each piece of data, we know whether the datum is on the weekend,
which can be recorded as the first feature point. Through the time of each piece of data,
we can know whether the datum is in the peak period, which can be recorded as the
second feature point. Each piece of data has the feature information of whether it is on
the elevated road, and we record whether it has been on the elevated road in each piece
of data as the third feature point. By searching historical weather data, we can get the
weather information at that time. We record the weather information of each piece of data
as the fourth feature point. So far, we have four pieces of feature information. These four
pieces of feature information will also be used as the data input to the subsequent decision
tree algorithm.

4.3. Implementation of Clustering
4.3.1. Division of the Grid

Let us construct a grid for the map first. If the grid is too coarse, the final number of
routes will be too concentrated. As a result, it will be difficult to distinguish the differences
among different routes, which leads to poor clustering results. If the grid is too fine, the
routes will be too scattered. However, when the number of routes is clustered, this will
lead to too many routes. Moreover, sometimes the same route will be judged as two routes
in the computation, owing to the difference in reading time and location, which greatly
affects the accuracy of the algorithm. Therefore, the grid division needs to be like the time
interval of data reading. Here, we take 0.01 longitude and 0.01 latitude as the side length of
the grid to divide Shanghai into grids and number the grids, accordingly.

4.3.2. Clustering

Let us cluster the data we need. First, we mark all the collected data on the gridded
map, as shown in Figure 6. (For the sake of readability, in Figure 6; Figure 7, we show the
data of both the starting and ending points on the map from 6:00 a.m. to 12:00 a.m. on
7 April 2018).
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Next, we cluster the data by using the K-means clustering algorithm. After clustering,
two routes are obtained, and the results are shown in Figure 7.

The route (route 1 or 2) corresponding to each piece of data is recorded and included
in the characteristics of the piece of data. This data feature is the output data feature in the
subsequent decision tree algorithm.
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4.4. Decision Tree Generation

For the processed data, the input indicates whether the collection time is during the
rush hour, whether it is on the weekend, whether the vehicle passes through the elevated
road, and whether the weather is sunny, and the output is the route. Figure 8 shows the
result of the decision tree generation.

Figure 8. Decision tree result.

The C4.5 decision tree algorithm is used for this model. The C4.5 algorithm mainly
calculates and compares the information gain ratio of each feature of the data to determine
which feature has a greater impact on the results. In this model, if one of the results of the
information gain ratio segmentation of a certain feature in one step has a result that the
proportion of data selecting a certain route is greater than 90%, then the calculation of this
branch is ended, that is, it is pruned. For example, in the result of our task, the feature with
the highest decision information gain ratio for the first time is the choice of the highway.
After deciding on the highway, we find that more than 90% of the historical data using the
highway have traveled on route 2. We directly prune this branch and do not continue to
calculate, and route 2 is the result of this decision route. Through this rule, we calculate all
the data to get the decision tree result.

4.5. Comparison and Interpretation of the Results

In addition to the decision tree algorithm, we also performed the modeling calculation
on the dataset using a support vector machine (SVM) and logistic regression. Further, 90%
of the dataset was used as the training set, and the remaining 10% was used as the test set to
test and compare the models. The dataset was shuffled before the training and each model
was trained 10 times to increase the persuasiveness of the experiment. To evaluate the
performance of each algorithm, four standard metrics were used to measure the difference
between the actual route ri (always set as 1) and the prediction route r̂i (set as 0 if is wrong
and as 1 if is correct), including Root Mean Square Error (RMSE), Receiver Operating Char-
acteristic (ROC) and Area under ROC (AUR), F1-score (F1), and explained Variance (VAR),
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defined as follows, RMSE =
√

1
n ∑n

i=1(ri − r̂i)
2, AUR =

∑insi∈positiveclass rankinsi−
M×(M+1)

2
M×N ,

F1 = 2 × precision×recall
precision+recall , and VAR = 1 − var(R−R̂)

var(R) . RMSE measures the prediction er-
ror, and the smaller the better. AUR intuitively reflects the classification ability expressed
by the ROC curve, and its value closer to 1 represents its better classification ability. The
value of F1 is the summed average of precision and recall, and the larger the number of F1
values from 0 to 1, the better the achievement. VAR calculates the correlation coefficient,
which measures the ability of the prediction result to represent the actual value [41], where
var (·) is the variance function. Note that for VAR, the larger the better.

All the training was done with scikit-learn in Python. Decision tree used C4.5, which
was introduced earlier. In the parameter setting of SVM, the penalty parameter C of the
error term was set as 1, the kernel was set as Radial Based Function (RBF), and gamma
was set 1/n_features. In the parameter setting of Logistic Regression, the solver was set as
‘liblinear’ and the penalty was set as ‘12’, which satisfied the Gaussian distribution.

Additionally, since we used three computers in the experiment to simulate the cloud,
the edge, and the terminal, our system demonstrates some other advantages. The path
decision system computed by our algorithm at the edge-side is essentially similar in average
elapsed time to that computed by GPS after direct upload to the cloud. Thus, our system
relieves about 1 MFLOPS of computing power for the cloud per use without additional
waiting for users.

Table 1 gives the results of these models. Although the decision tree is a relatively old
algorithm, it maintains a higher accuracy rate in this field.

Table 1. Algorithm accuracy.

Model RMSE AUR F1 VAR

Decision Tree 0.1863 0.9573 0.9237 0.9653

SVM 0.2319 0.9165 0.9168 0.9462

Logistic Regression 0.2634 0.9377 0.9127 0.9306

Next, we decompiled the route into a complete route that conforms to the map. By
reading the full data at that time and presenting them on the map, we can get a complete
navigation route, as shown in Figure 9.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 15 
 

 

was set 1/n_features. In the parameter setting of Logistic Regression, the solver was set as 
‘liblinear’ and the penalty was set as ‘l2’, which satisfied the Gaussian distribution. 

Additionally, since we used three computers in the experiment to simulate the cloud, 
the edge, and the terminal, our system demonstrates some other advantages. The path 
decision system computed by our algorithm at the edge-side is essentially similar in aver-
age elapsed time to that computed by GPS after direct upload to the cloud. Thus, our 
system relieves about 1 MFLOPS of computing power for the cloud per use without ad-
ditional waiting for users. 

Table 1 gives the results of these models. Although the decision tree is a relatively 
old algorithm, it maintains a higher accuracy rate in this field. 

Table 1. Algorithm accuracy. 

Model RMSE AUR F1 VAR 
Decision Tree 0.1863 0.9573 0.9237 0.9653 

SVM 0.2319 0.9165 0.9168 0.9462 
Logistic Regression 0.2634 0.9377 0.9127 0.9306 

Next, we decompiled the route into a complete route that conforms to the map. By 
reading the full data at that time and presenting them on the map, we can get a complete 
navigation route, as shown in Figure 9. 

 
Figure 9. Final target route. 

4.6. Performance Analysis 
In addition to the cases shown in detail above, we conducted a total of 20 route deci-

sion experiments with different starting and ending points, premises, and requirements. 
We compared the results with the path decisions given by the real-time Google Maps for 
similar cases and found that our results are all consistent with those given by Google 
Maps. The Figure 10 shows the comparison between our results and Google Maps results 
for the above case. 

Figure 9. Final target route.



Electronics 2022, 11, 2379 12 of 14

4.6. Performance Analysis

In addition to the cases shown in detail above, we conducted a total of 20 route decision
experiments with different starting and ending points, premises, and requirements. We
compared the results with the path decisions given by the real-time Google Maps for similar
cases and found that our results are all consistent with those given by Google Maps. The
Figure 10 shows the comparison between our results and Google Maps results for the
above case.
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In addition, we measured the time consumption of the system. We found that the
computation time of the system is proportional to the distance between the start and end
points. The longest distance of 20 km in our experiments took less than 30 s, which is
acceptable in our opinion.

5. Conclusions

A new navigation algorithm with a methodology of multimodal fusion is proposed.
Its core is a model based on the clustering-based decision tree, which makes statistics and
analyzes historical data, considering the relationship and influence of each feature. Therefore,
the model can provide a route selection algorithm with high accuracy and efficiency.

The model is modular, allowing the use of given conditions to seek needed results to
meet the needs of users.

Historical data are aggregated data. When useful information is extracted from
historical data, the information becomes knowledge. By designing and processing the data,
the characteristics and information of different routes can be accurately estimated.

At the same time, the model is also used in the Spatio-temporal platform which is very
popular in the field of transportation recently. Within the framework of edge computing,
huge computing and tasks are offloaded to edge devices. Meanwhile, data are divided into
different geographical areas and periods. Thus, the model is made within a specific range
of data. Additionally, the speed of data processing is greatly accelerated.

Our model also has some unresolved problems, including determining the optimiza-
tion structure of the model and the inability to improve the route of some real-time emer-
gencies. In the future, it will be interesting to consider reinforcement learning with various
external factors in traffic flow prediction and route navigation.
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