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Abstract: Due to aggressive scaling down, multiple-node-upset hardened design has become a
major concern regarding radiation hardening. The proposed latch overcomes the architecture and
performance limitations of state-of-the-art double-node-upset (DNU)-resilient latches. A novel
stacked latch element is developed with multiple thresholds, regular architecture, increased number
of single-event upset (SEU)-insensitive nodes, low power dissipation, and high robustness. The
radiation-aware layout considering layout-level issues is also proposed. Compared with state-of-
the-art DNU-resilient latches, simulation results show that the proposed latch exhibits up to 92%
delay and 80% power reduction in data activity ratio (DAR) of 100%. The radiation simulation using
the dual-double exponential current source model shows that the proposed latch has the strongest
radiation-hardening capability among the other DNU-resilient latches.

Keywords: double-node upset (DNU); radiation-hardened latch; radiation hardening by design
(RHBD); single event upset polarity; single-node upset (SNU); soft error; static random-access
memory (SRAM)

1. Introduction

Recent advances in scaling down technology have led to a substantial decrease in
supply voltage and node capacitance, resulting in a smaller amount of critical charge,
the minimum charge necessary to maintain a logic state. This implies that a soft error
caused by single-event upset (SEU) may occur not only in harsh radiation environments at
high altitudes but also at the terrestrial level [1]. Considering the decreasing feature size
in the current nanometer technology, multiple-node-upset (MNU) is more likely to occur
because of charge sharing among nodes [2]. An empirical study reported that 40-nm flip-
flops implemented using single-node upset (SNU)-hardened dual-interlocked memory cell
(DICE) [3] do not entirely prevent the soft error and exhibit only approximately 30% better
cross sections compared with non-radiation hardened flip-flops [4]. Thus, recent research
on radiation hardening by design (RHBD) has focused on the double-node-upset (DNU)-
hardened designs, extending the SNU-hardened latches as primitive circuit elements.

The DNU-hardened latch designs can be classified into three circuit elements: the
Muller C-element (MCE) [5,6], DICE [7,8], and Schmitt-trigger (ST) cell [9]. The MCE-
based DNU latches [5,6] are capable of blocking SEU propagation to adjacent nodes by
changing the high-impedance state of the MCE outputs when the input nodes suffer from
SEU. The output’s floating state may cause state flipping at system level when the system
accesses them. Because of charge sharing between the access node and the floating output
node, the dynamic voltage ripple can flip the state of the floating node. The DICE-based
DNU latches extend the DICE to a delta-like [7] or a donut-like [8] architecture. When new
input data are written, they consume more power and require longer write time because
all the internal feedback loops should be activated and flipped. Additionally, when an
upset occurs, the upset node may cause an adjacent node to transit and be suffered from
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the short path. The ST-based DNU latch [9] is based on the ST inverters. Therefore, it
features a high noise margin, low complexity, and low power dissipation. However, its
radiation hardening capability is no longer maintained when there is a ratio issue between
two feedback inverters.

Recently, an approach [10] to reduce the number of SEU-sensitive nodes in DNU-
hardened latches was proposed. The concept was derived from the upset polarity [11]
of a CMOS logic inverter. When an energetic particle hits an off-pMOSFET, only 0-to-1
positive upset occurs at the drain node because the pMOSFET only collects positive charges.
In contrast, when an energetic particle hits an off-nMOSFET, only 1-to-0 negative upset
occurs at the drain node because the nMOSFET only collects negative charges. Based
on this principle, a node avoids a negative upset if pMOSFETs are stacked at the node
and avoids a positive upset if nMOSFETs are stacked. However, the polarity-aware latch
inevitably suffers from Vth drop because the latch should stack the same type of MOSFETs.
This Vth drop causes high power consumption during the state-holding phase.

This paper proposes a fully polarity-aware DNU-resilient latch (FPADRL) featuring up to
a reduction of 92% delay and 80% power in data activity ratio (DAR) of 100% over existing
DNU-resilient latches. Furthermore, the proposed FPADRL overcomes the limitations in the
previous research works: (1) resilience to SEU without the charge sharing issue at the system
level; (2) fully polarity-aware latch elements, resulting in the maximum possible number of
SEU-insensitive internal nodes; (3) fewer short path cases during the SEU with lower power
dissipation; (4) much robust radiation-hardening capability; (5) radiation-aware layout.

The rest of this paper is organized as follows. The proposed DNU-resilient latch
is described in Section 2. Next, the simulation and evaluation results are presented in
Section 3. Finally, Section 4 concludes this paper.

2. Proposed DNU-Hardened Latch Design
2.1. Overall Structure and Design Idea

Figure 1 shows the structure of the two latch elements in the proposed DNU-resilient
latch. As shown in Figure 1a, the pMOSFET-stacked latch with the cross-coupled inverter
structure has additional stacked pMOSFETs, whose operations are controlled by other
latch nodes. When node X1 stores logic “1”, this node is insensitive to SEU due to the
error polarity principle [11]. Node X2 is only sensitive to the 0-to-1 transition. Similarly,
as shown in Figure 1b, when node X6 initially stores logic “0”, this node is insensitive
to SEU, and node X7 is only sensitive to the 1-to-0 transition. When a radiation particle
strikes the floating nodes A1 or A6, the initial value of these nodes may change. However,
the floating nodes are not connected to any inputs; thereby, their upsets do not affect any
data nodes Xn (n = 1, . . . , 8). The nodes between the on-transistors, such as A2 and A7,
are also insensitive to SEU. Therefore, the proposed four-node latch element has only one
single polarity SEU sensitive node, one floating node, and two SEU-insensitive nodes.

Simultaneously, the stacked MOSFETs play an essential role in blocking the SEU
error propagation. Unlike the DICE-based latch structures, the proposed latch does not
propagate the error in all SNU cases and some DNU cases due to the off-stacked transistors.
Moreover, the off-stacked transistors generally block the propagation of the upset on the
floating node to the data nodes. The detailed mechanism will be explained in Section 2.3.

Figure 2 shows the schematic of the proposed FPADRL. The FPADRL consists of the
stacked latches shown in Figure 1, the access transistor module, and the clocked output.
The upper P-stacked and lower N-stacked latch parts (PSLP and NSLP) consists of the
stacked pMOSFET latches and the stacked nMOSFET latches, respectively. Thus, only posi-
tive upset occurs in the PSLP, and only negative upset occurs in the NSLP. The operations
of the stacked MOSFETs are controlled by the internal nodes of the opposite latch part.
Given that the two latch parts store the same data in order (i.e., X1 = X5, X2 = X6, X3 = X7,
and X4 = X8), the respective node values are fed into the gate inputs of the correspondent
stacked transistors to form the DICE-like dual-interlocked loops. Compared with recent re-
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search works [5,6,10], the proposed FPADRL has regular latch element architecture, and the
number of sensitive nodes is maximally reduced from sixteen to eight.
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VDD V
Lth
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Figure 1. Latch elements: (a) pMOSFET-stacked latch, (b) nMOSFET-stacked latch.

Figure 2. The proposed fully polarity-aware DNU-resilient latch (FPADRL) (when X1 = X3 = X5 = X7
= 1, X2 = X4 = X6 = X8 = 0, and D = Q = 1).

Because of the stacked MOSFETs in the pull-down (up) paths, all the data nodes have
the body effect, i.e., Vth drop. To reduce the leakage power by decreasing the overdrive
voltage, the proposed latch uses multiple Vth transistors. The transistors shown in red
in Figure 2 use high Vth, and others use low Vth. Additionally, the leakage power can
be minimized by connecting one strong signal node to the off-transistor and one weak
state node to the on-transistor of the output inverter. The high Vth transistors shrink the
activated feedback loop time, resulting in a shorter write time compared to the DICE-based
DNU latches.

2.2. Circuit Operation

The operation of the proposed latch is outlined when the input D is logic “1” (i.e.,
X1 = X3 = X5 = X7 = 1 and X2 = X4 = X6 = X8 = 0). Considering the error polarity,
the access transistors of the PSLP are pMOSFETs, and the access transistors of the NSLP
are nMOSFETs. When CLK = 1, the latch is in the transparent mode, and these access
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transistors drive the internal nodes. During this mode, the output Q is only driven by D
through the transmission gate. The driven nodes turn on the nMOSFETs (N2, N4, N6, N8,
N9, and N11) and the pMOSFETs (P1, P3, P5, P7, P10, and P12) simultaneously. As a result,
nodes X1 and X3 are strong “1” state, and the nodes X2 and X4 are weak “0.” In contrast,
nodes X5 and X7 are weak “1” state, and nodes X6 and X8 are strong “0.” In the CLK =
0 phase, the latch is in the hold mode, the access transistors and the transmission gate
are opened, and the clock-gated inverter drives the output Q using the logic values of the
internal nodes. When D = 1, the data nodes X2, X4, X5, and X7 and the floating nodes A1,
A3, A6, and A8 are SEU-sensitive. Likewise, when D = 0, the latch operates complementary.

2.3. SEU-Resilience Analysis

As explained in Section 2.1, the proposed latch reduces the SEU-sensitive internal nodes
as fully as possible, from sixteen to eight. Moreover, the sensitive nodes have not both-way
transitions but one-way error polarity with 0-to-1 or 1-to-0 transitions. Therefore, the proposed
latch has 8 SNU nodes and 28 DNU node pairs. As shown in Table 1, the proposed latch has
ten different upset cases. Each case includes example node(s), SEU polarity and recovery
mechanism; “↑” (“↓”) denotes 0 (1)-to-1 (0) SEU transition, “←” and “→” denote that SEU
propagates to that node, “8” and “9” denote that SEU does not propagate to that node.
Table 1 shows only the cases when D = 1. The SEU recovery of the complementary input, D =
0, has the same recovery mechanism since the circuit topology is symmetric.

When an ionizing particle strikes at the floating node, like Case 2 in Table 1, the upset
does not affect data nodes since the floating node is not connected to any inputs. Con-
sidering Case 2 mechanism, Case 4 and Case 5, DNU between data node and adjacent (a)
or remote (r) floating node, can be simplified to Case 1. In Case 6 and Case 7, the upset
occurs on the node that controls the off-stacked transistors, so the error propagates to the
adjacent data node and temporarily creates the short (s) path. However, the proposed latch
can recover in these cases. For example, in Case 7, the error-propagated node X3’s voltage
does not turn off N11, even though node X3 is short. Therefore, only the recover-charging
current through P7 and N11 flows to node X7, causing node X3’s race to nullify by turning
off P11 gradually. The recovery of node X3 results in the recovery of node X2. Like Case
8, deposited charge on a floating node A6 can be shared with a data node X6 by turning
on N10. In this case, the node X5 voltage can turn on P6 and P9. However, since those
weak inversion transistor currents are smaller than the strong driven currents from the
neighboring transistors, the logic value of node X1 does not change, and node X6 can be
recovered. The proposed latch can also recover cases when the SNU or DNU occurs at the
output node Q since the proposed latch guarantees the SNU resiliency of all internal nodes.
Consequently, the proposed latch is resilient to all SNU and DNU cases. The detailed
transistor sizing scheme for SEU-resilience will be explained in Section 3.1.

2.4. Radiation-Aware Layout

Figure 3 shows the proposed layout considering layout-level issues such as incidence
angle, charge sharing (CS), and parasitic bipolar effect (PBE) [2]. Sensitive nodes are colored
in orange when D = 1. The proposed layout utilizes double height cell design [12]: N-
well at the top and bottom, P-well in the middle. The middle P-well acts as a canceling
area between two N-wells. Based on this principle, the chance of multiple-node-upsets
in different wells (severe cases such as Case 6–8) can be lowered. Moreover, our node
placement can mitigate CS and PBE in sensitive data nodes. We separated NSLP’s two
sensitive data nodes as far as possible in P-well. Two sensitive data nodes in PSLP are in
the different N-well. To reduce the effective amount of injected charge, we placed on- and
off-transistors repeatedly. Off-transistors with Ax nodes act as a strong collector, and on-
transistors with Ax nodes act as a weak collector when the upset occurs on the data node.
Therefore, the data node’s upset threshold increases [13]. However, we need to reconfigure
the layout in more advanced technology nodes because of the polysilicon bends.
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Table 1. SEU-Resilience Mechanism (D = 1).

Case: Node(s) Example Polarity Recovery Mechanism

1: data X2 ↑
X1(P1-off) 8 X2→ A3(N3-on) 9 X3(P11-off)

⇒ X2↓ (P2-off, P10, N2-on)

2: floating A1 X A1(@ connected input) 9 X1(P9-off)

3: data pair
(same part)

X2, X4 ↑, ↑

X1(P1-off) 8 X2→ A3(N3-on) 9 X3(P11-off)
X3(P3-off) 8 X4→ A1(N1-on) 9 X1(P9-off)

⇒ X2↓ (P2-off, P10 and N2-on) and X4↓ (P4-off, P12 and N4-on)

4: data, (a)floating
(same part)

X2, A1 ↑, X A1(@ connected input) 9 X1(P9-off)
⇒ Case 4 ≈ Case 1

5: data, (r)floating
(same part)

X2, A3 ↑, X A3(@ connected input) 9 X3(P11-off)
⇒ Case 5 ≈ Case 1

6: data pair
propagation in NSLP

(different part)
X2, X5 ↑, ↓

X1(P1-off) 8 X2→ A3(N3-on) 9 X3(P11-off)
X8(N8-off) 8 X5→ A6(P6-on)→ X6↑ (s, N10-on) 9 A7(P7-off)
⇒ X2↓ (P2-off, N2 and P10-on) (∵ VX6↑ < VDD −VthpL )

⇒ X6↓ (P6 and N10-off, N6-on)⇒ X5↑ (N5-off, P5 and N9-on)

7: data pair
propagation in PSLP

(different part)
X2, X7 ↑, ↓

X1(P1-off) 8 X2→ A3(N3-on)→ X3↓ (s, P11-on) 9 A4(N4-off)
X6(N6-off) 8 X7→ A8(P8-on) 9 X8(N12-off)
⇒ X7↑ (N7-off, P7 and N11-on) (∵ VX3↓ > VthnL )

⇒ X3↑ (P11 and N3-off, P3-on)⇒ X2↓ (P2-off, P10 and N2-on)

8: data, (a)floating
(different part) X2, A6 ↑, X

X1(P1-off) 8 X2→ A3(N3-on) 9 X3(P11-off)
X5↓ (s, N5-on)← X6 ↑ (by A6, N10-on) 9 A7(P7-off)
⇒ X6↓ (P6-on, N10 and N6-on) (∵ P6 weak inversion)

⇒ X2↓ (P2-off, P10 and N2-on) and X5↑ (N5-off, P5 and N9-on)

9: data, (r)floating
(different part)

X2, A8 ↑, X A8(@ connected input) 9 X8(N12-off)
⇒ Case 9 ≈ Case 1

10: floating pair A1, A3 X, X
A1(@ connected input) 9 X1(P9-off)

A3(@ connected input) 9 X3(P11-off)

Figure 3. The proposed double-height radiation-aware layout of FPADRL (when X1 = X3 = X5 = X7 =
1, X2 = X4 = X6 = X8 = 0, and D = Q = 1).
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3. Evaluation Results
3.1. Radiation Simulation Results

The proposed latch was designed using the 45-nm NCSU CMOS technology. Due to
its unique recovery process, the DICE-based latch provides a large margin of transistor
sizes while keeping the SEU resilience. Therefore, we can aggressively optimize the sizes
with minimum PDP. However, this approach may result in many different transistor sizes
not suitable for the state-of-the-art layout. Considering both PDP and layout, we decided
on smaller groups of uniform size for transistor sizes. Table 2 shows the transistor sizes,
in which the aspect ratio of 1 is W/L = 90 nm/50 nm. The low (high) Vth of n(p)MOSFET
are 0.322 V (−0.302 V) and 0.608 V (−0.505 V), respectively.

To validate the proposed latch’s SEU-resilience, the dual-double exponential current
source [14] model was used instead of the conventional double exponential upset model
because it provides a current shape similar to the actual SEU-current. The simulations
were performed using Smartspice from Silvaco. Figure 4 shows the radiation simulation
waveforms for all the cases in Table 1. These waveforms show that the output Q is always
error-free, and all the internal nodes are recovered in all SNU and DNU cases. Therefore, it
is clearly demonstrated that the proposed latch is resilient to both SNU and DNU.

Table 2. Transistor Characteristics.

Transistor Aspect Ratio Vth

P1–P4 2.5 High

P9–P12 1 Low

N1–N4 2 High

P5–P8 2 High

N9–N12 1 Low

N5–N8 2.5 High

3.2. Performance Comparison and Evaluation

Table 3 shows the comparison results at the TTTT (1.1 V/25 °C/TT). Using the same
technology with the proposed latch, the referred designs were re-implemented with the
same size ratio the corresponding manuscripts provided. The simulation was conducted
under a clock frequency of 100 MHz. The clock frequency was set enough for checking
normal operation and recovery operation simultaneously.

Table 3. Performance Comparison results of DNU hardened circuits.

[5] [6] [7] [8] [9] [10] FPADRL

# of Transistors 66 48 42 38 28 36 42

# of Nodes 21 24 10 10 6 12 16

# of Sensitive nodes 21 24 10 10 6 9 8

Area (µm2) 10.48 N/A 11.63 8.80 N/A 10.98 9.69

tdq (ps) 5.90 6.57 22.79 33.86 2.70 2.70 2.66

tsetup (ps) 52.65 16.21 14.02 21.28 30.62 62.78 40.73

Opaque 0.71 0.47 0.44 0.33 0.19 4.14 0.43
Power (µW)

DAR 100% 2.90 1.84 2.26 3.21 1.29 7.95 1.55
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Figure 4. Radiation simulation waveforms of all the SNU and DNU cases.

By stacking the transistors with regular latch architecture, the proposed latch fully
reduces the SEU-sensitive nodes by half from sixteen to eight. Moreover, among the eight
sensitive nodes, four floating nodes are less sensitive to SEU, and the other four nodes are
one-way sensitive, not both ways. The area of the proposed layout is compared based on
the scaled-down results of [10]. Even though the proposed layout is radiation-aware and
others are not, its regular latch architecture makes 12% less area compared with the state-of-
the-art polarity-aware latch [10]. Although the number of transistors in the FPADRL is not
the lowest, its layout area can be easily optimized because of its lower design complexity
than regular latch architecture. In terms of delay, tdq and tsetup are evaluated. Power
consumption profiles are divided into static power during opaque mode and dynamic
power in DAR of 100%.

The MCE-based DNU latches [5,6] require extra transistors to achieve upset resilience.
Fundamentally, the MCE relies on high impedance for radiation hardening. However,
because of this property, the MCE-extended design usually needs a plethora of transistors
for resilience. When the upset occurs, the MCE blocks not only error propagation to
adjacent nodes but also the feedback path for recovery. Therefore, [5,6] consist of 66 and
48 transistors, which are the top two largest number of transistors. The more transistors
used, the higher the power consumption. In terms of delay, [5,6] have a moderate speed
compared to the DICE-extended design [7,8] due to directly driven output Q through the
transmission gates. However, the input D should drive the nodes with large capacitance,
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so its delay is longer than our proposed design. As a result, [5,6] have up to 60% delay and
47% power overhead compared with the proposed FPADRL.

The DICE-extended designs [7,8] have a considerable delay and power consumption.
Because they inherit DICE, the designs should activate all DICE feedback loops when the
data are switching. It indicates that input D should have the large driving capability to
write new data, resulting in performance penalties. Moreover, the input D does not drive
the output Q directly, so the tdq delay is more considerable than other reference designs.
As a result, the proposed FPADRL achieves a reduced delay and power (in DAR 100%) up
to 92% and 52%, respectively, compared with [7,8].

The ST-extended design [9] has similar delay and power compared to the proposed
FPADRL. The design uses the least number of transistors among the reference designs
and our proposed design. However, the design is susceptible to the ratio issue. Hence, its
radiation-hardening capability is weak, as presented in Section 3.3.

Lastly, the conventional polarity-aware latch [10] consumes considerable power due
to its irregular cross-coupled latch structures with only single Vth transistors. By using
regular latch structures and high-threshold voltage transistors to make shorter activated
feedback time and to minimize the leakage power, the proposed FPADRL achieves 80%
power (in DAR 100%) reduction compared with [10].

Regarding setup time, the proposed latch pales in comparison to [6–9]. Like the
DICE-extended designs [7,8], FPADRL activates all feedback loops when writing new data.
However, the setup performance is degraded due to the high Vth device and the stacked
MOSFETs. The MCE-extended design [5] and the polarity-aware latch [10] require a longer
setup time than the proposed latch because of the circuit topology for DNU-resilience and
irregular latch structure.

For a more detailed evaluation of the power consumption, the comparison was made
in the range of the DAR 0% to 100% at the TTTT. Figure 5 shows the proposed latch
outperforms power against the MCE-based DNU latches [5,6] and the DICE-based DNU
latches [7,8]. Because of the Vth drop issue, the recent polarity-aware latch [10] shows huge
power consumption than all other circuits. Although the ST-based DNU latch [9] is shown
to have superiority in the power over the proposed latch, the ratio issue of the ST’s recovery
yields inferior radiation-hardening capability, as shown in Section 3.3.

Figure 5. Power consumption under different data activity ratio (DAR).

A simulation with the process, voltage, and temperature (PVT) corner analysis was
performed according to the commercial standard. The following three extreme conditions
were set: (1) SSSS: 0.99 V/125 °C/SS, (2) TTTT: 1.1 V/25 °C/TT, (3) FFFF: 1.21 V/−40 °C/FF.
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Figure 6 shows the performance comparison with the PVT corner analysis. From the reasons
described in the previous paragraph, the DICE-based DNU latches [7,8] have the most
extensive tdq variation, and the MCE-based DNU latches [5,6] follow next. Although the
conventional polarity-aware latch [10] has a shorter delay and smaller variation, [10] consumes
more power. The ST-based latch [9] has the lowest delay and power due to its simple
architecture. However, it suffers from the ratio issue for the radiation hardening. FPADRL
has longer setup time in three conditions than [6–9]. Note that the setup time of the proposed
latch increases significantly in the SSSS corner due to the high Vth device like [9].

Figure 6. Performance Comparison in PVT corner analysis.

3.3. Radiation-Hardening Capability Comparison

The robustness of the proposed latch against SEU was simulated and compared with
those of other latches. In order to analyze the effect of robustness according to the process
corner, the simulation was conducted for five corners at 1.1 V/25 °C: SS, SF, TT, FS, FF.
For the comparison, different amounts of charge according to the inverter size (INVX) were
injected into key node pairs of each design. Table 4 shows the peak and plateau currents of
the DDECS and the total amount of charge. Given that the SEU width depends on the LET
radiation [15,16], the SEU width of the INV1, INV2, and INV4 were set to be 50 ps, 100 ps,
and 200 ps, respectively. The INV1’s nMOSFET size is W/L = 90 nm/50 nm and pMOSFET
size is W/L = 180 nm/50 nm. The INV2 is the double size of the INV1, and the INV4 is the
quadruple size of the INV1.

Using the various injection parameter settings in Table 4, the current was injected
to key node pairs. The failure probability is calculated by the number of cases in which
DNU are not recovered among all cases. Figure 7 shows the failure probability among
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the DNU-resilient latches with different corners. The ST-based [9] shows the weakest
radiation-hardening capability. In contrast, the proposed FPADRL and [8] can recover
every case in all corners.

Table 4. Injected charge configuration.

Cell
Name Load Polarity

IPeak−p
(µ A)

IPeak−h
(µ A)

Qtotal
(fC)

SEU Width
(ps)

INV1 INV1
↑ 46 120 8.41

50
↓ 41 162 10.91

INV2 INV2
↑ 127 121 16.22

100
↓ 126 164 21.01

INV4 INV4
↑ 152 122 29.06

200
↓ 159 164 38.11

Figure 7. Failure probability comparison in different process corner.

Table 5 shows the recovery power at the TTTT. The recovery power is defined as
the power difference between upsets and normal operation (no upsets). Although the
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MCE-based DNU latches [5,6] consume less recovery power than FPADRL, FPADRL
overwhelms the radiation-hardening capability than [5,6] as shown in Figure 7. Unlike
the DICE-based DNU latches [7,8] which are suffered from the short path when the upset
occurs, the proposed latch does not create the short path in most cases due to the stacked
MOSFETs. Thus, FPADRL consumes less power for recovery than [8] which has the same
radiation-hardening capability.

Table 5. Radiation-hardening Comparison of DNU-Resilient Latches.

[5] [6] [7] [8] [9] [10] FPADRL

INV1 Recovery Power (µW) 5.67 8.16 14.98 13.31 8.92 14.96 14.29

INV2 Recovery Power (µW) 17.55 19.07 31.05 30.65 20.29 19.46 24.35

INV4 Recovery Power (µW) 54.89 38.58 53.99 55.93 45.64 34.28 41.01

To summarize, FPADRL is the best candidate among state-of-the-art DNU-resilient
latches in a comprehensive view comparison. Although the FPADRL does not show the best
performance, it has the strongest radiation-hardening capability with low recovery power.

4. Conclusions

A fully polarity-aware DNU-resilient latch with high performance and low power
was proposed. The proposed latch is self-recoverable for all SNU and DNU cases. Its
performance and radiation-hardening capability comparison against other latches indicate
that the proposed FPADRL is performance-effective and highly robust with less overhead.
Consequently, the proposed FPADRL exhibits certain advantages compared with state-of-
the-art DNU-resilient latches.

Author Contributions: Conceptualization, J.-J.P., Y.-M.K. and J.K.; methodology, J.-J.P. and Y.-M.K.;
software, J.-J.P. and Y.-M.K.; validation, J.-J.P., Y.-M.K. and G.-H.K.; formal analysis, J.-J.P., Y.-M.K.
and J.K.; investigation, J.-J.P., Y.-M.K., G.-H.K., I.-J.C. and J.K.; resources, J.-J.P., Y.-M.K. and J.K.; data
curation, J.-J.P. and J.K.; writing—original draft preparation, J.-J.P.; writing—review and editing,
J.-J.P., Y.-M.K., G.-H.K., I.-J.C. and J.K.; visualization, J.-J.P., Y.-M.K. and G.-H.K.; supervision, I.-J.C.
and J.K.; project administration, I.-J.C. and J.K.; funding acquisition, J.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by National Research Foundation of Korea, grant number:
2019R1F1A1054130 and Institute for Information and Communications Technology Promotion, grant
number: 2021001764.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to licensing agreements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pudi N S, A.K.; Baghini, M.S. Robust Soft Error Tolerant CMOS Latch Configurations. IEEE Trans. Comput. 2016, 65, 2820–2834.

[CrossRef]
2. Black, J.D.; Dodd, P.E.; Warren, K.M. Physics of multiple-node charge collection and impacts on single-event characterization and

soft error rate prediction . IEEE Trans. Nucl. Sci. 2013, 60, 1836–1851. [CrossRef]
3. Calin, T.; Nicolaidis, M.; Velazco, R. Upset hardened memory design for submicron CMOS technology. IEEE Trans. Nucl. Sci.

1996, 43, 2874–2878. [CrossRef]
4. Loveless, T.; Jagannathan, S.; Reece, T.; Chetia, J.; Bhuva, B.; McCurdy, M.; Massengill, L.; Wen, S.J.; Wong, R.; Rennie, D.

Neutron-and proton-induced single event upsets for D-and DICE-flip/flop designs at a 40 nm technology node. IEEE Trans. Nucl.
Sci. 2011, 58, 1008–1014. [CrossRef]

http://doi.org/10.1109/TC.2015.2509983
http://dx.doi.org/10.1109/TNS.2013.2260357
http://dx.doi.org/10.1109/23.556880
http://dx.doi.org/10.1109/TNS.2011.2123918


Electronics 2022, 11, 2465 12 of 12

5. Yan, A.; Huang, Z.; Yi, M.; Xu, X.; Ouyang, Y.; Liang, H. Double-node-upset-resilient latch design for nanoscale CMOS technology.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 1978–1982. [CrossRef]

6. Yan, A.; Yang, K.; Huang, Z.; Zhang, J.; Cui, J.; Fang, X.; Yi, M.; Wen, X. A Double-Node-Upset Self-Recoverable Latch Design for
High Performance and Low Power Application. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 287–291. [CrossRef]

7. Eftaxiopoulos, N.; Axelos, N.; Zervakis, G.; Tsoumanis, K.; Pekmestzi, K. Delta DICE: A double node upset resilient latch. In
Proceedings of the 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO,
USA, 2–5 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4.

8. Eftaxiopoulos, N.; Axelos, N.; Pekmestzi, K. DONUT: A double node upset tolerant latch. In Proceedings of the 2015 IEEE
Computer Society Annual Symposium on VLSI, Montpellier, France, 8–10 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 509–514.

9. Li, Y.; Cheng, X.; Tan, C.; Han, J.; Zhao, Y.; Wang, L.; Li, T.; Tahoori, M.B.; Zeng, X. A Robust Hardened Latch Featuring Tolerance
to Double-Node-Upset in 28nm CMOS for Spaceborne Application. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1619–1623.
[CrossRef]

10. Guo, J.; Liu, S.; Zhu, L.; Lombardi, F. Design and evaluation of low-complexity radiation hardened CMOS latch for double-node
upset tolerance. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1925–1935. [CrossRef]

11. Kelin, L.H.H.; Klas, L.; Mounaim, B.; Prasanthi, R.; Linscott, I.R.; Inan, U.S.; Subhasish, M. LEAP: Layout design through
error-aware transistor positioning for soft-error resilient sequential cell design. In Proceedings of the 2010 IEEE International
Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 203–212.

12. Uemura, T.; Tosaka, Y.; Matsuyama, H.; Shono, K.; Uchibori, C.J.; Takahisa, K.; Fukuda, M.; Hatanaka, K. SEILA: Soft error
immune latch for mitigating multi-node-SEU and local-clock-SET. In Proceedings of the 2010 IEEE International Reliability
Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 218–223.

13. Kawakami, Y.; Hane, M.; Nakamura, H.; Yamada, T.; Kumagai, K. Investigation of soft error rate including multi-bit upsets in
advanced SRAM using neutron irradiation test and 3D mixed-mode device simulation. In Proceedings of the IEDM Technical
Digest. IEEE International Electron Devices Meeting, San Francisco, CA, USA, 13–15 December 2004; IEEE: Piscataway, NJ, USA,
2004; pp. 945–948.

14. Black, D.A.; Robinson, W.H.; Wilcox, I.Z.; Limbrick, D.B.; Black, J.D. Modeling of single event transients with dual double-
exponential current sources: Implications for logic cell characterization. IEEE Trans. Nucl. Sci. 2015, 62, 1540–1549. [CrossRef]

15. Gadlage, M.; Schrimpf, R.; Benedetto, J.; Eaton, P.; Mavis, D.; Sibley, M.; Avery, K.; Turflinger, T. Single event transient pulse
widths in digital microcircuits. IEEE Trans. Nucl. Sci. 2004, 51, 3285–3290. [CrossRef]

16. Cohn, L. Single-event effects in advanced digital and analog microelectronics. In Proceedings of the Microelectronics Reliability
and Qualification Workshop, Manhattan Beach, CA, USA, 4–5 December 2007 .

http://dx.doi.org/10.1109/TVLSI.2017.2655079
http://dx.doi.org/10.1109/TCSII.2018.2849028
http://dx.doi.org/10.1109/TCSII.2020.3013338
http://dx.doi.org/10.1109/TCSI.2020.2973676
http://dx.doi.org/10.1109/TNS.2015.2449073
http://dx.doi.org/10.1109/TNS.2004.839174

	Introduction
	Proposed DNU-Hardened Latch Design
	Overall Structure and Design Idea
	Circuit Operation
	SEU-Resilience Analysis
	Radiation-Aware Layout

	Evaluation Results
	Radiation Simulation Results
	Performance Comparison and Evaluation
	Radiation-Hardening Capability Comparison

	Conclusions
	References

