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Abstract: There are different bovine infectious diseases that show economic losses and social problems
in various sectors of the economy. Most of the studies are focused on some diseases (for example,
tuberculosis, salmonellosis, and brucellosis), but there are few studies on other diseases which
are not officially controlled but also have an impact on the economy. This work is a systematic
literature review on models (as a theoretical scheme, generally in mathematical form) used in the
epidemiological analysis of bovine infectious diseases in the dairy farming sector. In this systematic
literature review, criteria were defined for cattle, models, and infectious diseases to select articles
on Scopus, IEEE, Xplorer, and ACM databases. The relations between the found models (model
type, function and the proposed objective in each work) and the bovine infectious diseases, and
the different techniques used and the works over infectious disease in humans, are presented. The
outcomes obtained in this systematic literature review provide the state-of-the-art inputs for research
on models for the epidemiological analysis of infectious bovine diseases. As a consequence of these
outcomes, this work also presents an approach of EiBeLec, which is an adaptive and predictive system
for the bovine ecosystem, combining a prediction model that uses machine-learning techniques and
an adaptive model that adapts the information presented to end users.

Keywords: bovine; computer applications; epidemiology; infectious diseases; machine learning

1. Introduction

Human health is a subject of vital importance across the world and is closely related
to animal health [1,2]. Animal health has generated worldwide movements that involve
both governments and organizations from different sectors. According to the Food and
Agriculture Organization of the United Nations (FAO) [3], changes in livestock production
increase the potential for new pathogens to emerge, grow, and spread from animals to
humans globally. Healthy animals are closely related to healthy people and a healthy
environment [3]. It has long been known that 60% of known infectious human diseases are
of animal origin (domestic or wild animals), as well as 75% of emerging human diseases [4].
Furthermore, the regular feeding of populations with noble proteins derived from milk,
egg, or meat is vital, and their lack constitutes a public health problem [3]. Experts in [3,5]
indicate that 20% of global production is lost due to diseases that affect animals, suggesting
that even animal diseases that are non-contagious to humans could generate serious
public health problems due to the deprivation that they can cause [5]. These topics are
addressed from different fields of science such as medicine, veterinary medicine, economics,
informatics, statistics, and mathematics, generating new fields of research and development
that seek to mitigate losses and join efforts to improve human health welfare.
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For this systematic literature review, it was assumed that a ‘model’ is a representation
of reality that is communicated through drawings, graphs, or mathematical expressions.
Mathematical models are scientific models that use mathematical formalism to express
relationships, variables, parameters, relationships between variables, operations, and
entities to study behaviors of complex systems in situations that are difficult to observe [6].

Because of this, models play an important role in prediction, evaluation, and control
of possible outbreaks of infectious diseases in humans and cattle, being developed by
researchers from different areas of knowledge and who use technologies to find solutions
for the various problems that are generated.

Models have been in use in health, education, and agricultural business for several
years. There is a growing number of models that involve more themes, characteristics, users,
etc. Each area requires the use of methodologies [7], strategies, processes, and algorithms
that provide adequate support so that the models can reach their intended purpose.

Infectious diseases can be transmitted between individuals [8,9], whereas non-infectious
diseases (such as arthritis) can be developed throughout an individual’s life [10]. In the
epidemiology of infectious diseases, the main risk factor for contracting them is the presence
of infectious cases in the local population. This is reflected in the mathematical models
presented in [11] for tuberculosis, in [9] for influenza, and in [12] for ebola. In the case of
cattle, infectious diseases (such as bovine viral diarrhea—DVB [13], bovine leukosis [14],
tuberculosis [10], and neospora [15]) can be transmitted vertically when a cow becomes
pregnant and transmits the infection to the calf, or horizontally when the bovine ingests
contaminated food or water, or has contact with infected animals [16,17]. The pathogens
of these diseases use different means for transmission. They are endemic diseases, and
diagnosis is not easy since they require laboratory tests [15] to confirm the presence of the
virus, which generates costs for farmers.

As mentioned in [7], Daniel Bernoulli in [18] proposed an epidemiological model for
smallpox that provided the basis for working with mathematical models in epidemiol-
ogy [1,9,19]. On the other hand, Kermack and McKendrick [6], as well as MacDonald and
Enko [20], show significant advances that are still in use today in epidemiologic studies. In
epidemiology, models can be used to understand the dynamics of the epidemic [21] and the
spread of infectious diseases by working with scattered observations [22] for individual-
level knowledge of epidemiological factors, for inference about missing data, and for
the incorporation of the latest information. These models can clarify how the disease is
spreading and provide timely guidance to policymakers [23]. The term ‘computational
epidemiology’ is often used when computer tools are used, such as in [24–27].

Epidemiological analysis involves applying statistical analyses, mathematical formu-
las, and other types of techniques to describe the epidemiological characteristics (e.g., age
distribution, gender, occupation, and pathogen) of the emergence of a disease [28,29], the
incidence of the disease by age and gender, and the total incidence of cases in the pop-
ulation during the study period, as well as for the analysis of mathematical models to
describe the seasonal distribution of cases, to conduct risk factor analysis, to identify and
diagnose health problems on farms, and to assist in decision-making for disease prevention
and control [30].

In human health, computer tools have been developed to maintain patients’ medical
records, medication records, billing records, and logistics information. There are also
investigations where they have used informatics for the diagnosis of diseases, the organi-
zation of treatments and decision-making (such as in the choice of medications) [30], the
detection, analysis, prevention, and simulation of diseases [31], the generation of public
health policies [32], and the management of diagnostic images using machine-learning
algorithms [33]. In veterinary medicine, the use of computer tools also has been subject to
research and advances. In [34], an expert system is used to evaluate the eradication of a
disease, and in [35], machine-learning techniques are used to estimate the probability of
infectious disease transmission via the movement of animals between farms.
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This paper presents a systematic literature review relating the prediction models,
the epidemiological analysis of infectious bovine diseases, and the set of procedures and
resources (which will be called techniques) that are used to represent the epidemiological
analysis. The proposal of an adaptive and predictive system for the bovine ecosystem is
also briefly presented. It is worth mentioning that when performing a systematic literature
review, some of the results are works on infectious diseases in humans.

Therefore, the following research questions were posed:

i. In bovine epidemiological analysis, what are the infectious diseases, the models, the
techniques, and the approaches of the works found in the literature?

ii. For epidemiological analysis in animals, what are the infectious diseases, models, and
techniques found in the literature?

iii. In human epidemiological analysis, what are the techniques and models found in the
literature, and which of them are applicable to bovine epidemiological analysis?

To answer these questions, in the articles selected for the systematic literature review,
a number of criteria have been found that are explained in the corresponding section, and
based on these criteria, the main topics of this article will be explained.

This article is structured as follows. Section 2 explains the method used to select the
articles that were considered for the systematic literature review carried out in this work.
Section 3 presents the results of the systematic literature review and the article classification
system. The contributions of the systematic literature review are presented in Section 4. In
Section 5, an approach to EiBeLec is presented, which is an adaptive and predictive system
for the bovine ecosystem. Finally, Section 6 presents the conclusions and implications for
future work.

2. Method for Systematic Literature Review

For this systematic literature review, we consider the proposal of [36], where six
steps are suggested (data recovery, pre-processing, creating and normalizing the network,
creating scientific maps, analysis and visualization of the results) to analyze a field of
research and to detect and visualize themes and subtopics in order to analyze and track
evolution over a continuous period of time. To perform the steps discussed in this work,
specialized software will be considered to help in the relation of keywords, query criteria,
generation of networks, and analysis related to the query criteria and specific periods.

In [37], nine tools designed for the analysis of scientific maps were studied, evaluating
five aspects: preprocessing methods, bibliometric networks, normalization measures, types
of analysis allowed to be carried out, and the documentation and help available on the tool.
Considering the results of this analysis, SciMAT [38] was used in this work. The objective
of this tool is the analysis of scientific maps, allowing study of the evolution of the topics
over periods of time, incorporating processing techniques to detect similar elements, and
thus, obtaining the respective networks, the relations of the topics, and finally, reaching the
most representative articles. SciMAT can organize the information by groups of authors,
references, or keywords, detecting duplicates and misspelled words. In [36], the six steps
to be performed when using this tool are explained. In this work, the information was
organized by groups of words, making the combination of the words, their co-occurrence,
and their frequency established for each word. The following subsections explain how
these six steps were developed in this work.

2.1. Data Retrieval

This step starts by selecting the bibliographic databases to make the queries. In this
case, Scopus, IEEE Xplorer, and ACM were considered for the period 2010–2022. After-
wards, several consultations were performed with different criteria such as “simulation”,
“diseases”, “animals”, “infectious disease”, “bovine”, “Cattle”, “cow”, “mathematical
model”, and “model”. Based on the results found in these searches, it was concluded that
the systematic literature review process would be conducted with the search equation
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‘(TITLE-ABS-KEY (“infectious diseases”) AND (“models”) AND (“bovines” OR “cattle” OR
“cow”)) AND PUBYEAR > 2010’. This search was performed in each of the three databases.

2.2. Pre-Processing

From the queries made in the three bibliographic databases, the files were downloaded
(in RIS format) with the following fields: title, keywords, abstract, authors, and year of
publication. These files were brought into the SciMAT tool.

Data usually have errors, misspellings, and wrong author names. In some cases, it is
necessary to add to or complete the information. For these reasons, the pre-processing step
is necessary to clean the collected data and, in this way, improve their quality [37].

In this case three processes are considered to clean the data:

• Unification of duplicate or erroneously written elements. SciMAT allows the researcher
to apply a filter by which it finds similar words and creates groups of these words.

• The temporal division of the data in different time periods. This enables analysis of
the evolution of the topic.

• The reduction of data from the selection of the most cited documents and the most
frequent words.

At the end of these processes, the most significant data and the relationships of the
most important units of analysis remain.

2.3. Create and Normalize the Network

The objective of this step is to integrate the search criteria, the relations that were
found, and the topics and subtopics so that, with this information, the search is refined. The
process for making the network in SciMAT requires that the information be organized by
periods. Considering that the searches covered years 2010 to 2022, the periods considered
were: 2010–2012, 2013–2015, 2016–2018, and 2019–2022; the unit of analysis was ‘keywords’,
the reduction of the data was defined by considering the elements that appear in at least
three documents, and the way of constructing the network was by co-occurrence of words.
SciMAT allows the user to choose between different measures of similarity (association
strength, equivalence index, inclusion index, Jaccard index, and Salton’s cosine) [37]. In
this case, the equivalence index with a value equal to 1 was used as a measure of similarity
in normalization.

2.4. Scientific Map

Two aspects must be considered to build the map:

• Reduction of the dimensionality of the data to make results more understandable.
SciMAT allows data to be filtered using a minimum frequency threshold. In other
words, only the element that appears in almost n documents over a certain period will
be considered.

• Application of clustering algorithms, fulfilling the condition of having great internal
cohesion between elements. In this case, the Simple Centers algorithm of SciMAT was
used to detect the groups.

It is worth mentioning that the information obtained and the type of map may vary
depending on the type of technique used to generate the scientific map. SciMAT adds the
number of documents by default as a performance measure. In addition, citations from a
set of documents are used to assess the quality and impact of the groups. Figure 1 shows
part of the results of the scientific map generated by SciMAT.
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Figure 1. Thematic importance of the relation of infectious diseases and models (term 2010–2022).

2.5. Visualization

Figure 1 shows the most outstanding themes in each analysis period. The size of the
sphere represents the importance of each topic. Some are repeated in different periods, but
others are not. The lines that go from one period to another indicate the relation between
the themes. The dashed lines show a weak relation, the solid lines show a standard relation,
and the thick solid lines show a strong relation.

2.6. Analysis

Starting from the search equation in the databases using the SciMAT tool, the scientific
map is formed, which is made from several graphs. Figure 1 is one of them, and in each
period, the keywords are not the same. New topics appear with their associated keywords
and others disappear. On the other hand, there is a subset of keywords that were kept.

These results demonstrate the importance and the relation between keyword groups
and research topics. Initially, Figure 1 shows that in the different periods, the most impor-
tant topics are epidemiology, diseases, mathematical models, and cattle. In the four periods
considered, there is a relationship of models with different themes. However, the relation
between these issues and diseases shows that there are few works on these topics.

Furthermore, it can be concluded that these results generate workspaces in which new
relationships can be proposed as guides for future work with topics that are not present
and topics that do not have a relation. In the studies considered, there is no evidence of
the use of machine-learning algorithms to perform epidemiological analysis of infectious
diseases in cattle.

3. Results of the Systematic Literature Review and Article Classification System

When searching for articles in the databases, a total of 1721 documents were obtained.
Applying the criteria established in the search equation to filter in the SciMAT tool resulted
in 271 articles meeting these criteria. Since the keywords used in the search may not be
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totally related to the main topics of the research, a new filter is applied [29], in this case
manually, as can be seen in the criteria setting, which consists of analyzing the title, the
abstract, the keywords, and the conclusions, to determine which articles are directly related
to the research topics. After completing this step, the selected articles were reduced to 99.
Figure 2 illustrates the process followed to select the articles [39].
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To classify the 99 articles, 21 criteria organized into five groups (Purpose or Objective,
Application Environment, Epidemiological Analysis, Techniques Used, and Software) were
considered. These criteria were considered because they are mentioned in the systematic
literature review of articles and are related to the research topics, organized according to
whether the infectious diseases are in cattle, in other animals, or in humans. Afterwards,
the groups that were considered are explained and the results of comparing the articles by
criteria in each group are presented.

Purpose: Table 1 shows the result of classifying the articles according to the five criteria
that help answer the question, “What is the main purpose or objective of the work?”

Table 1. Result of comparing related job–purpose or objective group.

Purpose or Objective Bovine Animals Humans Total

Behavioral analysis [19,32,40–55] [23,56,57] [12,58–63] 28

Disease diagnosis [8,14,22,41,48,49,52,64–73] [74] [28,31,33,59,61,62,75–87] 37

Variable analysis [13,34,46,50,53,71,88–93] [94–96] [60,87,97] 18

Analysis of movement or
displacement of hosts (animal

where a parasite is housed)
that have the disease

[11,25,45,49,52,98–102] [35] [12,103] 14

Disease spread [8,19,22,23,32,34,43–47,53,54,67–70,88,98,100,104–107] [56,57,74,95,96,108–112] [9,12,28,59,61,76,81–83,97,113–117] 52

Application environment: It is necessary to know if the results of the analyzed works are
addressed to expert users or to the public, in which scenarios the disease is studied, and if
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there is any evidence that the results obtained have been applied in a real case. As all the
works are not directed to the same users and scenarios, three criteria were defined; Table 2
presents the result of the classification.

Table 2. Result of comparing related job–application environment group.

Application Environment Bovine Animals Humans Total

Recipient: expert users, the public, or
both [13,14,22,32,34,45–49,64,68,88,92,93,98–100,104,106,118,119] [23,56,57,74,94–96,108–110] [9,12,28,31,59–63,75–81,83,97,114–117] 56

Setting (hospital, ranch, farm, city, etc.) [11,40,41,44,47,66,67,89,90,104,118,120] [35,56,108,111] [28,77,97] 19

Applications in a real case [8,22,41,53,65,70,88,105,121] [74] [9,33,59,61,62,81,83,85] 18

Epidemiological analysis: Epidemiological analysis is understood as the study of the
distribution of diseases. In other words, epidemiology describes the distribution of the
disease in terms of the agents involved, describes the places and times in which it occurs,
and studies the causal or risk factors for these diseases [27]. For the epidemiological analysis
of bovine infectious diseases, the five criteria shown in Table 3 are taken into account.

Table 3. Result of comparing related job–epidemiological analysis group.

Epidemiological
Analysis Bovine Animals Humans Total

Demographic [21,22,25,32,34,41,45–47,49–51,53,64,66,68,69,71,72,88,91,98,100,104,105,107,118,122,123] [23,35,56,57,108,109,
111] [9,12,28,33,60,62,75,76,80,83–85,87,97,113,116,117] 56

Aspects related to
farms, pens, and

places where each
host with the disease

is found

[8,11,14,19,21,22,34,43–45,48,49,51,53,55,67,69,71,88–91,98–101,104,105,118,120,123] [23,35,57,74,96,111] [116] 41

Relationship of
climate, temperature,

rain and droughts
[54,93,118] [111,112] [33,82,84,86,115] 10

Age, gender, race,
symptoms, and risk

of the disease
[8,13,21,25,34,44,46,48,50,52,54,55,64,68,70,90,100,102,106,120,123,124] [56,111] [7,9,28,33,59–62,77,79,80,83,84,86,97,103,113,114,116] 48

Clinical data [41,65,105,119] [31,33,63,76,77,83,87,97,113,115] 15

Techniques used: refers to the mathematical process or algorithms used to develop the
objective of the work. Table 4 shows the works according to the five techniques used:

Table 4. Result of comparing related job–techniques used group.

Techniques Used Bovine Animals Humans Total

Bayesian networks [44,65,71,89,99,104,106,119] [56,111] [58] 12

Markov chains [22,41,50,53,64,66,70] [60,78,79,84,97,114] 13

Logistic regression [14,19,54,67,120,123] [108,111] [31,75] 10

Differential equations [19,25,32,34,43,49,52–
55,68,72,88,90,105,107,118,121,125] [23,35,57,94–96,109,110] [12,28,61,62,117] 31

Contact networks [8,11,21,34,45,49,52,69,91,98,100,101] [35] [9,76,80–82,85] 19

Machine learning [13,40,92,93,124] [35,74,112] [33,59,77,80,83,84,86,103,113,115,116] 20

Software: software is used to complement the epidemiological analysis. In this group, it is
considered whether the used software was specifically developed for this or if a commercial
software was used (Table 5).

Table 5. Result of comparing related job–software group.

Software Bovine Animals Humans Total

Use of commercial software [13,14,34,40,43,45,46,48,49,51,52,64,68,91–93,102,107,119] [56,57,96] [12,33,63,75,76,85,86,97,103,116,117] 36

Specific purpose software development [11,21,48,100] [9,28,31,81,84,87,97,113–115] 14

From the systematic literature review and the 21 criteria analyzed, it can be verified
that no studies that consider the spread of infectious diseases in cattle using machine-
learning techniques to relate aspects of the epidemiological analysis (race, gender, age,
contact between animal species and clinical data) were found.
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The results presented in the tables, after performing the systematic literature review
and verifying the relation with the criteria, are used to answer the questions, formulated in
the introduction, in the following section.

4. Contributions of the Systematic Literature Review

From the analysis of the 99 selected articles, the research questions proposed and
previously mentioned will be answered.

4.1. In the Bovine Epidemiological Analysis, What Are the Infectious Diseases, the Models, the
Techniques, and the Approach of the Works Found in the Literature?

In the case of bovines, the infectious diseases that were considered for the analysis
(assuming that these are diseases present in many countries [42] and/or that generate social
problems [105], economic losses [98], health problems in humans [48], low quality in milk
and meat [13,43,120], and restrictions in livestock movement [99]) are tuberculosis [46,65,89],
salmonella [69,126], brucellosis [51,55,101], bovine viral diarrhea (BVD) [13,14,32], foot and
mouth disease [41,50,91], and bovine mastitis [47,90]. Of the works, 50% are aimed at
personnel who are experts in bovine infectious diseases. Only four works (8%) develop
software to help achieve the objective, and eighteen works (33.9%) use computer tools to
analyze the information.

Table 4 shows the relation of the works according to the technique used, such as
Bayesian networks [46–48,63,73,78], Markov chains [22,41,45,49,67,68,74], logistic regres-
sion [14,19,50–52,75], differential equations [19,25,31,33,43,54–56,59,60,62,65,69,76,77,79,115],
contact networks [19,62,64,70], and machine learning [13,92,93]. The most-used technique is
differential equations, while machine learning is presented in five jobs. In these works, these
techniques were used in different ways: in some cases for disease prediction, in other cases
to evaluate the vaccination behavior in herds [98,107], to evaluate the behavior of livestock
when moved from one farm to another [11,45], or to detect and classify diseases with images
via machine learning [40,124].

The focus of these works is diverse. For example, there is analysis of the behavior of
cattle herds inside farms and the movement of livestock between farms, analysis of the effects
of incomplete vaccination on cycles, simulation of the spread of a disease, and analysis of the
practices carried out by farmers or breeders in selected farms. Data are based on variables
related to vaccination, the study of pathogens, the spread of diseases by contact with wildlife,
the number of infected animals, and the symptoms presented. Surveys [90,105], the results
of previous studies [46,64], and systematic literature review [73,118] are used to collect the
information, and in very few cases, studies use the information systems of government
entities [69,123] or associations with updated information [118].

It is noteworthy that most of these works are focused on the prediction of diseases
based on behavior and disease diagnosis [19,48,55]. These are theoretical works where the
results are presented in tables and graphs that must be interpreted by experts who know
about veterinary medicine.

The analysis performed helps to characterize bovine infectious diseases, identify
models, and the criteria that must be considered for the selection of the model, depending
on the disease. On the other hand, as can be seen in Table 3, these studies consider neither
the temperatures of different geographical areas nor rain and drought. Furthermore, they
do not relate the results of clinical data with other criteria of the epidemiological analysis.

One drawback in bovine infectious disease research is the lack of structured and
updated information, since capturing information in animals is expensive and it is not
easy to update. In many works, including [61,67,100,106], it was found that in order to
perform the simulations, synthetic populations must be generated from seed data; with
each simulation run, the system must continue to be fed.

One challenge for models for epidemiological analysis is the need for a proactive
early warning disease detection system that can detect, identify, and contain pathogens
with epidemic potential before spreading [127]. Another important factor is the weather,
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particularly due to changes that have happened and will continue to happen in the future,
such as rising temperatures. Changes can trigger the introduction and spread of many seri-
ous, climate-sensitive infectious diseases [126], such as mosquito-borne diseases including
malaria, dengue, and viral encephalitis.

4.2. For the Epidemiological Analysis in Animals, What Are the Infectious Diseases, the Models,
and the Techniques Found in the Literature?

Traditional techniques such as differential equations [23,80–82,85,86,88], logistic re-
gression [108,111], and Bayesian networks have been identified [56], and they are still
important for creating models that simulate infectious diseases and also for simulating
animal behavior in their movement between farms and cities. The use of these techniques,
described in the different works, shows the types of variables that must be defined, what
should be considered in each case, and what is the most appropriate technique considering
the objective of the work and the disease. Also, the use of artificial intelligence techniques,
especially machine learning [32,85,86], is gaining strength as a means to generate data and
for the capture, analysis, and processing of information.

Table 1 shows some of the different works that have generated significant contributions
in the knowledge and behavior of infectious diseases and in the identification of variables
that must be considered to perform simulations of a disease, such as movement and
restrictions that must be taken, as well as the needs that arise in each job to achieve
the stated objectives. These works are not oriented toward decision-making and do not
consider end users (Table 2), but use traditional techniques and are aimed at simulating
the transmission of parasites. Furthermore, the development of computer tools for the
simulation of infectious diseases is deficient because there are no systems that contain
updated information since it is not reported [118]; these are not used in disease surveillance
and these systems are not open to the public in general. The tools developed are for expert
users with knowledge of infectious diseases [56] or topics related to the consequences of
the spread of infectious diseases [57].

4.3. In Human Epidemiological Analysis, What Are the Techniques and Models Found in the
Literature and Which of Them Are Applicable to Bovine Epidemiological Analysis?

Study of infectious diseases in humans works from different approaches, and countries
throughout the world are working to find solutions to the different problems that arise
from the epidemics and pandemics of these emerging and re-emerging diseases [7]. Cases
such as AIDS [7,10], H1N1 [58,93,99,100], dengue [2], malaria [49], and COVID-19 [63,117]
have been studied as diseases that cause death to millions of people worldwide and that
generate economic losses.

It was found that these works are addressed to experts with knowledge about the
diagnosis, treatment, and risks of diseases [59]. It was also evidenced that the information
is structured to cover the main criteria of the epidemiological analysis [2].

The most-used techniques in these works are Markov chains [91,92,96,97,108], dif-
ferential equations [28,110,111], contact networks [9,92,93,95,98], and machine-learning
algorithms [93,96,99,101,102,104,105,107,113,115]. Different studies use mathematical mod-
els that range from statistics on social media [24] to machine learning [103] and have
different applications in the health field.

To support the epidemiology of infectious diseases in humans, there are computational
tools that present the results of the analysis performed, as shown in Table 5. These works
considered various aspects, such as the type of application, the users who use the tool, the
disease, etc.

Some of these works are described below:

• A simulation tool where an infectious disease is programmed, and the tool’s response
is the location of the clinical facilities able to attend to it [97]. The C ++ programming
language was used to develop the tool. The spread model is used to create hypothetical
large-scale health events to be used by officials to plan events. To create a disease
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spread and facility location simulation, the researcher can run the disease spread and
clinical facility location models simultaneously and seamlessly.

• ISIS is a web browser based on a modeling and decision environment for public
health epidemiologists [81]. Its components are a web user interface, databases, and
models that connect to the user through middleware, the rules and models to generate
the simulations, and a structured and semi-structured database management system.
One aspect to highlight is the Synthetic Information Library—SIL, which contains
all the information necessary to create, execute, and analyze experiments. In this
case, they use machine learning methods to manage complex unstructured and semi-
structured data.

• EpiSimdemics is one of the first algorithms to simulate epidemics in large, real social
networks [82]. This article defines computational epidemiology as the development
and use of computer models to understand the spatio-temporal spread of the disease
through populations. The main design objective of EpiSimdemics is to explore the
effects of complex pharmaceutical and non-pharmaceutical interventions on the spread
of infectious diseases through realistic populations. In this case, they use a synthetic
population that is generated from the United States census.

• Epinome is a tool that allows users to reproduce simulation scenarios, investigate a
deployment outbreak using a variety of visualization tools, and direct the simulation
by implementing different public health policies at predefined decision points [114].
Epinome records user actions—for example, tool selection, interactions with each
tool, and policy changes—and stores them in a database for later analysis. A psycho-
logical team can use that information to study strategies that users use to search for
information on diseases and possible outbreaks.

• MiTAP was developed based on natural language for the monitoring of infectious
diseases [83]. It captures information from different sources such as emails, search
engines, news, etc. During the processing phase, information is normalized using
machine learning rules. It is a tool that helps reduce the information overload that
results from staying informed from different sources.

• PopHT is a semantic web application that automates the processes of integration and
extraction of massive amounts of data from different distributed sources to support
the measurement and monitoring of the health system [31]. The main objective of
this project is the integration of heterogeneous information: public health policies,
information in health centers, and information on diseases.

• Spatiotemporal Epidemiological Modeler (STEM) is a platform developed to create
spatial and temporal models of infectious diseases in humans. It uses geographic,
population, demographic data, transportation information, and basic disease models.
The platform is based on systems of differential equations [84]. In STEM, the researcher
starts by composing a scenario and reporting information on the infected population,
the city where the population is located, and the target city for evaluation. The models
generated facilitate study of the spread of infectious diseases. However, there is no
evidence that they consider the handling of contextual variables, and there is no user
classification for the management of the application.

These works present a graphical interface to capture information and present the
results of the queries. The results are presented in the form of tables and graphs. They are
applications for users who are experts in the field and who have knowledge in the analysis
of epidemiological data. They are oriented toward infectious diseases in humans, and the
data used are from censuses that have been carried out in different years.

On the other hand, in some studies [93,104,112], it was shown that the use of tools
allows description of the progress of a disease using models. These models allow clinical
and expert information to be added so that researchers and decision-makers can forecast
disease progression and implement control strategies.
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The computer tools developed are found within the group of information systems for
research on topics related to the management of the context of patients and diseases and
the different users involved in the processes.

Human health research is aspiring to conduct animal health projects. It is important
to mention that research conducted in human health serves as a basis for working with
animals, and in different investigations, this research offers a reference for use of the models,
techniques, computer tools, and strategies that were employed in the capture and analysis
of information.

For these reasons, some contributions from these works can be used in bovine epi-
demiological analysis:

• Integration of epidemiological information with clustering techniques to determine
potential areas of disease outbreaks based on daily surveillance information [2].

• Analysis of the mobility networks of people with a disease [126] allows the generation
of data that can reconstruct the transmission path of the disease. Each node represents a
location (for example, a farm) in space. The links between these nodes are connections
between these locations. In contact networks, the nodes are individuals and the links
are contacts that, therefore, represent possible transmission routes between individuals
(for example, by showing how much time infected people spend together).

• The speed at which diseases travel through populations depends not only on the
effective distance between locations [103], but also on how the disease is transmitted
between people in those locations. This allows us to understand more about the
transmission of diseases.

• The use of machine learning in human health has different approaches. For example,
one study predicted the incidence of salmonellosis and its transmission from animals
to humans by means of a neural network [116]. In the diagnosis of diseases such as
cancer [85] and diabetes [113], the use of machine learning is more accurate because it
considers the different symptoms of the patients with a greater quantity and quality
of data.

• Machine-learning algorithms are used to analyze and interpret large amounts of data
in an automated way, delivering accurate and actionable clinical information [95,98].

The results of these studies generate new treatments and different ways of controlling
epidemics that allow us to learn techniques and algorithms and develop computer appli-
cations [81] and disease control strategies [23,113]. They can be studied and adjusted for
animal diseases to make developments in line with this research area.

5. EiBeLec: Predictive and Adaptative System

In the epidemiological analysis for infectious diseases in humans, machine-learning al-
gorithms are being used in the diagnosis of diseases, in the simulation of possible outbreaks,
and to process more data and obtain better results in diagnosis. Furthermore, models re-
lated to Markov chains, Bayesian networks, and differential equations continue to be used
to diagnose diseases, detect symptoms, relate diseases, and seek treatments. In relation to
computer tools, these are addressed to users who are experts in epidemiological analysis.

On the other hand, in the epidemiological analysis of cattle, the models used to
simulate the presence of diseases are based on differential equations, Markov chains, and
Bayesian networks, while in the case of livestock movement, contact networks are used. In
these cases, the development of software to complement these projects is scarce and the
way of presenting results is theoretical.

This work, in performing a systematic literature review, analyzing the results, and
reading the related works, presents a first approximation of an adaptive and predictive
system for the bovine ecosystem, which we have called EiBeLec.

An opportunity was found to build a system that considers [16,17]: (i) the process of
prediction and simulation of the spread of infectious diseases that are not subject to official
control affecting the ecosystem; (ii) the use of machine-learning algorithms in the predictive
model; (iii) the actors of the bovine ecosystem and their preferences; (iv) an adaptation
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model that contains the profile of the disease, the context, and the user; and (v) the visual-
ization of information considering the actors. Moreover, EiBeLec offers various services:
(i) the map referencing service; (ii) the route service; and (iii) the notification service.

This will be a decision-making support system that will allow for the capture of
information from the user’s context for later processing. The visualization of the results
will be adapted to the actor who requires them and will allow for better interpretation by
easing decision-making. It is important to mention that the decision-maker is the actor, not
the system.

The proposed adaptive and predictive system is made up of different components [16,17].
Figure 3 shows the general structure and the relationships between the components: (i) actors
in the dairy chain in the department of Boyacá who fulfill two roles: that of users who are
providing information and that of users who are using the system; (ii) information sources
that supply the system with data (variables related to livestock, infectious diseases, and the
actors involved in the bovine ecosystem) and relationships; (iii) the context, whose data are
stored in three repositories: profiles of the bovine ecosystem, diseases, and actors; (iv) a
predictive model of infectious bovine diseases that will be explained in detail later; (v) an
adaptive model that takes into account the context (actors’ profile, bovine ecosystem profile,
and disease profile) and the results of the predictive model to adapt the information that
is presented to end users through the services that the system offers; and (vi) previously
mentioned services that are used by the end users of the system. Furthermore, each of these
components has subdivisions and activities that complement the system.
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Figure 3. Adaptive and predictive system proposal: EiBeLec.

Through the main themes of the systematic literature review, the defined criteria,
and the analysis that was carried out to answer the research questions, it was observed
that machine-learning algorithms have different types of applications in human health,
but in the case of animals, their use is not very frequent. It has also been observed that
content adaptation is not widely used in the development of information systems. For these
reasons, we propose the development of a predictive and adaptive system that includes:

• A predictive model. Laboratory data on a sample of bovines, among others, may be
available for the prediction of infectious bovine diseases, but the relationships that
may exist between these data and the risk factors of the disease are not known. This
predictive model must integrate clinical laboratory data with data from risk factors
(data preparation), perform a calibration of these data (data calibration), use machine-
learning algorithms for the prediction process, and deliver, via said algorithms, results
to the actors in the bovine ecosystem. Figure 4 shows the information to be presented
to the government actor. In the upper-left part are the positive control (CP) and
the negative control (CN) obtained from the clinical laboratory and the risk factors
obtained through surveys and visits to farms. These are other variables to be validated
in the model. In addition, the map presents the results of the predictive model. In
this case, there are two possible infection outbreaks. The susceptible, exposed, and
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infected values provided by the model are shown in the lower part. These values can
be adjusted to see the behavior of the spread of the disease.

Electronics 2022, 11, x FOR PEER REVIEW  14  of  21 
 

 

farm, etc.) to view information on the presence of the disease and the behavior of its 

spread (see Figure 5). 

 

Figure 4. Government user information presentation module. 

 

Figure 5. Presentation of the information to the livestock user. 

   

Figure 4. Government user information presentation module.

It is important to note that, after building the predictive model, it is necessary to
validate the machine-learning algorithm through experiments aimed at bovine infectious
diseases. The data collected on the diseases are divided into two sets: training and valida-
tion. The largest dataset is used to train the model, and a smaller dataset is used to validate
the model. Finally, to calibrate the model using metrics, the results obtained are analyzed.

• An adaptive model. This takes into account the context (actor profile, bovine ecosystem
profile, and disease profile) and the results of the predictive model to adapt the
information that is presented to end users through the services that the system offers.
In this adaptation model, the actor’s profile is used in order to adapt the content and
the display of the information that will be delivered to end users. For example, a
user with the livestock profile through a service called notification is presented with
information regarding the presence of the disease on his farm and in neighboring
areas, as can be seen in Figure 5. In this case, the red dots indicate where the infected
animals are. In the case of a user with the government profile, by using the service
called ‘contagion’, the system presents the user (without the need to fill out any format)
with a map of the department and the ability to select a desired area (municipality,
farm, etc.) to view information on the presence of the disease and the behavior of its
spread (see Figure 5).
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6. Conclusions and Future Work

Based on the defined criteria and the analysis carried out in each case, it was observed
that the use of models for epidemiological analysis has made many contributions to human
and animal health. The systematic literature review, with the aim of answering the research
questions asked, presented different results, finding works related to human health that
have made advances using machine-learning techniques in the capture, analysis, and
processing of information.

In addition, the use of machine learning to work with variables of diseases in humans
presents proposals for the management of clinical data, relationships between variables,
and models that allow diagnoses of diseases to obtain better results [13].

On the other hand, we note that the application of these studies in bovines is theoretical
and that information is not updated or continuous because there are various drawbacks,
such as the lack of organization in the collection of information and in the reporting of
diseases, and because there is not an adequate characterization of the variables related to
each disease. In this case, the most important advances are in the analysis of the movement
of livestock between farms and cities, since they use contact network techniques as an
innovative means to verify the relationships of livestock, disease, and how infection spreads
in other individuals in the herds.

Furthermore, real-time epidemiology [27] is a rapidly developing area within public
health which seeks to support policymakers in near real time as an epidemic develops.
By applying these techniques in practice, researchers face the usual challenges: noisy and
insufficient data, scarce resources, multiple objective functions, and little time for decision-
making [104]. Solving these problems will require a multidisciplinary approach and close
collaboration between computer scientists, statisticians, public health experts, and policy
analysts [23,27]. Such an approach would make use of mathematical models and computer
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tools to effectively and efficiently manage the information needed today [5,26], and thus
propose solutions to these problems [61].

Finally, a challenge remains in the generation of machine-learning techniques, such as
those used in [101,109], that would enable the design of a model that simulates the behavior
of an infectious bovine disease with consideration for the geographical region, the climate,
the livestock, farm, keeper, and public policymaker context.

To overcome this challenge, a first approximation of an adaptive and predictive system
for the bovine ecosystem, which we have called EiBeLec, has been presented. This system
includes predictive and adaptive characteristics of the proposed system. In relation to
predictability, the developed tool allows integration of the data recorded by the actors
with updated information, which in turn would lead to better predictions and experiments
to support or reject ideas about the behavior of the disease. Adaptability is achieved by
allowing the tool to be configured or adapted for the capture, processing, and analysis of
information and by presentation of the results depending on the context of the user, the
role they play, and the device used.

The limitations of this study include the lack of studies related to the use of the
predictive models in the field of bovine infectious diseases, the small amount of raw data
available, and, thus, decreased accuracy. In some cases, the entire process and development
of computer tools for the analysis of infectious diseases is not reported. This research
will help ranchers at all levels to quickly detect infectious diseases of cattle and receive
treatment at an early stage.

For future work, the development of the predictive and adaptive model will be
completed, and both the proposed system and the developed tool will be validated. To
carry out these validations, it will be necessary to obtain the values of clinical tests and test
the system with real users of all the profiles considered.
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