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Abstract: In recent years, modern industry has been exploring the transition to cyber physical sys-
tem (CPS)-based smart factories. As intelligent industrial detection and control technology grows
in popularity, massive amounts of time-sensitive applications are generated. A cutting-edge com-
puting paradigm called edge-cloud collaborative computing was developed to satisfy the need of
time-sensitive tasks such as smart vehicles and automatic mechanical remote control, which require
substantially low latency. In edge-cloud collaborative computing, it is extremely challenging to
improve task scheduling while taking into account both the dynamic changes of user requirements
and the limited available resources. The current task scheduling system applies a round-robin pol-
icy to cyclically select the next server from the list of available servers, but it may not choose the
best-suited server for the task. To satisfy the real-time task flow of industrial production in terms of
task scheduling based on deadline and time sensitivity, we propose a hierarchical architecture for
edge-cloud collaborative environments in the Industrial Internet of Things (IoT) and then simplify
and mathematically formulate the time consumption of edge-cloud collaborative computing to reduce
latency. Based on the above hierarchical model, we present a dynamic time-sensitive scheduling algo-
rithm (DSOTS). After the optimization of DSOTS, the dynamic time-sensitive scheduling algorithm
with greedy strategy (TSGS) that ranks server capability and job size in a hybrid and hierarchical
scenario is proposed. What cannot be ignored is that we propose to employ comprehensive execution
capability (CEC) to measure the performance of a server for the first time and perform effective
server load balancing while satisfying the user’s requirement for tasks. In this paper, we simulate
an edge-cloud collaborative computing environment to evaluate the performance of our algorithm
in terms of processing time, SLA violation rate, and cost by extending the CloudSimPlus toolkit,
and the experimental results are very promising. Aiming to choose a more suitable server to handle
dynamically incoming tasks, our algorithm decreases the average processing time and cost by 30%
and 45%, respectively, as well as the average SLA violation by 25%, when compared to existing
state-of-the-art solutions.

Keywords: edge computing; task scheduling; time-sensitive; real-time systems; IoT

1. Introduction

With the intelligent upgrade of the manufacturing industry, more and more enterprises
are exploring smart factories in the Industry 4.0 era based on CPS [1], a comprehensive
computing, network, and physical environment of a multi-dimensional complex system [2],
which achieves real-time sensing, dynamic-control, and information services of large
engineering systems. CPS realizes the integrated design of computing, communication,
and physical systems, which cannot be separated from the powerful arithmetic support
of cloud computing. As the representative of the most advanced technology in IT [3],
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cloud computing stores and manages a massive amount of data while providing effective
computing resources. However, since cloud servers have high bandwidth latency and
communication waste, it may not be the most appropriate choice for low-latency request
access and processing. To this end, for time-sensitive applications and a computer-intensive
workload, adopting cloud computing for processing is not the most appropriate option [4,5].
To address the issue of time-sensitivity, edge computing, which may deliver computing
services in the vicinity of a data source, makes the system efficient and dependable. With the
rise of smart factories, applications with high latency requirements such as industrial image
detection, character code detection, furnace temperature flame recognition, and remote
mechanical manipulation generate numerous time-sensitive service requests. Consequently,
real-time data computing is gradually moving to edge computing, where applications are
processed close to the data source, leveraging the computing power of edge servers and
heterogeneous end devices.

Figure 1 shows the framework structure of edge-cloud collaborative computing. When
a user initiates a task request, the management platform is responsible for dispatching
the task to the corresponding server for processing in a timely manner. At the same time,
the management platform performs well in terms of resource allocation, load balancing,
and security work, while monitoring the task and the server all the time. An effective task
scheduling policy is inevitable for efficient task execution, and the management platform
will prefer to allocate tasks to the edge server rather than the cloud because of the distance.
If edge servers are insufficient for the task, cloud resources will be summoned or tasks will
be assigned to the cloud server for execution. The data for task processing comes from the
information produced by sensors and actuators in the IoT.
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Figure 1. Layered architecture for edge-cloud collaborative computing.
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1.1. Motivations

Large amounts of data created by industrial IoT devices may be analyzed at the data
source using the edge computing paradigm, which decreases data transfer and network traf-
fic between cloud servers and IoT devices and increases the efficiency and reliability of IoT
edge systems. Edge computing enables the provision of scalable, cost-effective distributed
computing power over the network, allowing users to access the various IT resources they
need at any time and from any location simply [6–9]. The edge layer is an intermediary
layer that resides between the terminal device and the cloud platform and is typically used
in edge servers close to terminal devices. Further more, edge servers are responsible to
handle the user requests from the terminal and shorten the communication consumption
of user requests, which is extremely significant for processing time-sensitive applications.

However, the characteristics of edge computing systems of IoT, such as decentral-
ization, heterogeneity, and dynamics, pose a huge challenge to task scheduling, resource
allocation, and load balancing. Moreover, the constrained resources and distributed job as-
signment of edge servers make resource allocation and provisioning more challenging [10].
Virtual power plant (VPP) [11,12] aggregates and distributes power sources for resource
optimization through edge intelligence and IoT technologies, requiring real-time and the
timely scheduling of resources using edge computing [13]. Smart IoT applications, such
as intelligent remote control in smart factories, generate real-time data all the time, and
we must accept the dynamic arrival of data streams and respond to requests in a short
period of time in order to ensure the safety of personnel and the proper functionalities
of the equipments. A failure to complete a task within the predetermined time constrain
might cause serious consequences. In this situation, it is extremely principal to decrease the
latency and computational cost through reasonable task scheduling and resource allocation,
to satisfy user dynamically changing requirements with the least consumption.

However, most prior research and optimization approaches emphasize on-task of-
floading [14–16] and resource allocation [17] without paying enough attention to improving
task processing efficiency through effective task scheduling.In addition, these initiatives
are more concerned with energy [18] consumption or the cost [17] of task execution and do
not evaluate how to satisfy users’ time-sensitive demands through improved techniques
from the user’s perspective.

We argue that the further development of edge-cloud collaborative computing should
pay more attention to the dynamic changes and time-sensitivity of tasks, and of the server
load capacity, on the basis of dispersed computing paradigm. In order to achieve higher effi-
ciency, we break the tightly coupled structure of the control system by optimizing the edge-
cloud collaborative computing system architecture.This paper designs a task-processing
model that maximizes user satisfaction from the perspective of the time-sensitive demand,
taking into account the deadline for request processing. Experimentally, this scheduling
strategy proves to be effective in improving urgent tasks in task-intensive scenarios.

1.2. Contributions

In order to reduce edge computing processing latency and fulfill user deadlines,
novel task scheduling and load balancing are proposed in this paper. The suggested
time consumption status architecture allows for the flexible development, deployment,
and scheduling of dynamic tasks with time constrained to achieve real-time performance.
System models of this paper can be flexibly applied in IoT scenarios in an edge-cloud
collaborative computing environment. The main contributions of this paper are listed
as follows:

• We modeled the architecture of edge-cloud collaborative computing system and
propose predicting the task execution time by obtaining the task submission queue,
the waiting queue, and the execution queue of the server by considering the server’s
comprehensive execution capabilities.

• We proposed to use a dynamic time-sensitive priority algorithm (DSOTS) and a
dynamic time-sensitive scheduling algorithm with greedy strategy (TSGS) to schedule
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dynamically arriving, time-sensitive tasks based on a task-specified deadline in the
edge-cloud collaborative environment.

• We conducted evaluations and performance comparisons by employing the CloudSim-
Plus kit to simulate the scheduling problem of dynamically arriving tasks in edge-
cloud collaborative computing scenario. The experimental results have proven the
superiority of the TSGS strategy compared to recent studies.

The remainder of this paper is organized as follows: related work has been summa-
rized in Section 2. In Section 3, the system model and edge-cloud collaborative computing
architecture are described. Section 4 introduces the overall process and prediction method
of the dynamic time-sensitive scheduling algorithms. The simulation experiment results
are discussed in Section 5. Finally, Section 6 concludes the whole paper.

2. Related Work

Edge-cloud collaborative computing is advanced distributed computing paradigms
that is still in its early stages and will require more time to be mature [19]. There has
been some work undertaken on task scheduling and resource allocation over the past few
years [20–22]. Due to the popularity and commercial adoption of these two distributed
computing paradigms, researchers of task processing in edge and cloud computing pay
more attention to deadlines [23] and being cost-aware [24]. In this section, on the one hand,
we discuss task scheduling in edge and cloud computing paradigms in smart factories to
define the research gaps. Furthermore, we investigated a few task scheduling and load
balancing techniques, along with their limitations.

2.1. Edge-Cloud Collaborative Computing In IIoT

As the Industrial Internet of Things (IIoT) is an important data source and an ap-
plication scenario for edge-cloud collaborative computing, IoT-related cloud and edge
computing research has become prevalent [25–29]. Research in edge-cloud collaborative
computing technology tends to focus on task offloading [14], task scheduling , and real-time
data processing [30] in a hierarchical and hybrid environment [21,29,31,32].

Wang et al. [33] were introduced to edge computing in industry , which emphasized
the prominent contribution of edge computing nodes (ECNs) to real-time computing and
the protection of security beyond computation. However, our work combines edge and
cloud, redesigning the edge-cloud collaborative framework to provide real-time computing
for IIoT devices and CPS-based applications that are time-sensitive. Plenty of related work
on task offloading has been done from energy efficiency [34,35]. Different models of task
offloading in edge computing and the hierarchical relationship between edge computing
and cloud computing are investigated in [36], which also provides various methodologies
for task offloading under diverse task requirements. In [35], the original random problem
is transformed into a deterministic optimization problem by using stochastic improvement
technology, and then an energy-efficient dynamic offloading algorithm called EEDOA is
proposed, which makes a task-offloading decision with polynomial time complexity and is
similar to the minimum transmission energy consumption. In [37], an SDN-based edge-
cloud interaction is presented to address streaming big data in IIoT environment, in which
SDN provides efficient middleware support by leveraging Tchebycheff decomposition for
SDN flow scheduling and routing. As a result, the trade-off between energy efficiency and
latency has been decreased, as has the trade-off between energy efficiency and bandwidth.

However, these works do not describe how offloaded tasks are then handled, nor how
to carry out task scheduling as well as resource allocation for offloaded processes from
user’ perspectives, such as SLA violation and cost. When researchers study the scheduling
and resource allocation of offloaded tasks in industrial scenarios, they often focus on the
heterogeneity of the offloaded tasks requirements (energy, cost, and so on) and have limited
MEC capabilities. Therefore, considering the deadline from the user’s perspective is a
major breakthrough.
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Deng et al. [38] apply artificial intelligence to optimize resource allocation in mobile
edge computing, maximizing the trustworthiness gain of services by dynamically gener-
ating appropriate resource allocation schemes using the reinforcement learning method,
ultimately improving network performance by 20%. In another work, Sodhro et al. [2]
demonstrate a forward central dynamic and available approach (FCDAA) by adapting the
operating duration of sensing and transmission processes in IoT-based portable devices
and a system-level battery model by evaluating the energy dissipation in IoT devices.
They succeeded in enhancing energy efficiency and battery lifetime. In [23], Ranesh et al.
described a hierarchical framework of fog-cloud computing, as well as the pass-through
fog device to the cloud server workflow for tasks generated from endpoints. However,
the complicated hierarchy leads to a cumbersome architecture. Moreover, they presented
resource allocation and provisioning algorithms based on resource ranking, which achieved
some optimizations for latency and processing time, but the efficiency of meeting user
deadlines is not obvious in the experiment.

2.2. Task Scheduling Technology

The research on task scheduling in the edge cloud scenario has attracted an increasing
amount of attention. However, there is still a lack of more effective strategies for dynamic
task arrival and dynamic changes in user needs. In addition, we integrate the hierar-
chical and hybrid nature, as well as the load balancing of edge servers, by considering
the communication strain arising from the high throughput of cloud computing, which
is unprecedented.

There are currently a number of efforts that have been made regarding links in the
edge-cloud collaborative computing workflow, which usually consider optimization from
the points of view of energy [35], bandwidth [20], cost [24], etc. Table 1 summarizes some
important research on edge-cloud collaborative computing issues.

Table 1. Comparison of existing dynamically algorithms.

Recent Works Main Concerns Techniques

Zhang et al. (2019) [14] Offloading reliability Deep Q-Learning
Gu et al. (2019) [39] Energy consumption Matching-theoretic
Ibrahim et al. (2020) [29] Energy consumption AES and balancing algorithm
Li et al. (2019) [31] Energy consumption Two-phase algorithm
Wang et al. (2020) [18] Energy consumption 0–1 Integer programming
Zhao et al. (2019) [21] Energy and service time Deep reinforcement learning
Kaur et al. (2019) [40] Energy and interference Integer linear and multiobjective optimization
Puthal et al. (2018) [41] Balancing efficiency EDCs for efficient load balancing
Luo et al. (2020) [17] Cost-effective Federated edge learning (HFEL)
Xia et al. (2019) [24] Cost-effective EDD-IP and EDD-A
Wu et al. (2018) [42] Processing time Extended Lyapunov technique
Manaouil et al. (2020) [43] Processing time Microservice scheduling
Wang et al. (2019) [21] Capacity constraints Deep reinforcement learning
Deng et al. (2020) [38] Services’ trustworthiness Reinforcement learning
Naha et al. (2020) [23] Deadline constraints Resource ranking and provision of resources
Kannan et al. (2019) [44] SLA, high throughput Regression prediction, sequence
Zhang et al. (2021) [45] QoS Machine learning
The proposed Processing time, SLA violation, and cost TSGS and greedy strategy

Li et al. [31] describe a fog-cloud computing model based on an SDN controller, which
assigns tasks to servers after ranking. However, as indicated by [23], the complex layered
structure leads to redundant latency, and their implementation of single-threaded file
transfers generates redundant data transfer times and does not take into account the impact
of the greedy algorithm on server load pressure, which may be less friendly to the server and
to time-sensitive applications that arrive later. In [40], Kaur et al. provided a Kubernetes-
based energy and interference-driven scheduler (KEIDS), to manage containers on edge-
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cloud nodes while reducing energy consumption. They also formulated task scheduling
using integer linear programming based on multi-objective optimization. However, the
huge time overhead associated with iteration may be unbearable for users.

GrandSLAm [44] makes an effort to execute each request queued in the microservice
phase in a manner that maximizes sharing while maintaining end-to-end latency guaran-
tees. Dynamic batching and slack-based (SLA, the partial deadlines at each microservice
stage, which every request needs to meet at so that end-to-end latency targets are not
violated) request reordering are two methods employed by GrandSLAm to maximize
throughput. However, the hyperparameters SLA confront a tough adjustment issue dur-
ing the computation of microservice stage slack, which leads to instability in the correct
scheduling rate. GrandSLAm [44], Vanilla Kubernetes scheduler [43], and Sinan [45] intro-
duce scheduling frameworks based on machine learning and deep learning that enhance
scheduling methods under different task grouping protocols in microservices. In addition,
most of the current work is focused on energy consumption during task execution. It is
necessary to consider alternative ways to optimize real-time task processing in terms of
task scheduling to better meet the time-sensitive needs of dynamic tasks, which yields
a challenging problem of a combinatorial nature. Based on the edge-cloud collaborative
hierarchical model for processing tasks in smart factories, we optimize the architecture of
this model, and design a time-sensitive task scheduling algorithm based on this model,
which considers the highly time-sensitive nature of dynamically changing user requests,
whole load-balancing reduces the pressure on the server and congestion of waiting tasks.
This methodology is designed to suit the demands of users in terms of meeting deadlines,
improving task success rates, and reducing task processing time and cost. It compensates
for several shortcomings in prior work to a significant extent.

3. System Model

In this paper, we provide a hybrid hierarchical architecture for edge-cloud collabora-
tive computing. This section covers the structure of the edge-cloud mechanism, the task
scheduling strategy for edge-cloud collaborative computing, and the details of the overall
system architecture for scheduling optimization.

3.1. Overview of Edge-Cloud Collaborative Computing

It is a highly efficient approach to choose a suitable server for the task to be processed
with an excellent task scheduling strategy. In this method, we can reduce the latency of
cloud computing while ensuring that the task is completed within the stringent deadline.
Dispatching tasks to the Cloud could be avoided, and the extra bandwidth overhead and
execution cost could be economized if we choose an appropriate edge server to handle
time-sensitive processes.

As shown in Figure 1, IoT applications deal with users’ processing requirements and
serve them according to their demands. Users from other devices such as machines in smart
factories, and automobiles, will produce service requests, and the required metadata are
provided by sensors and actuators. Edge servers will manage the underlying middleware
and process data. In the edge-cloud collaborative architecture, the cloud infrastructure is
responsible for the long-term storage of the processed data and application outcomes. To
process data at the edge, the middleware must have the capability of real-time data handling.
In this processing architecture, the connections between various types of devices (end
devices, edge servers, and the cloud) are maintained mostly through industrial networks
(i.e., wired/wireless network).

The edge servers act as the main processing module. On the one hand, they must
receive input data from edge sensors and perform pre-processing, and on the other hand,
they are responsible for using available resources or retrieving the necessary information
from the cloud to process the data and return the results to users. Edge servers in close
proximity process data from end devices, but their storage, Ram, bandwidth, and processing
capacity are limited. When an edge server receives a task-processing request, it will
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initially attempt to use its currently available information for processing. If the available
resources are completely utilized by the running applications, the task may be forwarded
to neighboring peer edge servers for processing. In this situation, the edge servers should
periodically transmit a “heartbeat” to the broker to update the broker on their status and
available resources. In the three-tier architecture of edge-cloud collaborative computing,
the end devices are connected to the edge server and the edge servers are connected to
the cloud.

Table 2. Definition of different types of time in edge-cloud collaborative computing system.

Types of Time Definition

Twait Time for the task to wait on the server
Texec Time for the task to execute on the server
Ttrans f er Time for the task to transfer data to the server
TtotalExec The time it takes for the task to be completed
Texec_Edge Task execution time on the edge server
Texec_Cloud Task execution time on cloud
Tcomu_Edge Communication time between devices and edge server
Tcomu_Cloud Communication time between edge server and cloud

3.2. Task Execution Model

The edge server requires Datacenter as the primary container to run, and the Host
is established to run the server utilizing virtualization software to provide the CPU and
memory resources necessary for the edge server. Correspondingly, edge servers also need
to get access to graphics card, Datastore and Network connectivity from their higher-level
Host. In the Space-Shared scenario, tasks are executed according to the first-in-first-out
(FIFO) rule, a machine can only process one task at a time, and if a task is executing on this
machine when the other tasks arrive, then the task must wait for the task on the machine to
finish before it can start executing [46].

In edge-cloud collaborative environment, tasks generated by mobile devices (MDs) can
be offloaded to MEC servers for computing locally or leveraged to cloud resources. Table 2
shows different types of time in edge-cloud collaborative computing system. However,
sending tasks to the cloud requires extra communication time and creates bandwidth
pressure. The temporal structure of edge-cloud collaborative computing is shown in
Figure 2, and the total task execution time (from the initiation of the request to receiving a
response) can be formulated as Equation (1),

TtotalExec = Tcomu_Edge + Texec_Edge + Tcomu_Cloud + Texec_Cloud (1)

where TtotalExec is the total time from when the task request is sent to the time the user
receives the result of the calculation. The tasks need to spend Tcomu_Edge to establish a
connection with the server. After the task reaches the server through the connection, it
will not start until all the previous tasks are finished, if there are tasks being executed on a
server. After the task starts execution, the actual execution time Texec_Edge varies due to the
size and difficulty of the task and the processing power of the server. If there is no server
nearby that can complete the task within the user’s desired deadline, the server will request
resources from the cloud, which increases the time it takes for establishing connection with
the cloud Tcomu_Cloud, and the task will take Texec_Cloud to execute the remaining tasks while
still on the cloud.
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Figure 2. Task execution phase.

With the processing power and bandwidth available, we need to reduce the network
traffic of the core network as much as possible by having the computations finished at the
edge. Especially for time-sensitive applications, we should finish the task and return the
result before the deadline of the task. When a task is to be executed on an edge server, the
execution time of the task is calculated by Equation (2).

Texec_Edge = Twait + Ttrans f er + Texec (2)

Tcomu includes the time to send the request and the time to receive the result,

Tcomu = TDevice_to_Server + TServer_to_Server + TServer_to_Device (3)

When a task request is submitted, it must first spend TDevice_to_Server to establish a
connection with the allocated edge server and then provide user data to it as execution
parameters. Since we use a separate thread to transfer data in our model, the Ttrans f er is
almost negligible. Allocating the task to an appropriate server for execution must be imple-
mented after being offloaded.In our scheduling system, disposing it on the nearest machine
for execution is prioritized, which cuts down on communication time. If the execution
cannot be completed on the nearest server within the specified stringent deadline, the
agent scheduling center must dispatch the application to a nearby server that can perform
the task in time for immediate execution, utilizing a server communication. Furthermore,
selecting a short and quick task-waiting queue to reduce the task-waiting time is a sensible
choice as it takes into consideration the time that it takes to transfer data to the server before
tasks begin executing. Despite the fact that jobs must wait for CPU, data transfer happens
through multiple separate threads immediately as soon as jobs are submitted. The last
TServer_to_Device is the time it takes for the computation results to be returned to the user from
the server once task execution is complete. When an edge server receives a request from a
user, it consults the cloud for necessary information for application processing. To cope
with time-sensitivity, this information-retrieval operation will be executed as a separate
process. Resource allocation and task scheduling are implemented by the agent center, and
the edge server only needs to focus on processing tasks and does not need to spend time
on security and other matters. Hence, this paper integrates the complete task-processing
flow of edge computing and improves the high availability and efficiency of computing
scenarios through model optimization. On the basis of the optimized model, an effective
scheduling strategy is developed to further improve the efficiency of task processing.

4. Proposed Scheduling Algorithm

In this section, we present the specific implementation of the dynamic time-sensitive schedul-
ing algorithm and the dynamic time-sensitive scheduling algorithm with a greedy strategy.
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Table 3. Notations.

Symbol Meaning

si The available storage of the server Si
Bi The available bandwidth of the server Si
Ri The available Ram of the server Si
Cλ

t Different types of cost, λ = {CPU, RAM, Storage, Bandwidth}
PTi The prediction time of taski
CEC The comprehensive execution capability of servers
taski The dynamically arrived task that need to be submitted to a server
MIPS The available MIPS of the server Si
STNumj The number of tasks waiting on serverj
TasksList The list of tasks that have been submitted without ranking Task = {task1, task2, ..., taskn}
ServersList The list of servers that have been submitted without ranking S = {S1, S2, ..., Sn}
TasksWaitingList Submitted tasks that are waiting to be executed on the server

4.1. The Overview of the Algorithm

In this section, we present a solution for the dynamical arrival applications in the edge-
cloud collaborative environment. Table 3 shows all notations. To meet the deadline objective
while taking into account dynamic client requirements in the edge-cloud collaborative
environment, scheduling optimization will be performed according to the following steps.

1. Submission strategy. Submitting tasks to the cloud for execution, and the edge server
requesting resources from the cloud, massively increase the communication time and
cost overhead; we need to maximize the use of the edge server to execute tasks, and
to try to intercept tasks to complete execution on edge servers to avoid submitting
to the cloud. When all servers are unable to accomplish the work before the user’s
desired deadline, the edge server must request resources from the cloud considering
the processing capacity, the available bandwidth, and the response time of those
resources. It is necessary to consider when resources are completely unavailable
within the edge infrastructure. In such a case, the agent center tries to submit the
application to the cloud before generating the resource unavailability message.

2. Server’s comprehensive execution capability. There are many factors that influence the
server’s processing speed, so we need to consider the bandwidth, memory, processing
capabilities of the server, and degree of load balancing, to obtain the CEC of the server.

3. Execution time prediction. Predict the execution time based on the server’s comprehen-
sive execution capability and assign tasks to the appropriate edge server or cloud for
execution so that tasks are completed before the user’s desired deadline.

4. Dynamic task scheduling. (1) The dynamic time-sensitive scheduling algorithm—
DSOTS. Different tasks in a smart factory have varying time sensitivity; therefore,
we select specific servers according to the requirement of different types of tasks,
maximize the use of computing resources, and design the DSOTS to meet the needs
of users from a deadline-aware perspective. (2) A dynamic time-sensitive scheduling
algorithm with a greedy strategy—TSGS. Depending on the DSOTS, we designed the
TSGS based on the greedy strategy after sorting the servers according to the defined
rules to schedule dynamic tasks and load-balance the servers.

On the other hand, the problem of a user’s dynamic behavior may be handled through
the following steps:

• Step 1: Estimating the time spent on edge computing versus cloud computing.
• Step 2: Ranking the available resources and the comprehensive execution capability

of the edge servers.
• Step 3: Building a virtual waiting queue of uncompleted tasks and pushing the

dynamic task in.
• Step 4: Ranking the estimated execution time of tasks considering the anticipated

execution time in the waiting queue.
• Step 5: Assigning the task to the server with the shortest predicted time.
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4.2. Prediction of Execution Time

When obtaining the CEC of the server, we consider the server’s storage, ram, band-
width, and MIPS, and assign different weights α, β, µ, ν to MIPS (Mipi), bandwidth (Bi),
storage (Si), ram (Ri), respectively. According to their importance, their relationship can be
expressed by the following equation:

CECi = αMipi + βBi + µSi + νRi (4)

To determine the computational hyperparameters (α, β, µ, ν) of CEC , we need to first
train a deep learning LSTM model based on a priori knowledge and use the model to fit
to obtain these four hyperparameters. CEC is equivalent to an evaluation of the server’s
execution performance.

Predicting the execution time of taski on serverj is the inevitable content of the dynamic
scheduling task to make it finish within the desired deadline. We employ Algorithm 1 to pre-
dict the execution time by considering the server and task’s own conditions comprehensively.

• We require the waiting time and execution time for the task that is waiting at serverj to
predict how long it will take the server until taski−1 is finished; this is called the waiting
time. Then, add the execution and response time of the taski itself. WaitingTime can be
stored and calculated in two ways: as a task property, or by calculating the execution
time of all the previous tasks in each cycle to estimate the difference between them in
terms of space cost and time cost. Due to the extreme urgency, the separate threads for
data transfer allow Ttrans f er to be ignored, reducing the impact of space costs. In this
paper, all this information (WaitingTime and ExecutionTime) is set as the properties
of task.

• Whenever the status of the task is changed, for example, when it enters the execution
state from the waiting queue, the system will update this information and send a
“heartbeat” to the agent center to update its latest status. Of course, this information
is not known until it is submitted to a server because it is necessary to consider the
server’s comprehensive execution capacity and waiting queue information to know
WaitingTime and ExecutionTime.

Algorithm 1 Prediction of execution time.

Input: TasksWaitingList <task>: tasks waiting on the server; ServersSubmitedList <server>:
servers that handle requests; taski: the i-th arriving task

Output: ServersList < server >

1: TasksList < task >← TasksWaitingList < task >
2: ServersList < server >← ServersSubmitedList < server >
3: if (ServersList is null ) then
4: return Failure
5: else
6: PTi ← 0
7: for each task ∈ TasksWaitingList do
8: PTi ← PTi + getExecutionTime(task)
9: end for

10: PTi ← PTi + getExecutionTime(taski)
11: PTi ← PTi + getResponseTime(taski)
12: Sort(ServersList < server >) according to PTi and CEC
13: end if
14: return ServersList < server >

4.3. Dynamic Time-Sensitive Scheduling Algorithm—DSOTS

To deal with deadline-aware difficulties, we proposed a dynamic scheduling algorithm
based on time-sensitive prioritization, as Algorithm 2 shows. When a task is dynamically
submitted, we choose a better server to perform it on. The user can set a desired deadline
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for a task as long as the task is created. When the agent center receives a task processing
request, DSOTS can help to choose the server with the best chance of meeting the user’s
requested deadline. Figure 3 shows the server selection model of DSOTS, {1 s, 2 s, 3 s,
4 s, 5 s} is the predicted time it takes for servers {S2, S3, S5, S1, S4} to process the taski,
and we sorted the servers into {S2, S3, S5, S1, S4} according to PTi. On the other hand,
Deadline1 to Deadline3 is the deadline set for the task, and finishing the task before the
deadline as much as possible is a guarantee that the failure rate will not be too high.
DSOTS will be implemented according to the time priority line in Figure 3, according to
the following steps:

• First, ServersList is ranked according to CEC of the server; then, sort the ranked
ServersList again according to the predicted time PTi that the task taski will take to
execute on it. In other words, the server with the shorter task-waiting queue for the
user will be given priority on machines with the same CEC. As shown in Figure 3, if
there are five available edge servers nearby, the ServersList will be sorted as {S2, S3,
S5, S1, S4}.

• When the user-defined deadline is later than the execution time required by the
slowest server (Deadline3 is later than the predict time on S4), then all the servers
can satisfy the user’s criteria and complete the task ahead of the deadline. In this
case, if the task is highly time-sensitive, it is a good idea to choose the server with
the shortest predicted execution time to execute. If the urgency of the task is low,
we can choose to schedule it on the slowest server, which can save enough server
resources for time-sensitive tasks that may occur later. For tasks that have modest time
sensitivity, a server can be randomly selected for execution. The amount of seconds
in the center, as shown in Figure 3, represents the projected time for various servers
to complete the current task. If a task’s deadline is Deadline3, larger than the whole
expected execution time, we can insert time-relaxing tasks in S4, time-urgent tasks in
S2, and moderately time-sensitive tasks in {S1 ∨ S3 ∨ S5}.

• Nevertheless, if the deadline (such as Deadline1 in Figure 3) is shorter than any server’s
expected execution time, then all the servers will be unable to complete this task within
the specified time. Regardless of the time urgency of the task at this point, the agent
center must select the server with the strongest comprehensive execution capability
and the shortest predicted completion time to serve the task, just like S2, and retrieve
resources from the cloud platform to complete the task before the user receives the
task failure message. If the defined deadline is relatively short like Deadline2 but
not too loose, then randomly choosing a server that is just appropriate for the task
would suffice.

Deadline1 Deadline2

Predict Time

on a Server
1s 2s 3s 4s 5s

Deadline3

S2 S3 S5 S1 S4

Figure 3. Time-sensitive greedy strategy.
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Algorithm 2 DSOTS algorithm.

Input: TasksWaitingList < task >; ServersSubmitedList < server >; taski;

1: TasksList < task >← TasksWaitingList < task >
2: ServersList < server >← ServersSubmitedList < server >
3: if (ServersList 6= null) then
4: deadline← The user’s expected execution time for taski
5: TasksList← TasksWaitingList.add(taski)
6: sort (ServersList) according to each server’s CEC
7: for each server ∈ ServersList do
8: PTi ← The estimated execution time of taski on the server by Algorithm 1
9: server ← PTi

10: end for
11: sort (ServersList) according to PTi that task spend on server
12: RSL← RankedServersList
13: if deadline ≥ PTlast then
14: if taski is Time-Sensitive then
15: Submit taski to the first server of the RSL
16: end if
17: if taski is Time-Moderate then
18: Submit taski to a random server of the RSL
19: end if
20: if taski is Time-Relaxation then
21: Submit taski to the last server of the RSL
22: end if
23: end if
24: if deadline ≤ PTf irst then
25: Submit taski to the first server of the RSL
26: end if
27: if deadline in ( PTf irst, PTlast ) then
28: if taski is Time-Sensitive then
29: Submit taski to the first server of the RSL
30: end if
31: if taski is [Time-Moderate ∨ Time-Relaxation] then
32: Submit taski to the last server that can meet the user’s

expected deadline of the taski
33: end if
34: end if
35: end if
36: Update the ServersList

4.4. Dynamic Time-Sensitive Scheduling Algorithm with Greedy Strategy—TSGS

As shown in Algorithm 3, in order to better distribute tasks and perform better load
balancing of the server clusters, we seek to improve the dynamic scheduling algorithm
based on the greedy algorithm. The servers are ranked initially. At the same time, we must
examine the queue of submitted tasks in order to improve the overall performance and
optimization of the server cluster and task-processing queue at the level of the entire task
batch. Following DSOTS algorithm processing, the sequence of servers and task intent
processors already have a better allocation decision, based on which the task intent servers
are adjusted using the greedy algorithm, and the load balancing of servers is performed.

• To account for dynamically arriving tasks, the processing done here is constructing a
virtual processing queue TasksList by adding dynamically arriving tasks taski together
with previously submitted tasks to the waiting queue TasksWaitingList to better
predict the overall execution time; then, the TasksList needs to be ranked according to
the length of tasks.
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• A two-dimensional array needs to be created to store the estimated execution time
of tasks on each server based on the mapping of servers to tasks. For each task, the
predicted execution time on a particular server can be found using the mapping table.
For each task, we can iterate through all servers where the task can be stored.

• The policy of the greedy algorithm is to select the machine with the strongest execution
capability and the shortest predicted execution time to execute the current task each
time. When traversing to a server, even if there is no task executing on the current
server, the task should not be placed on the server directly without considering the
processing capacity of the server, and taski could be submitted to Serverj only when
the expected execution time is less than the minimum time in the current record. It will
select the one with the shorter task-waiting queue for servers with the same expected
execution time to achieve the load-balancing effect.

The TSGS greatly improves the efficiency and accuracy of task scheduling by compre-
hensively considering the deadline requirements of tasks and server load.

Algorithm 3 TSGS algorithm.

Input: TasksWaitingList < task >; ServersSubmitedList < server >; taski

1: TasksList < task >← TasksWaitingList < task >
2: ServersList < server >← ServersSubmitedList < server >
3: if (ServersList 6= null) then
4: deadline← The user’s expected execution time for taski
5: TasksList← TasksWaitingList.add(taski)
6: sort (ServersList) according to each server’s CEC
7: sort (TasksList) according to taski that task spend on server
8: for each server ∈ ServersList do
9: PTi ← The estimated execution time of taski on the server by Algorithm 1

10: server ← PTi
11: end for
12: sort (ServersList) according to PTi that task spend on server
13: tempServer ← Server1 // update tempServer
14: minTime← the optimal value of the current task assignment
15: for j = 1 to ServerList.length do
16: if The TasksWaitingList in Serverj is empty then
17: if minTime ≥ Time(i, j) then
18: Submit taski to the Serverj and update tempServer
19: end if
20: end if
21: if minTime > Time(i, j) then
22: Submit taski to the Serverj and update tempServer
23: else
24: // Simple load balancing
25: if minTime = Time(i, j) and STNumj < StempTNum then
26: Submit taski to the Serverj and update tempServer
27: end if
28: end if
29: Update the task execution queue of servers
30: end for
31: end if
32: Update the ServersList

5. Experiments and Result Analysis

In terms of task-processing time; success; and cost, this section provides performance
metrics and assessment methodologies for evaluating the performance of edge computing
in the intelligent industrial factory. Firstly, we provide the experimental settings and simu-
lation parameters. Afterwards, we produce a simulation program to simulate the dynamic



Electronics 2022, 11, 2464 14 of 24

generation of time-sensitive tasks in industrial production, submit them to edge and cloud
servers for processing, and evaluate the performance of the proposed algorithm based on
the implementation of the edge computing hierarchical model designed in Section 3.

5.1. Experiment Scenario and Configuration

Application services hosted under the cloud computing paradigm have cumbersome
provision, composition, configuration, and deployment requirements. It is challenging
to evaluate the performance of cloud-provisioning policies, the application of workload
models, and resource-performance models in a repeatable fashion under varying system
and user configurations and requirements. We reconstructed the functionality of the
CloudSimPlus toolkit [47], which is extensively employed in various distributed computing
simulations, to simulate a realistic edge computing scenario in smart industrial production
and then measure the effectiveness of our approach. Experiments were carried out by
changing the number and fluency of application submissions, as well as the deadline strain.

5.2. Baseline Approaches

In order to evaluate the performance of TSGS, the time-sensitive greedy scheduling
strategy proposed in this paper, we compared it with the following four baseline approaches.

• DSOTS, dynamic scheduling based on a time-sensitivity algorithm proposed in
this paper.

• OEC-RR, an ordinary round-robin edge computing scheduling, which cyclically se-
lects the next server from the broker server list based on a round-robin policy.

• SAE-CEC [31], a two-phase algorithm based on threshold strategy with latency con-
straints, which is one of the most recent works latency-aware algorithm.

• GrandSLAm [44], a microservice execution framework that can accurately estimate
the completion time of the requested microservice phase, which focuses on achieving
high throughput while maintaining SLAV.

The latency-awareness mainly concerns the algorithm energy consumption and sat-
isfaction degree. In our proposed technique, we consider the available bandwidth, the
available process power, and the response time of the device. For task scheduling, we
take into account application requirements as well as dynamic changes in the deadlines
specified by users when scheduling tasks.

5.3. Metrics

We randomly generate different types of tasks with different priorities from 100 termi-
nals at different times to ensure that the waiting time and processing time of each task are
random and set a randomly reasonable processing time for them as the deadline. In order
to evaluate the performance of the proposed edge-cloud collaborative model and algorithm,
we measured the task-processing success rate, the delay, the processing time, and the
processing cost. Since the edge computing is specifically for handling time-sensitive tasks,
latency and processing time are of vital importance to us. If a task can be completed before
its required deadline, the task will be regarded as having been effectively accomplished.
Otherwise, even on the highest-performing edge server, we must borrow a peer edge server
or request resources from the cloud to accomplish it. The edge server hierarchical model is
an innovation for us; we tier the edge servers according to the CEC mentioned above. Tasks
are first submitted to the lower level servers for processing, and if the bottom processor
does not have enough processing resources, it can apply resources from the higher level
servers or submit the service to the upper level. If even then the task cannot be completed,
we shall abort the task execution and notify the user of the failure. The SLA violation rate
is defined as the proportion of unsuccessfully completed tasks among all tasks submitted
during a period of time.
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(1) Delay: this is the time interval between when the task is submitted to the edge or
cloud server and the start time of the task execution dt, which will vary with the allocation
of communication and computing resources.

dt = ddevice
t + dedge

t + dCloud
t (5)

The latency of a task on a server can be thought of as the execution time of all the

previous tasks that are waiting, such as dedge
i =

i−1
∑

k=0
Twait

k . Therefore, we need to calculate

our total delay time as follows:

di =
Cloud

∑
terminal

i−1

∑
k=0

Twait
k (6)

(2) Processing Time: this needs to be calculated based on the task characteristics (type,
deadline, size, and so on) and the CEC of the server.

For processing costs, we took into account the cost of storage and processing and
divided it into four parts: the monetary cost of using each Megabyte of RAM in the
Datacenter, the monetary cost per second of CPU, the monetary cost to use each Megabyte
of storage, and the monetary cost to use each Megabit of bandwidth.

Ct = ∑ CCPU
t + CRAM

t + CStorage
t + CBw

t (7)

(3) SLA Violation: this refers to the proportion of failed tasks in a batch of tasks to the
total tasks.

SLA =
∑

j=1
N Tf ailj

∑i=1
N Ti

(8)

5.4. Parameter Configuration

In this experiment, we built up 10 edge servers, which have three data centers to
provide adequate resources for the host; each host has 2 PEs, and each server can occupy
one PE to execute tasks.Because almost all the tasks are performed on the edge servers, we
set up only two clouds to provide additional resources, and their topology is random and
homogeneous. With such hardware resources, we simulate the task-processing requests
sent by intelligent control machines in a genuine smart industrial factory production and
test that 100 to 1300 tasks were submitted according to the task submission pattern of [23,48].
The task sent by the user, and the server processing the task, are the two main objects in
our experiment. Table 4 shows the resource configuration of the edge server and cloud
server, and Table 5 shows the setting of tasks. To ensure the unobstructed operation of
the experiment and the accuracy of the data, we keep the smooth network connection and
dynamic resource allocation according to [38]. The deadline is the return time expected
by the user. In the experiment, the deadline setting is related to the magnitude of the task
itself, and a reasonable deadline is essential to ensure the accuracy and adaptability of the
experimental results. We set the estimated execution time of the task on the server with
average performance as the standard deadline (the value of standard deadline constraint
is 1, which represents 45 ms). The other values (0.8, 1.2, etc.) of the deadline represent
different levels of demand; the smaller the value, the more lenient deadline, and the easier
it is to be satisfied.
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Table 4. Resource configuration.

Parameter Edge Servers Configuration Cloud DC Configuration

Number 10 1
MIPS (Millions of Instructions Per
Second) 8500 50,000

No. of PEs 2 2
No. of Host 2 2
No. of Datacenter 2 10
Bandwidth (Mbps) 10,000 100,000
RAM (GB) 4 128

Table 5. Task parameter setting.

Task Conf. Value

Average task length (MI) 300 ± 20
Data size (MB) 55 ± 10
Deadline random
Sensitivity type (priority) random
PEs Number 2

To ensure the preciseness of the experimental results, we conducted the proposed
algorithm using more extreme data than in previous work, testing the optimization capabil-
ity of the algorithm by increasing the number of tasks, the task-generation frequency, and
other factors. In addition, we conform to the Poisson distribution [49], as in Equation (9),
when generating random data to ensure the independence and randomness of the task.
Where t represents the time interval and n represents the number of tasks expected to be
generated at a certain time interval. Since, as mentioned earlier, our standard deadline is
45 ms, we set λ = 45. Thus, n× P(N(t) = n) is the number of tasks generated in time t.

P(N(t) = n) =
(λt)ne−λt

n!
(9)

5.5. Experimental Results

This section shows the experimental results under different conditions and demon-
strates the comparison of a TSGS strategy with a default policy (OEC-RR), DSOTS, latency-
aware SAE-CEC algorithms, and SLA-aware GrandSLAm algorithms. The SLA violation
rate, processing time, and task processing cost are investigated, respectively, under varying
numbers of tasks, task-arrival frequency, and deadline fluctuation rate. Since GrandSLAm
is sensitive to SLA at high throughput; we compare the results with SLAV of GrandSLAm
in each set of experiments.

5.5.1. The Impact of Task Number

Figure 4a depicts the progression of the SLA violation rate as the number of tasks
increases and when tasks are assigned according to different scheduling policies. If the
server fails to complete a task before the user-specified deadline, the task is considered
to be failed, and the service-level agreement is violated. The SLA violation rate is the
percentage of all tasks that failed. A high SLA violation rate tends to cause task congestion
and server overload, which is a devastating blow to the real-time performance of tasks
in smart factories. Data show that SAE-CEC does have some optimizations over the
default scheduling algorithm, but the DSOTS algorithm reduces the violation rate by
22.13%, and the greedy-optimized TSGS even reduces the SLA violation rate to 1.8%. The
violation rate of all other algorithms increases as the task volume rises, while the TSGS
and DSOTS violation algorithm considering time sensitivity decreases instead. Since the
violation rate of TSGS, DSOTS, and GrandSLAm is too low, it needs to be magnified with
Figure 4b to show their detailed values. With the increment of task number, the rates of
OEC-RR and SAE CEC are both above 19.26% and hardly changed; TSGS can reduce the
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violation rate to less than 2%, and the optimization efficiency is better when the number
of tasks more significant.As GrandSLAm focuses more on ensuring the improvement of
throughput under SLA, the advantage of GrandSLAm will be revealed when the number
of tasks increases.As Figure 4b shows, the SLAV ratio of GrandSLAm approaches that
of TSGS after the number of tasks exceeds 1100. Each microservice stage slack of the
directed acyclic graph (DAG) is calculated by GrandSLAm, and it is then reordered in
accordance with slackm. However, due to the influence of the hyperparameter SLA, the
largest sharing degree (the actual batch size during execution) after reordering is not stable
when computing slackm. However, when the number of instantaneous tasks becomes
larger, the impact of the hyperparameter on the largest sharing degree decreases, leading
to an increase in efficiency.

This is because the server is chosen after considering the deadline and time sensitivity
of the tasks, which can satisfy the user’s demand to a greater extent in TSGS. In addition,
the execution and load-balancing design of the control time-insensitive tasks also release
adequate processing resources for the tasks arriving later, which ensures the task-waiting
queue on the server does not get excessively lengthy when the number of tasks increases,
causing the tasks to fail.

The optimization of the task-processing time and task-waiting time of our algorithm
is shown in Figure 4c,d. The overall average delay is 63.7% and 59.0% lower in the TSGS
algorithm compared with the OEC-RR and SAE-CEC algorithms, respectively. The TSGS
strategy can execute the same number of tasks under the SAE-CEC policy in only 64.1% of
the time. Since TSGS chooses the appropriate edge server, tasks do not need to wait too long
after they are submitted to the server, and the reduced latency results in a shorter execution
time of the whole task. Independent threads for data transfer reduce the task execution
time by reducing Ttrans f er as well. Tasks are completed in less time, which is the primary
reason why TSGS is able to significantly reduce the violation rate and increase the success
probability. Moreover, Figure 4e depicts the results of the task-processing-cost trend as the
number of tasks increases. Similarly, TSGS and DSOTS exhibit better performance than
the other scheduling strategies. Because SAE-CEC only considers the MIPS and ignores
other combined processing capabilities, including bandwidth, network congestion may be
encountered or a more distant server selected to run the task, which adds to the amount of
time it takes to transform data and increases the cost of the bandwidth.

As the number of tasks increases, the time and cost of various task-scheduling strate-
gies increases, but TSGS algorithms perform excellently in terms of user satisfaction; pro-
cessing time; and cost, which increases users’ satisfaction and and provides better service
and cost savings for real-time work in smart factories.
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Figure 4. The impact of task number on SLA violation rate, time, and cost. (a) SLA violation rate;
(b) SLA violation rate (DSOTS vs. TSGS vs. GrandSLAm); (c) task processing time; (d) task waiting
delay; and (e) task processing cost.

5.5.2. The Impact of Task-Submission Frequency

When the time interval of task arrival is reduced, this implies that a significant number
of tasks are submitted in a short period of time, causing the server’s task-waiting queue
to become overburdened and task-waiting times to increase. At this time, it is especially
important to choose the right server to handle the tasks and to balance the task-waiting
queue of the server reasonably. By altering the time interval of each dynamic request to
imitate the frequency of different task dynamic arrivals, we simulated 800 task requests
to explore how different task densities affected the performance of the algorithm. The
optimization of the TSGS and DSOTS algorithms for dynamic task processing is depicted
in Figure 5.

As shown in Figure 5a, the violation rates of different scheduling algorithms all
decrease when the frequency of task arrivals decreases. However, since OEC-RR just selects
servers cyclically and makes no judgments on task or server attributes, the changes in task
density have less of an influence on this method. It is observed that the TSGS algorithm
reduces the failure rates by 10–20%, and the SLA violation rate is lower than the other
algorithms when the time interval between task arrivals is minimal. The proposed two
algorithms are capable of dealing with the situation of dense task arrivals and handling
task-intensive workloads with ease, which proves that the adoption of TSGS strategies will
lead to higher task-carrying capacity in task-intensive scenarios.

It is illustrated that the average processing time per task reduces as the task submission
interval rises in Figure 5c. This is due to the fact that when the task interval increases, the
blocking queue correspondingly loosens and the average waiting time for tasks decreases,
shortening the task execution time. When the task intensity rises, the task processing cost
increases as well, as seen in Figure 5e. Instead, the scheduling strategies of TSGS and
DSOTS result in a decrease in the average processing cost per task as the tasks grow more



Electronics 2022, 11, 2464 19 of 24

intensive. This is because TSGS creates a separate thread for data transfer while the task is
waiting, which reduces the bandwidth congestion cost and cache cost in the task-intensive
case; this is very friendly for large-scale task processing in smart factories.
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Figure 5. The impact of task submission frequency on SLA violation rate, time, and cost. (a) SLA
violation rate; (b) SLA violation rate (DSOTS vs. TSGS vs. GrandSLAm); (c) average processing time;
(d) average waiting delay; and (e) task processing cost.

The trend of each metric of task execution demonstrates the superiority of the TSGS
strategy in satisfying task-intensive work scenarios, making it desirable for application to
large-scale real-time workflows in smart industrial production.
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5.5.3. The Impact of Deadline Constraint

To obtain more details about the performance of all algorithms, the violation rate,
average execution time, and average processing cost are compared under different degrees
of deadline constraints, as Figure 6 shows. The number “1” (representing 45 ms) is set
to the standard degree of deadline constraint, and the case of 500 dynamically submitted
tasks is tested by varying the degree of deadline constraint. The results show that TSGS
and DSOTS scheduling strategies outperform the other two algorithms in all cases. From
Figure 6a,b, it is obvious that TSGS can respond flexibly to changes in the deadline strain
to improve the processing success rate of time-sensitive applications, and it even reduces
the failure rate to 0.95%, which means that TSGS can respond in a timely manner when
users post urgent tasks. It is reasonable to accept that, except for the SAE-CEC algorithm,
the violation rate of tasks will decrease as the deadline constraint gradually relaxes and
the user’s completion time requirement is relaxed. SAE-CEC is less affected by external
influences, and SLAV decreases slowly. For the reason that the deadline is a demand made
by the user, it has no effect on the average processing time or cost of the workflow. The
TSGS reduces the processing time by 17.6% compared to SAE-CEC and by 31.3% compared
to OEC-RR. However, the processing time and cost of the task do not differ much under
the same scheduling policy as well.

There is no doubt that the TSGS scheduling strategy significantly outperforms the
other two algorithms because, in the same case, the TSGS algorithm is able to select a more
suitable edge server to complete the task.
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(e)
Figure 6. The impact of deadline changes on SLA violation rate, time, and cost. (a) SLA violation rate;
(b) SLA violation rate (DSOTS vs. TSGS vs. GrandSLAm); (c) average processing time; (d) average
waiting delay; and (e) task processing cost.

6. Conclusions

Edge computing makes it possible for smart factories to handle time-sensitive appli-
cations with 5G support. However, appropriate scheduling algorithms are required to
ensure the efficient execution of tasks. In this paper, we proposed a hybrid edge-cloud
collaborative computing scheduling framework and designed a DSOTS scheduling algo-
rithm to serve a TSGS strategy; finally, the TSGS scheduling algorithm is implemented by
performing greedy optimization on DSOTS. Through conducting performance evaluations,
we found that the TSGS scheduling policy has optimized the execution time and cost of
time-sensitive tasks in the smart factory to a great extent under the edge-cloud collaborative
environment. User satisfaction is improved, and computation consumption is saved.

However, there are several limitations that will be our future work. First, we can spec-
ify more deadline rules to ensure efficient scheduling. When real-time tasks become more
urgent, more efficient algorithms than greedy (using machine learning or other algorithms)
are required to make faster decisions. At the same time, the network’s asynchronous, ran-
dom, and unpredictable characteristics and design fault-tolerant techniques for anomalies
in task scheduling must be taken into account.
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CPS Cyber physical system
IoT Internet of Things
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SDN Software-defined network
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