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Abstract: The advent of Internet-based technology has made daily life much easy than earlier days.
The exponential rise in the popularity of social media platforms has not only connected people
from faraway places, but has also increased communication among humans. However, in several
instances, social media platforms have also been utilized for unethical and criminal activities. The
propagation of fake news on social media during the ongoing COVID-19 pandemic has deteriorated
the mental and physical health of people. Therefore, to control the flow of fake news regarding the
novel coronavirus, several studies have been undertaken to automatically detect the fake news about
COVID-19 using various intelligent techniques. However, different studies have shown different
results on the performance of the predicting models. In this paper, we have evaluated several machine
learning and deep learning models for the automatic detection of fake news regarding COVID-19.
The experiments were carried out on two publicly available datasets, and the results were assessed
using several evaluation metrics. The traditional machine learning models produced better results
than the deep learning models in predicting fake news.

Keywords: fake news; COVID-19; social media; machine learning; deep learning

1. Introduction

The Internet is now an essential part of modern society and has surpassed the con-
ventional ways of gathering information and knowledge from television and newspapers.
Social media platforms have significantly changed the ways in which people receive news
and current affairs around the globe. With social networking sites like Facebook and Twitter
experiencing unprecedented growth in their user base, society is largely dependent on such
platforms for acquiring news and information.

The ease of accessing social media platforms helps people to instantly share ideas and
news without checking the legitimacy of the news source. Consequently, social media is
being used for spreading misinformation and fake news [1]. Social media is capable of
propagating unverified content, creating an ecosystem of misinformation that may increase
the likelihood of changing people’s perspectives of reality through the spread of fake news.

Fake news is information with false content, spread intentionally to manipulate public
perspective on a specific agenda for political, social or economic gains or simply for fun. A
concerning aspect of fake news is that it draws more public attention than legitimate sources
of information [2]. Moreover, fake news propagates much faster and penetrates deep into
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people’s minds to influence their perception than legitimate news does [1]. Consequently,
people usually accept and forward such news content without inspecting the authenticity
of the source of news. This result in an exponential spread of fake news, either intentionally
or knowingly, by many people. The repercussions of the spread of fake news are varied,
with grave consequences such as compromised decision-making, cyberbullying, social
hostility and violence.

The alarming impact of the spread of false news has come into the limelight in the
current COVID-19 pandemic. The ongoing pandemic is considered one of the biggest
current public health emergencies, affecting millions of humans in a number of ways [3].
Throughout the pandemic, fake news has been circulating on digital platforms that has
created panic among the public. Governments have had to step in to verify the authenticity
of news, in order to alleviate panic and fear in the population and to maintain law and
order. The pandemic has already disrupted human lives in unprecedented ways. The
misinformation regarding COVID-19 has prompted many individuals to commit suicide
after being diagnosed with the deadly virus [4]. As COVID-19 is still a pandemic across
many countries of the world, it would be necessary to work on controlling fake news about
COVID-19 from being spread on social media platforms. Therefore, researchers are striving
to control this menace by developing intelligent and automated techniques for identifying
fake news content. To achieve this task, machine learning techniques are being applied to
predict fake news content.

Machine learning (ML) techniques enable a computer system to automatically learn
patterns and relationships from input data, using various algorithms to solve problems
without being specifically programmed. Deep learning (DL) is a specialized type of ML
employing artificial neural networks that imitates the human brain having multiple layers
of neurons to solve complex problems. DL models are known to outperform ML models in
solving several complex problems [5].

The labeled data can be categorized using a supervised machine learning technique
called classification [6]. The classification technique can be used to classify the information
as either true or false given a labeled dataset [7]. Many researchers have made efforts to
improve the classification accuracy on several datasets, however, more analysis is required
to evaluate the effectiveness of the classification models in detecting the fake news content.
This problem can be expressed as a text classification problem [8,9].

The identification of COVID-19 fake news is a binary classification problem. The
present work intends to search the best classification model among several candidates for
predicting fake news on COVID-19. The conventional ML models and recent DL models
for text classification are evaluated for this task.

The main contributions are: The evaluation of six ML classifiers and two DL classifiers
for the identification of fake news on two publicly available datasets. Secondly, comparing
the best performing ML models with the DL models.

The rest of the paper is organized as follows: Section 2 explore the related work on
fake news prediction. Section 3 describes the various classifiers used in this work. Section 4
discusses the experimental setup. Section 5 contains the results and discussion. Finally,
Section 6 contains conclusion and future work.

2. Related Work

This section will discuss several studies on the prediction of fake news. A study was
specifically undertaken to discuss intelligent techniques for the identification of clickbait.
The authors discussed the relevance of combining textual features like the semantics of
news content, and non-textual features like graphics and user behavior for detecting fake
news content [10]. Another study on clickbait detection utilizes the clickbait headlines. The
researchers have performed the experiments on a public dataset of fake news, and obtained
accuracy of 89.59 percent on the logistic regression learning model [11]. The credibility of
news was also checked using text analysis techniques, where different features (such as user
profiles) and content-specific attributes (such as comments, replies, external links etc.) were



Electronics 2022, 11, 2417 3 of 15

used. The authors employed Naïve Bayes, Random Forest and decision tree classifiers to
implement their techniques [12]. Similarly, another work on fake news detection used four
types of features: textual, user profile-based, content-specific and message propagation.
These features were extracted from a Twitter dataset, and the models were trained to
achieve a precision of around 70 to 80 percent [13].

The stylometry features such as writing style and grammar used in the news content
were utilized to label the information as true or false [14]. The experimental results on
several datasets have shown that the use of such features could provide better results than
using simple textual features. Linguistic features have been extensively used in several
works for the identification of misleading content. Sixteen linguistic features divided into
four categories were used in a study, and the decision tree classifier achieved 60 percent
accuracy on the selected features [15]. Similarly, several classifiers were used on various
linguistic features from the Facebook dataset, and more than 90 percent accuracy was
obtained by the linear regression model [16].

In another attempt to classify Twitter posts as either fake or real, the authors created
four categories of features that contain 45 different features [17]. The selected features
represent different attributes of the Twitter posts, such as the length and polarity of the
posts, user characteristics and other content-based features. The models were trained on
the PHEME and CREDBANK datasets, while testing was performed on the BuzzFeed
dataset. The model achieved 65.29 percent of accuracy on the test dataset. Similarly, in
another study, the authors used 29 features for training the logistic regression classifier
that obtained an accuracy of around 60 percent [18]. Zhou et al. [19] have proposed nine
classes containing 20 features for identifying fake news content. Gravanis et al. [20] have
introduced a new dataset called UNBiased, which contained 3004 instances by taking
samples from four publicly available datasets. They achieved 95 percent accuracy on their
dataset using the support vector machine classifier. Another study [21] introduced a deep
learning model for the identification of false information. The Kaggle dataset was utilized
for the experiment, and GloVe vectors were used for embedding textual features. The
author proposed a hybrid model based on convolutional and recurrent neural networks.

In a recent study, the authors explored several embedding models for detection of
Arabic fake news. The authors developed transformer-based classifiers for the task. They
constructed a dataset of fake news in the Arabic language for evaluating their proposed
models, and achieved an accuracy score of more than 98 percent [22].

The existing work discussed in the preceding section indicates that no single method-
ology or classification model can provide the best results. No single model can claim
to always perform better for every problem. Therefore, in this work, we have tried to
figure out the performance of several models and their parameter tuning for the prediction
of news containing false information about COVID-19. The proposed work is different
from the study [22] discussed above in the sense that it evaluates eight DL classifiers for
detecting fake news in the Arabic language. Whereas, our work evaluates six ML and two
DL classifiers for the same task in the English language.

3. Description of Classifiers

Various ML and DL classification algorithms that shall be used are discussed below.

3.1. Naïve Bayes

Naïve Bayes (NB) applies the Bayes theorem from the field of probability. This classifier
assumes that a change in one feature does not have an affect on the other feature i.e., all
the features are conditionally independent [23]. It calculates the probability for an event to
occur by obtaining joint probability to the happening of another event. The NB classifier is
easy to implement and can be economically trained with good classification results.



Electronics 2022, 11, 2417 4 of 15

3.2. Logistic Regression

Logistic Regression is a linear classification algorithm borrowed from the field of
statistics. It passes the input data through the sigmoid function, which returns a probability
value that can be used to classify a particular data point to its corresponding class [23].
A decision boundary or a threshold is computed for mapping the data points to their
respective classes, depending on the value of the sigmoid function. It is based upon the
assumption that the likelihood of mapping a sample to a particular class can be obtained
from the linear combination of the features of that sample.

3.3. Support Vector Machines

A Support Vector Machine (SVM) [23] performs a classification by computing a de-
cision hyperplane that demarcates samples from various classes. The hyperplane is posi-
tioned in the hyperspace such that the distance between the different classes is maximized.
As the SVM does not require the training examples to be transformed into different spaces,
it can handle a very large feature subset. Since the SVM is one of the best-performing classi-
fiers with a good classification performance [24], it has been used in several existing studies.

3.4. Decision Tree

A Decision Tree (DT) is among the most popular ML models for text classification [23].
A decision tree classifier is represented as a tree data structure. The leaf node of the tree
represents the label of a target class, and the remaining internal nodes indicate the test to
be applied on a single feature, with a sub tree and a branch for every result of the test. The
sample of the dataset is classified by moving through the tree, with the root as the initial
point down to the leaf node that specifies the target class of the sample.

3.5. Random Forests

Random Forests (RF) is an ensemble of multiple decision trees that can be used for
both classification and regression [23]. It applies the voting method to produce the outcome.
It gives the class label to the sample as having the maximum number of votes. A random
subset of features is used to split the leaf node for each of the decision trees. This procedure
is replicated to generate the K number of DT. The class of the instance is specified that it
has a majority of the vote from the decision trees.

3.6. K-Nearest Neighbor

The k-nearest neighbor (KNN) is one of the simplest approaches for classification
problems [23]. The KNN model finds the class of a sample by comparing it with the training
data closest to it. Each sample of the dataset is represented as a point in an n-dimensional
space. All of the training data resides in this space. The class of the test data point is
obtained by looking for the k training samples that are neighbors of the test data point
in the space. These closest training data points are called the k-nearest neighbors. The
nearest neighbors are identified by calculating the distance between the given test data and
training data in the space. The class label of the nearest neighbors is specified as the class
of the given test data point.

3.7. Convolutional Neural Network (CNN or ConvNet)

CNN is a discriminative supervised DL model that automatically extracts features
from the input data [25]. The CNN is an enhancement to the conventional artificial neural
networks. Each of the layers of the CNN considers optimal hyper parameter settings to
produce acceptable results, while reducing the complexity of the model. The CNN also
supports a mechanism to handle the overfitting of the model which may not be found in
traditional neural networks [26]. CNNs have been extensively applied in the area of pattern
recognition, speech processing and natural language processing.
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3.8. Long Short-Term Memory (LSTM)

LSTM [27] is a type of recurrent neural network that can specifically recall patterns for
a long time. The recursive cell state in LSTM is long-term memory that can store previous
information in them. The cell states are modified by the forget gates placed below them.
The output of the forget gate indicates whether the information is to be kept or forgotten.
The information is kept if the output of the forget gate is one. The entry of information
into the cells is managed by the input gate. The output gate decides the information that
needs to be transferred to the next state. Unlike other traditional ML models, LSTM can
use multiword strings to determine the class labels, which would be helpful in the text
classification task.

4. Experiments
4.1. Description of the Datasets

A dataset on fake news during the pandemic period called the COVID-19 Fake News
Dataset [28], is used for analyzing the performance of various classifiers. The dataset
was published by Abhishek Koirala [29] and is publicly available on the Mendeley. The
dataset consists of 3119 social media posts related to the COVID-19 pandemic, which were
collected approximately seven months after the pandemic has started. The posts in the
English language were collected across several social media platforms worldwide using
Webhose.io. The keywords used for filtering the posts were: corona, coronavirus and
COVID-19. The posts were manually labeled as either fake news or true news. There were
2061 posts in the true news category and 1058 in the fake news category.

The second dataset that we used was the Constraint@AAAI 2021 COVID-19 Fake News
detection dataset [30]. The dataset consisted of social media posts and their corresponding
labels specifying whether the post is real or fake. The dataset contained 10,700 samples, of
which 5600 samples were real and the remaining 5100 samples were fake. The authenticity
of real posts was manually verified from several fact-checking websites.

4.2. Data Preprocessing

The data preprocessing was performed in three stages, as described below:

• Tokenization: Tokenization of the textual data is performed to break long sentences
into individual words or numbers called tokens, and delimited by spaces.

• Noise Removal: Noise is unwanted data like punctuation marks, special symbols and
hyperlinks that need to be removed from the text, as they do not carry any meaning to
the model.

• Removal of Stop words: The most frequently used words in any language that do
not contribute much information to the data are called stop words. The stop words in
English are is, am, are, of, the, etc. The removal of stop words from the text decreases the
dimensionality of the feature space and may also help in enhancing the performance
of the classification model.

After applying the three steps of preprocessing, all the text was converted into lower
case to maintain uniformity in the dataset.

4.3. Feature Representation

The machine learning models are unable to work on plain text, therefore the textual
data had to be transformed into an appropriate format that can be easily understood by the
models. For the ML models, we employed the Bag of Words (BoW) model [31] to represent
the textual dataset into numerical vectors. The BoW was used for its simple and effective
representation of textual data for classical ML algorithms [32]. The Term Frequency-Inverse
Document Frequency (TF-IDF) [31] was used to allocate weights to each of the features
in the BoW model. The TF-IDF captures the relevance of a feature in the dataset as well
as in the individual documents. The TF-IDF allots a high weight to a feature if it appears
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frequently in the document, but a lower weight is assigned if the feature appears in several
documents of the corpus.

The existing studies have found DL models to be performing better as compared
to the traditional ML models [33–35]. The enhancement in performance is achieved by
the application of text representation techniques that preserve the context and semantic
meaning of the textual data [36]. Such techniques are known as word embeddings, that
retain the semantics of the data in numerical vectors and are used with DL models [37].
Hence, the BoW is generally not used with the DL models [9]. There are many word
embedding techniques such as the Continuous Bag of Words, Skip-Gram, GloVe etc. [38].

For the DL classifiers, we have applied the GloVe [39] to represent the textual features
by transforming them into high-dimensional vectors. GloVe is a word embedding technique
where words that share common semantics are placed closer in the vector space based on
the training data. In GloVe, a co-occurrence matrix is constructed from the training dataset,
followed by the factorization of the matrix to obtain the global vectors. GloVe was used in
this work because it has been shown to produce a comparatively better performance than
other embedding techniques, and can work on small as well as large corpus sizes [40,41].

4.4. Evaluation Metrics

The evaluation metrics are derived from the four parameters given in Table 1, based
on the predicted class label and actual class label. We used seven evaluation metrics to
evaluate the output of the ML and DL classification models. A brief detail of the evaluation
metrics is discussed in Table 1.

Table 1. Detail of the Evaluation Metrics.

Parameter Actual Class Label Predicted Class Label

True Positive (TP) True True
True Negative (TN) Fake Fake
False Positive (FP) Fake True

False Negative (FN) True Fake

4.4.1. Accuracy

Accuracy is the fraction of the correct predictions made by the classifier. It is given by
Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

4.4.2. Precision

Accuracy may not be a good measure of performance when we are working on an
imbalanced dataset. In such scenarios, precision is used to evaluate the effectiveness of the
classifiers. It is given by Equation (2).

Precision =
TP

TP + FP
(2)

4.4.3. Recall

Recall, also known as sensitivity/TP rate, is the ratio between the TP predictions to the
total number of TP and FN predictions made by the classifier. It is given by Equation (3).

Recall =
TP

TP + FN
(3)
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4.4.4. False Positive Rate (FPR)

The FPR is the ratio between the FP and the total of FP and TN predictions made by
the classifiers. It is given by Equation (4).

FPR =
FP

FP + TN
(4)

4.4.5. Misclassification Rate

The misclassification rate is the ratio between the incorrect predictions to the total
number of predictions made by the classifier. It is given by Equation (5).

Misclassi f ication Rate =
FP + FN

TP + TN + FP + FN
(5)

4.4.6. F-Score

F-score is the harmonic mean of precision and recall; thus, it is a combination of two
metrics in a single measure. F-score is also known as F-measure indicates the performance
of the classifiers in the case of imbalanced datasets. It is given by Equation (6).

F − score = 2 ∗ Precision ∗ Recall
Precision + Recall

(6)

4.4.7. Receiver Operating Characteristic (ROC) Curve

The ROC curve is the graph obtained by plotting the FPR against the TPR [42]. It
shows the performance of the classifier in discriminating between the two classes in
binary classification. The area under the ROC (AUC) curve measures the accuracy of the
classification algorithm.

4.5. Parameter Settings

The hyper parameters of the ML algorithms were fine tuned using the grid search
technique [43]. The value of the parameters is given in Table 2. The NB does not have any
hyper parameter to be tuned [43].

Table 2. Parameter values of different classifiers.

Model Hyperparameter Value

SVM C 1

gamma 1
kernel rbf

KNN n_neighbors 8
DT criterion gini

max_depth 8

LR C 1
RF criterion gini

max_depth 8
max_features sqrt
n_estimators 200

CNN Conv1D Layers 1

Filters 32
Kernel size 2,3,4

global avgpool layer 3
activation function relu

optimizer Adam
loss function binary cross entropy
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Table 2. Cont.

Model Hyperparameter Value

LSTM hidden layers 6

learning rate 0.001
batch size 64

gate activation function sigmoid
state activation function tanh

After preprocessing the dataset as discussed in the preceding paragraphs, the dataset
samples were split into train and test partitions with 70 percent and 30 percent of samples,
respectively. All of the experiments were carried out on machine with Intel i5 microproces-
sor onboard and 4 GB of RAM on the Windows 10 operating system.

5. Results and Discussion

This section discusses the results obtained on the two datasets for the several ML and
DL classifiers.

5.1. COVID-19 Fake News Dataset

Table 3 shows the summary of the results obtained from different classifiers for the
various evaluation metrics on the COVID-19 Fake News dataset. Figure 1 shows that the
SVM and LR classifiers achieved nearly the same classification accuracy, with the SVM
achieving 80 percent accuracy followed by the LR and KNN. However, the SVM takes a bit
more time for training than the LR model. Among all the models, the tree-based classifiers,
i.e., the DT and RF, achieved the lowest accuracy with the RF being the worst performing
model at 71 percent. The NB obtains the average accuracy score of 75 percent among all
the classifiers.

Table 3. Classification performance of ML classifiers on COVID-19 Fake News dataset.

Classifier DT KNN LR NB RF SVM

Accuracy 0.74 0.76 0.79 0.75 0.71 0.80
Precision 0.78 0.77 0.79 0.82 0.70 0.81

Recall 0.82 0.90 0.91 0.79 0.97 0.90
FPR 0.43 0.51 0.45 0.33 0.78 0.40

Rate of
Misclassification 0.26 0.24 0.21 0.25 0.29 0.20

F-score 0.79 0.83 0.85 0.80 0.81 0.85

Figure 1. Accuracy of ML classifiers on COVID-19 Fake News dataset.
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A good F-score indicates the better performance of the classifiers. The SVM and LR
both obtained 85 percent of the F-score value, which indicates a relatively better perfor-
mance than other classifiers. The DT classifier obtained the lowest F-score, whereas the
KNN and NB produced average results among all the classifiers. The RF was marginally
better than the DT in terms of the F-score.

The FPR is an important metric, as the fake news being tagged as true by the model
could have grave consequences on public health. Therefore, a low FPR is preferable in the
fake news detection task. The NB classifier, despite having average accuracy among all the
classifiers, has the lowest FPR of 33 percent. This means that if a news article is labeled as
true by the model, then there is a 33 percent chance that it was a fake news article. Since the
RF and DT are both tree-based models, RF has the highest FPR among all models, whereas
DT has comparatively much less FPR. The SVM, despite having the highest accuracy value,
does not have the lowest FPR. Other remaining classifiers have an FPR value between 40 to
70 percent, which is quite high. The ROC plot shown in Figure 2 indicates that the SVM,
LR and RF are far better in their predictions than the remaining models.

Figure 2. ROC curves of ML classifiers on COVID-19 Fake News dataset.

Now we discuss the performance of the DL models. The DL model does not have any
significant performance improvements over the conventional ML model. Table 4 compares
the performance of the CNN and LSTM models. Figures 3 and 4 show the ROC curves of
CNN and LSTM, respectively. Both of the models achieved almost the same performance
for each of the evaluation metrics. The DL models could not outperform the ML models in
all evaluation metrics. It indicates that the application of the word embedding technique
for feature representation does not have any effect on the classification performance of
our dataset. Moreover, training the DL models is also a computationally expensive task
compared to the machine learning models in terms of time and memory usage. Therefore,
in our evaluation of the intelligent techniques for predicting fake news on COVID-19, the
machine learning models would be a better choice than the deep learning models.
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Table 4. Classification performance of DL models on COVID-19 Fake News dataset.

Classifier CNN LSTM

Accuracy 0.76 0.75
Precision 0.77 0.77

Recall 0.89 0.88
FPR 0.50 0.50

Rate of Misclassification 0.24 0.25
F-score 0.83 0.82

Figure 3. ROC curve of CNN on COVID-19 Fake News dataset.

Figure 4. ROC curve of LSTM on COVID-19 Fake News dataset.
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5.2. Constraint@AAAI 2021 Dataset

The performance of the ML classifiers on the Constraint@AAAI 2021 dataset is shown
in Table 5. The LR classifier consistently produced the highest classification accuracy,
followed by the tree-based classifiers i.e., DT and RF. Contrary, to the values in Table 3, the
SVM gets the lowest accuracy among all the models. The NB again produces the relatively
average results among all the models. The KNN obtained similar accuracy, however, it
was relatively much less compared to the highest accuracy obtained by the LR. The same
pattern can be seen to be followed by the classifiers in terms of the F-score. The LR achieves
the highest F-score, followed by the RF and DT. Again, the SVM obtained the lowest
F-score. The bad performance of the SVM may be due to the relatively larger size of the
Constraint@AAAI 2021 dataset than the COVID-19 Fake News dataset, as SVMs are not
suitable for large datasets [44]. Moreover, we did not perform any feature selection on the
dataset, which resulted in a substantial set of training features to be handled by the SVM.

Table 5. Classification performance of ML classifiers on Constraint@AAAI 2021 dataset.

Classifier DT KNN LR NB RF SVM

Accuracy 0.87 0.76 0.91 0.81 0.88 0.65
Precision 0.91 0.96 0.93 0.95 0.88 0.60

Recall 0.84 0.58 0.90 0.68 0.88 0.99
FPR 0.09 0.03 0.08 0.04 0.13 0.72

Rate of Misclassification 0.13 0.24 0.09 0.19 0.12 0.35
F-score 0.87 0.72 0.92 0.80 0.88 0.75

The KNN classifier obtained the lowest FPR at 3 percent, followed by the NB at
4 percent. The NB classifier consistently obtained lower FPR values on both of the datasets.
The SVM also produced bad results in terms of FPR values. The ROC plot shown in Figure 5
indicates that the LR and RF are far better in their predictions than the remaining models.

Figure 5. ROC curves of ML classifiers on Constraint@AAAI 2021 dataset.

Table 6 shows the performance of the DL model on the Constraint@AAAI 2021 dataset.
Figures 6 and 7 show the ROC curves of the CNN and LSTM, respectively. The DL models
once again could not surpass the performance of the ML models on any of the evalu-
ation metrics. The LSTM was shown to give similar results as the CNN for detecting
fake news [21], but in our results the LSTM performed marginally better than the CNN.
However, the LSTM achieved a respectable FPR value of 7 percent, which is comparable
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with the ML models. Contrary to the results in [20], the application of the computation-
ally expensive word embedding technique could not produce better results for the deep
learning classifiers.

Table 6. Classification performance of DL models on Constraint@AAAI 2021 dataset.

Classifier CNN LSTM

Accuracy 0.81 0.84
Precision 0.83 0.93

Recall 0.77 0.72
FPR 0.17 0.07

Rate of Misclassification 0.19 0.16
F-score 0.80 0.81

Figure 6. ROC curve of CNN on Constraint@AAAI 2021 dataset.

Figure 7. ROC curve of LSTM on Constraint@AAAI 2021 dataset.
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Overall, the NB and LR classifiers showed a consistent performance on both datasets
in terms of FPR and accuracy score, respectively. In fact, the existing study [11,16] also
confirmed that the LR classifier obtained good accuracy for prediction of fake news. Table 7
shows the comparison of the DL classifiers with the NB and LR classifiers in terms of FPR
and classification accuracy on the two datasets. As the NB and LR classifiers are both simple,
they can be used for the task of predicting fake news. Whereas the DL classifiers could not
provide any significant improvement in performance, and took much computational time
for the training phase compared to the LR and NB classifiers. Since the authors of fake news
tend to frequently use similar words and phrases [45], the content-based representation of
text (BoW) in the machine learning models produced better results than the context-based
representation in the deep learning models.

Table 7. Comparison of DL and ML classifiers.

Classifiers COVID-19 Fake News Dataset [28] Constraint@AAAI 2021 Dataset [30]

Accuracy FPR Accuracy FPR

CNN 0.76 0.50 0.81 0.17
LSTM 0.75 0.50 0.84 0.07

LR 0.79 0.45 0.91 0.08
NB 0.75 0.33 0.81 0.04

6. Conclusions

Fake news has become a challenging task for government agencies while handling
the COVID-19 epidemic. The spread of unverified news regarding the novel virus has
aggravated the pandemic situation around the world. Therefore, curbing this type of
misinformation has become inevitable during these challenging times. In this work, we
have analyzed several ML and DL models for detecting fake news content. The experi-
ments were performed on two publicly available datasets containing fake news articles on
COVID-19. The classification models were evaluated on different evaluation metrics. The
LR and NB models were the best performing among all models in terms of accuracy and
FPR, respectively. As discussed in the related work section, the LR classifier has shown a
good classification performance. Therefore, the LR model could be taken up to develop
advanced models, supplemented with feature engineering techniques for enhanced results.
However, the DL models did not show any significant performance improvement. It was
also observed that adding a layer of word embedding in the DL models did not show any
significant performance improvement over the ML models.

There are some limitations to this work which can be taken into account in future
works. In this work, we have not applied any feature selection technique. The reduced
feature set may further improve the classification performance. Secondly, we have not
explored the transformer-based deep learning models that are known for their excellent
performance. The above limitations could be addressed to evaluate their effects on the
overall performance of the models. In future works, the results obtained from these
experiments could be utilized to build classification models with a greater improvement
in performance. Moreover, the ensemble model could also be applied to further enhance
the results.
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