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Abstract: The increasing usage of wireless technology has prompted the development of a new
generation antenna compatible with the latest devices, with on-body antennas (wearable antennas)
being one of the revolutionary applications. This modern design is relevant in technologies that
require close human body contact, such as telemedicine and identification systems, due to its superior
performance compared to normal antennas. Some of its finer characteristics include flexibility,
reflection coefficient, bandwidth, directivity, gain, radiation, specific absorption rate (SAR), and
efficiency that are anticipated to be influenced by the coupling and absorption by the human body
tissues. Furthermore, improvements like band-gap structure and artificial magnetic conductors
(AMC) and (DGS) are included in the wearable antenna that offers a high degree of isolation from the
human body and significantly reduces SAR. In this paper, the development of on-body antennas and
how they are affected by the human body were reviewed. Additionally, parameters that affect the
performance of this new antenna model, such as materials and common technologies, are included as
an auxiliary study for researchers to determine the factors affecting the performance of the wearable
antenna and the access to a highly efficient antenna.

Keywords: AMC; cloth substrate; DGS; EBG; PBG; SAR; wearable antenna

1. Introduction

The wearable/on-body antenna has undergone rapid development over the years
because of its essential application, especially in the medical field, where these devices
are directly connected to the human body with remote control features. Figure 1 shows
the wireless body area [1]. Antennas are the most important part of these devices, where
signals are exchanged without damaging the human body and its environment. Its main
function is to track an individual’s health status while being worn on various parts of
the body. The new generation of antennas has several advantages, including lightweight,
twistable, flexibility and steady performance even when fixed on the irregularly shaped
human body.

The human body experiences constant changes in terms of shape and conductivity.
When the magnetic field enters and is distributed throughout the body, it is influenced by
the body’s physiology, frequency, and polarization, thus enabling the antenna to continu-
ously detect the body compared to its environment [2]. The antenna gain and efficiency are
affected by the absorption of the human body because the gain affects the energy sent with
radiation direction. Therefore, researchers are attempting to develop various techniques to
achieve a high antenna gain leading to maximum efficiency.

The substrate dielectric constant and its thickness decide the bandwidth and effi-
ciency of a patch antenna. The dielectric constant of the substrate should range between
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2.2 ≤ εr ≤ 12, which lowers the dielectric constant and increases spatial waves; the de-
creasing of the surface wave losses is contributed by the low dielectric constant connected
to guided wave propagation within the antenna substrates and that resulting in a high
impedance bandwidth of the antenna [2]. Meanwhile, substrate thickness normally ranges
from 0.003 λ to 0.005 λ, where λ is the wavelength used to increase antenna bandwidth [3].
Regarding the dissipation factor (Loss tangent tan δ), the higher the loss tangent values,
the more lossy the dielectric substrate will be, thus determining radiation efficiency [2].

Figure 1. Wireless Body Area, adapted from [1].

In this paper, the wearable antenna history and specific absorption rate (SAR), antenna
radiation on the human body, materials and methods used in their manufacture are dis-
cussed. Then, the effect of these factors on the antenna gain and the common techniques
and styles used to obtain a high gain suitable for applications related to the human body
were analysed.

2. Historical Review of Wearable/Cloth Antenna

Wearable antennas are not new to the market, but their lack of efficiency has limited
their application in performing the increasingly complex tasks required over the years.
Researchers and manufacturers continue to search for new methods to enhance its features
for better utilisation. Nevertheless, several challenges needed to be overcome, including
curves of the human body and environmental factors such as humid weather that may
directly affect the device’s performance. Measures that have been taken to improve wear-
able antennas’ performance include utilising cloth material, installing reflectors adjacent
to the antenna and position slots in the antenna ground. The focus is now on designing
antennas that can be implanted in clothing such as hats, shirts or shoes to encourage
human-related applications.

Dielectric Permittivity Parameter Measurement

Textile dielectric permittivity can be measured in numerous ways, and each can be
determined using different algorithms. The correct choice affects accuracy, convenience,
frequency range, measuring speed, etc. [4].

Methods for measuring permittivity:

• Parallel plate method;
• Transmission/reflection line method;
• Open-ended probe method;
• Free space method;
• Resonant (Cavity) Technique;
• Microstrip patch antenna covered with the material under test.

High-frequency permeability is measured using the resonant (cavity) approach; the
parallel plate method is another high-accuracy method. These methods have a small fre-
quency range, and this shortcoming limits the utility of these methods to analyse broadband
textile transmission line substrate dielectric constant variations. Cotton cloth has the largest
dielectric constant and loss, according to preliminary data [4].
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The wearable antenna can be designed and coated with different materials like alloys,
inkjet, and polymer-embedded fabrics, depending on its application and requirement. For
instance, textiles are suitable for body wearable antennas built into the clothes. Table 1
illustrates the dielectric properties of normal fabrics.

Table 1. The Dielectric Properties of Normal Textile Fabrics.

Non-Conductive Fabric εr1 tan δ

Felt 1.22 0.016
Cordura 1.90 0.0098
Cotton 1.60 0.0400

100% Polyester 1.90 0.0045
Quartzel® Fabric 1.95 0.0004
Cordura/Lycra 1.50 0.0093

Silk 1.75 0.012
Tween 1.69 0.0084

Panama 2.12 0.05
Jeans 1.7 0.025

Fabric antennas require a conducting material to function as a radiator, which is
essential for their electrical characteristics [3]; thus, the electric and electromagnetic features
of the materials are crucial in antenna design. Alternately, microstrip patch antennas are
lightweight and robust, with a low fabrication cost, and are easy to integrate with radio
frequency; hence, they are a good candidate for body-worn applications [5].

Flexibility and easy installation in clothes are the main factors of wearable antennas
used in the wireless personal area network (WPAN). Furthermore, substrate dielectric
constant and its thickness have major impacts on antenna bandwidth and efficiency. To
enhance microstrip bandwidth, the substrate thickness for a fixed, relative permittivity is
chosen [5]. However, antennas are sensitive to moisture. When an antenna fabric absorbs
water, the high dielectric constant of water alters the antenna parameters. Since the textile
antennas are in contact with the skin, the probability of the antenna absorbing moisture
like sweat is very high. Moreover, there is a risk for antennas to get wet when the clothing
is washed. Beyond these effects, tightening the fabric is easier than the other systems [5].
The fabrication technique for each textile material differs. In the textile adhesive technique,
the liquid textile adhesive is used to cover the wearable antenna surface. In contrast, the
more common sewing technique causes wrinkle formations on the fabric surface. This
fabrication technique is also known as computer-aided design (CAD), where a picture is
uploaded into software as an embroidery guide for the sewing process.

Table 2 shows the materials used to design wearable antennas. Common materials
used in the design of wearable antennas were compared with the most important factors
affecting the antenna’s performance in terms of the wettability, flexibility, weight and cost
to select the best material.

Table 2. Antenna Materials Comparison.

Material Bending Ability Robustness to Wetness Cost Weight

Textile fabric Medium Medium Medium Low

Polymer High High Medium High

Inkjet Medium Medium Low Low

Alloys High High High Medium

The designed antenna in [6] achieved a high gain of 6.45 dBi and a Front to Back
Ratio (FBR) of 15.8 dB. An e-slot antenna with an electromagnetic band-gap (EBG) and
Defected Ground Structure (DGS) printed it into a highly flexible fabric (DGS). On the
other hand, fragile conductive inks and/or copper tape were used in [7] state-of-the-art
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origami antenna techniques. A copper-equivalent textile-based body-worn antenna [8]
was shown to have excellent agreement between simulations and measurements for all
e-textile prototypes. E-fibres (metal-coated polymer fibres) and copper were used to make
the antenna’s specified antenna. In the end, both antennas were analyzed, and it was
determined that the cloth antenna performed just as well as its copper counterpart, with
achieved gains of around two decibels.

Table 3 compares the antennas from two decades ago with their current predecessors,
where the former fared poorly due to some unsuitable materials incorporated in its manu-
facture. Antenna performance is classified as high, medium or low, based on parameters
such as profit and bandwidth (high when the gain > 4; medium when the gain > 2; low
when the gain < 2).

Table 3. Cloth Antenna History and Its Performance.

Ref. Year Material Technique Antenna Performance

[9] 2000 Erbium Two shorting strips High
[10] 2001 FR-4 Photonic band-gap structure Low
[11] 2002 - 2 × 2 patch array Medium
[12] 2003 Fleece fabric Fabric substrate High
[13] 2004 Felt Electromagnetic band-gap High
[14] 2005 Felt E-shape patch High
[15] 2006 Textile Bended planer antenna Medium
[16] 2007 Textile Aperture-coupled patch antenna High
[17] 2008 Textile Integrable into protective garments Medium
[18] 2009 Electro-textile MIMO High
[19] 2010 Textile Circuit/full-wave co-optimization techniques High
[20] 2011 Fabric U-slot High
[21] 2012 FR-4 Rectangular loop antenna Medium
[22] 2013 FR-4 Monopole-antenna Low
[23] 2014 Textile-fabric L-shape antenna Low
[24] 2015 Duroid 5870 Coaxial feed line Low
[25] 2016 Flexible fabric Monopole antenna Medium
[26] 2017 Flexible Magneto-Dielectric (MD) materials AMC Medium
[1] 2018 Nano-composite Nano-composite conductive Low

[27] 2019 Disk-shaped FR-4 substrate Circularly polarized button antenna Low
[28] 2020 Felt Meta-material High

3. Embroidered Textile Antennas

The demand for lighter and more compact personal electronic devices drives the
development of wearable electronics and antennas. The incorporation of antennas into
everyday clothing would allow for the practicality of smaller, more portable electronic
devices without compromising their performance. There are many uses for wearable
antennas, including military, aerospace, rescue, medicine, fashion, etc. [29]. Consumers
will appreciate the convenience of the system’s hands-free operation. Antennas that may
be worn as part of clothes that are soft and flexible are often constructed from thin, stretchy
conductors [30–32]. For wearable antennas, the trade-off between fabric properties and
antenna performance is a major issue.

Connecting personal communications, wireless sensors, and other wireless devices
to wireless networks or the “Internet of Things” requires a huge number of antennas.
Currently, antennas are integrated into a variety of gadgets, as well as the human body and
clothing [30] and this trend will continue in the future. These antennas must be lightweight
and bendable. To enable the seamless integration of conventional antennas with clothes,
conventional materials like metals and dielectrics must be substituted for conductive and
nonconductive fabrics and yarn. Full-textile antennas are antennas constructed entirely
from conductive and non-conductive textiles and yarn. Water and water vapour rapidly
enter porous conductive and non-conductive fabrics, causing higher losses and dielectric
property changes. Changes in input impedance, gain, and radiation patterns result [30].



Electronics 2022, 11, 2470 5 of 18

3.1. Types of Conductive Threads

Conductive thread conducts electricity and the textiles are wired. Thomas Edison em-
ployed this technology. Carbonized thread satisfies the resistance and lifespan requirements.
Conductive threads serve antistatic, electromagnetic shielding, wearables, e-textiles, etc.
functions. When sewn onto flexible textiles, they provide a conductive connection like
wires [31].

In recent years, there has been a great deal of interest in conductive threads. Typically,
textiles are manufactured from insulating materials such as polymers and cottons. Textile
threads are made conductive for a variety of purposes; the objective is to achieve EM
shielding. Due to their weak conductivity, the surface of insulated textiles accumulates
electrical load. Turning the threads conductive makes load transfer and EM shielding
possible. Another advantage of conductive threads is their use as wires or connectors in
a variety of applications [33–36].

Conductive threads fall into two distinct kinds. There are first intrinsic conductive
threads that are composed of conductive fibres. Textiles are composed of conductive
materials such as metals (gold, silver, nickel, and steel), or graphite, which can take
the shape of wires or threads. They are injected into the structure of textiles or used
intrinsically. Each strand is composed of the physically conducting fibre. Metal, graphite,
conductive polymers, carbon nanotubes, and other materials are utilised to create these
fibres. They have great conductivity but face several obstacles and are heavier and more
expensive. Additionally, their structure can damage embroidery equipment because they
are less flexible and user-friendly than conventional fabrics. Low-resistance stainless steel
is the most popular. These threads are hard to use in a sewing machine as they break
while running through needles. Intrinsically conductive polymers include Polyanyline,
Polypyrrole, PVA, and PA11. They are thermochemically and environmentally stable. Their
remarkable conductivity has drawn notice recently. They are flexible, light, and conduct
well, but due to their great cost, they are generally used in research [35–37].

Coated conductive threads are second. Conductive metals like copper, gold, silver,
or carbon are implanted or coated onto nonconductive textile cores. Cotton, polymers,
or nylon are typical core materials. Various procedures are used to apply these coatings.
Coating textiles with metals or conductive materials creates a hybrid. Galvanic coatings are
conductive. They face obstacles such substrate suitability, limited adhesion, and corrosion
resistance. Metallic salt is another coating technique. This approach reduces conductivity.
Coating textiles with metals or other conductive components provides numerous properties;
it boosts conductivity and improves structure. Medical, fashion, military, architecture, etc.
can use them as they are functional and beautiful. Combining textile core and coating
allows stitching. This group’s resistance varies by coating material and thickness [31].
Conductive threads are uninsulated and covered with different materials and ply numbers.
Not as efficient as a wire, yet it allows current to travel through, removing the need for
circuit boards [31].

3.2. Challenges in Embroidered Antennas

The challenges of fabricating embroidered antennas are: choose out the best conductive
thread for the patch antenna based on factors like conductivity, strength, flexibility, and
how the threads behave when stitched together to make an approximately continuous item.
Understanding the flow of current on a patch antenna is essential to determine the stitching
direction. Increasing antenna efficiency can be achieved by aligning the primary current
flow with the stitch direction [32]. This can create further difficulties if the design needs to
operate at higher modes when the current is flowing perpendicularly, as well as for more
intricate systems where the current is flowing in multiple directions. The effect of different
stitching geometry on antenna performance is explored and published in [33]. In general,
the tighter the stitching spacing, the greater the efficiency of the antenna. This comes at the
cost of decreased flexibility and greater thread length, which immediately results in higher
manufacturing costs. The influence of stitching type on the performance of dipole antennas
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is described and proven in [38–40] where dipole tag-antennas embroidered with varied
thread densities and two different stitch patterns are examined. The authors of [34] describe
the embroidery aspects of Ultra High Frequency (UHF) Radio-Frequency Identification
(RFID) antenna [32]. Table 4 illustrates some recent research projects in embraided antenna
and manufacturing techniques.

Table 4. Recent research in embraided antennas.

Ref Year Frequency Conductive Material Manufacturing Technique

[35] 2013 10.64 MHz Silver coated nylon yarn Arudan BEVT-Z1501CB Digital
Embroidery Machine

[8] 2014 1.9 GHz Electrically conductive
metal-polymer fibres (E-fibres) Automatic Embroidery

[36] 2015 2.4 GHz e-thread Embroidery Machine

[37] 2016 880–960 MHz/
1710–1880 MHz Silverpam yarn SWF MA-6 Automatic

Embroidering Machine.

[38] 2017 0.3–3 GHz 7-filament silver-plated copper
Elektrisola E-threads Automated Embroidery

[7] 2018 1015 MHz 7-filament Elektrisola E-threads Brother 4500D Embroidery Machine

[39] 2019 5 GHz Conductive weft threads and
dielectric warp threads. commercial embroidery machine

[40] 2019 915 MHz Silver threads Embroidery Machine

[41] 2020 2.4 GHz Silver Screen-Printing

[42] 2020 6.78 MHz Silk-coated copper Litz wires Automated Sewing Machine
(PFAFF Creative 3.0)

[43] 2021 915 MHz Silk-coated Litz copper wires /

[44] 2021 868 and 915 MHz Clevertex silver (brass) hybrid
conductive sewing thread Sewing Machine Bernina QE750

4. SAR and Antenna Performance with the Human Body

Previous studies have reported the satisfactory performance of wearable antennas in
free space, but the same cannot be said when the device is used in proximity with the human
body due to frequency shifts and radiation absorption. These drawbacks are contributed
by the high theta and decedent dielectric properties of the human body compared to
free space [45]. There is a gap in the literature concerning these issues, especially on the
effectiveness of dielectric characteristics on the technical performance of wearable antennas.

The on-body performance of the wearable antenna is ranked by quantifying the
changes in its input impedance and near-field distribution that are mainly caused by the
presence of lossy dielectric material. When the wearable antenna was tested on phantom
body fat, there was a 17% increase in impedance, 19% increase in phantom muscle and 20%
for the phantom blood. The methods in [45] are recommended in analysing and validating
the reason for behaviour degradation when an antenna is operated close to the human
body. All these findings are crucial for antenna designers to select the best location for the
on-body antenna.

Impact of EM on Human Body

Modern electrical appliances are increasing the influence of electromagnetic field
(EMF) radiation on humans, and studies reveal the electromagnetic field’s impact on human
health [46]. In laboratories specializing in the study of antennas, students and researchers
are exposed to EMF radiation from the antennas they are studying or manufacturing. On the
other side, this absorption that occurs through the human body weakens the performance
of the antenna. Fluorescent light emits EM radiation between 380–800 nm, while UV
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radiation is 100–400 nm, altering DNA sequence and gene expression. Some people
have become electromagnetic radiation sensitive after prolonged exposure to electronic
equipment. Some researchers experienced stress, CFS, focus difficulty, allergies, depression,
and sleep disturbances. Chronic fatigue syndrome (CFS) is a depressed immune system
linked to ELFE. Low- and high-frequency EMF also doubles infection resistance, according
to studies.

5. Techniques

Researchers have developed techniques to increase antenna performance. Most tech-
niques that have been proven effective are discussed in this paper.

5.1. AMC Array Reflector

Artificial magnetic conductors (AMCs) technique can also be referred to as electromag-
netic band-gap structures (EBGs) and high impedance surfaces (HISs) that act as a support
shield to the wearable antenna. They reduces the waves on the antenna surface resulting
in a significant decrease in absorption of radiation by the human body, thus improving
antenna gain and front to- back ratio (FBR) [47]. An AMC surface can be a ground plane
in some discrete antenna applications [48]. The reflector size is the main component in
determining the antenna performance, while an antenna design with multiple layers makes
a high-profile antenna system [8].

These structures produce antennas with high gain, low profile, and great efficiency.
EBG has sparked interest in the antenna field. EBG structures lower surface wave cur-
rent, hence enhancing the antenna’s performance. Surface waves diminish the antenna’s
performance [49].

EBG-technique surface wave suppression enhances antenna performance by enhanc-
ing antenna gain and antenna efficiency.

It has two interesting characteristics over the frequency range known as a band gap,
according to [50] To begin, the reflected wave has the same amplitude as the incident
wave. The EBG surface has a similar function to PMC, which does not exist in nature
but has a 00-phase reflection. Second, it prevents the propagation of surface waves. EBG
has a wide range of applications in antenna design because of its ability to solve typical
antenna problems and optimise performance.

5.1.1. In-Phase Reflection

The antenna depicted in Figure 2 is a simple wire antenna placed above a PEC ground
plane. Under a perfectly conducting electric ground plane, the image current is out of phase
with the wire current. In the presence of an EBG or PMC, the subsurface image current
would be in phase with the wire current, thereby enhancing the antenna’s radiation. EBG
operates as an AMC with a reflection phase of +1 (in-phase reflection), as opposed to the
conventional metal ground plane, which has a reflection phase of −1 (out-of-phase reflec-
tion) (out of phase). The EBG can therefore function as a reflector, capable of redirecting
the vast majority of energy in the desired direction.

Figure 2. Wire antenna with PEC, adapted from [51].
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5.1.2. Suppressing of Surface Wave

Figure 3 illustrates another characteristic of the EBG surface. It can be used to elimi-
nate the radiation emitted by the ground planes. An “artificial impedance surface” with
certain band-gap characteristics inhibits the propagation of surface waves generated by
the antenna.

Figure 3. The effect of suppressing the surface waves: (a) with surface wave, and (b) without surface
wave, adapted from [51].

The radiation pattern of a monopole antenna on a metallic ground plane is depicted in
Figure 4a. Significant characteristics of the antenna pattern include ripples in the forward
direction and power loss in the reverse direction.

Figure 4. Measured radiation pattern of a vertical monopole antenna: (a) above PEC ground plane
(PEC), and (b) above EBG ground plane, adapted from [51].

The surface wave that travels away from the antenna and radiates from the level edges
of the ground is responsible for both of these properties. An EBG ground plane is presented
in Figure 5b, as a way to reduce the surface wave; as a result, the opposite hemisphere
receives less energy and the radiation pattern is more uniform.

Figure 5. EBG surface: (a) front view, and (b) cross-sectional view, adapted from [51].

In one form, an EBG material is a periodic structure with a high impedance for
the propagation of electromagnetic waves within a specific frequency range. In antenna
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applications, the antenna can utilise the high impedance or surface wave band gap of an
EBG within a specific frequency band. It has been discovered that EBG-structured antennas
give significant advantages over conventional antennas [50].

5.1.3. EBG Principle

Typically, EBG structures are periodic cells composed of dielectric components or
metal. Sievepiper introduced an EBG structure resembling a mushroom for the first
time [52]. According to Figure 5, the structure comprises a dielectric substrate, metal
patches, a ground plane, and connecting vias.

The operating mechanism of the EBG structure, as depicted in Figure 6, can be ex-
plained by an array of LC filters or a parallel resonant circuit. Capacitance is produced by
the space between two adjacent patches, whereas inductance is generated by a current loop
within the structure through the pin vias. The inductance in an EBG without vias is caused
by the ground plane’s close proximity to the capacitive array of patches [50].

Figure 6. EBG unit-cell: (a) vias EBG parameters, and (b) Lumped Element Equivalent Circuit of the
EBG, adapted from [51].

The values of the capacitance (C), inductance (L), bandwidth (BW) and resonant
frequency (fr) are given by [50]:

L = µ0h (1)

C =
wε0(1 + εr)

π
cosh−1

(
w + g

g

)
(2)

fr =
1

2π√LC
(3)

BW =
1

0

√L
C

(4)

Patch width (W) determines permeability (µ0), permittivity (ε0), and impedance (η0), all
in terms of free space, while g determines the distance between neighbouring patches (g).

Z is the surface impedance at resonance, and it is calculated as follows:

Zs =
jωL

1−ω2LC
(5)

Equations (1)–(5), based on which the parameters of the EBG design were evaluated, [31].
They were the thickness, permittivity, unit cell spacing, and patch width of the substrate.
Formula reveals that at low frequencies, the unit cell is typically inductive and so supports
the Transverse Magnetic (TM (solid red line)) surface wave. Transverse Electric (TE) waves
became dominant as the excitation frequency increased, causing the unit cells to go from
resonant to capacitive in a short time. It was found that the surface’s impedance was high
in a limited frequency region near the resonance frequency. Figure 7 illustrates how the
structure inhibited the propagation of surface waves (TE and TM) and directed them toward
the frequency band gap (EBG behaviour) [51]. Surface waves were suppressed and more of
the system’s energy was reflected because of the high level of mismatch [50].
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Figure 7. Dispersion diagram, adapted from [51].

In [53], a dual-band antenna, 3.5 GHz and 5.8 GHz, backed with a 4 × 4 AMC
array, Rogers ULTRALAM 3850 were used for antenna substrate and RO3003 printed as
a substrate on AMC array. When measurements were taken at 15 mm from the human
body, acceptable gain and SAR were obtained, but after applying a 4 × 4 AMC array over
a gap of 1 mm from the human body, the gain was improved by 23.3 dBi and 13.9 dBi,
respectively, for both frequencies, while the SAR was reduced by almost 99%. In [48], the
designed textile antenna is operated at two frequencies, 2.44 GHz and 5.00 GHz, using
an EBG to improve the antenna gain by 3 dB and decreasing backward radiation by 10 dB.

In another study [54], a 92 × 69 mm dual-band antenna showed a stable gain in the
passband. The proposed antenna was designed with a small AMC plane in the shape
of a square containing a small double square unit integrated with a bow tie for ISM
applications. Meanwhile, [55] developed an Artificial Magnetic Conductor (AMC) plane by
using different materials (textiles), and both antennas were able to radiate with SAR lower
than 2 W/kg (European regulatory standards).

In [56] a wideband monopole antenna array is presenting with uniplanar compact
electromagnetic band gap (UC-EBG) structure for high frequency (4.5–6.5 GHz) and high
gain of 11.8–13.6 dBi. Moreover, a maximum 1 g SAR value of 0.49 W/kg at 4 GHz and
1 g SAR value of 0.59 W/kg at 6 GHz are achieved when place the antenna at 8 mm away
from the human body, which is much lower than FCC standard, guaranteeing the safety
for wearable application. The proposed wideband and high-gain wearable antenna array
offers some advantages in the wearable application.

5.2. Photonic Band-Gap (PBG) Technique

The PBG method has advanced rapidly in the last few years. Resonant cavities, such
as the PBG’s periodic flaws, can alter the propagation of electromagnetic waves. PBG
provides a stopband at a given frequency within the forbidden band gap [50,57].

PBG has been claimed to improve the directivity of antennas, the suppression of
surface waves, and the reduction in harmonics.

Because of the periodicity, dielectric contrast, pattern and the repeating spacing be-
tween “atoms,” PBG is able to stop and reduce the transmission of any electromagnetic
wave in a frequency range for space direction [58]. There is no longer a need for additional
circuitry in antennas to improve performance, as PBG and PC structures and photonic
crystals (PCs) eliminate the requirement for additional weight and size-inducing stop bands
by reducing surface wave propagation [59]. Antenna substrates, ground, and covers can all
benefit from PBG’s ability to reflect radiations in all directions, resulting in increased gain
and reduced return loss [60].
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PBG Principle

PBG has periodic permittivity. PBG materials are also called photonic crystals due to
their closeness to semiconductor physics, where a crystal lattice corresponds to a periodic
arrangement of atomic potential [57] (PC). Permittivity periodicity accomplishes for pho-
tons what atomic potential does for electrons. Photonic crystal form and index contrast
influence many of its optical properties, much as semiconductor conduction qualities. By
controlling these two parameters, light may be made to pass through some materials and
not others. Scale affects frequency ranges.

Reducing a periodic lattice’s elementary cell size raises its frequency spectrum. This
allows photonic crystals to be designed for the infrared or visible spectrum. A PBG material
for 1–5 GHz has a few millimeters elementary cell size and is easy to build experimentally.
The same infrared photonic crystal has 1 m and 0.1 m cell sizes. This frequency range
is approximated by swapping the Y-axis, which shows energy data, for frequency, or by
computing the spectrum, which is a photonic crystal’s reflection coefficient. 1D, 2D, and
3D PBG topologies are shown in Figure 8 [57]. This image depicts banned bands. 3D PBG
materials are lossless isotropic mirrors for one or more frequency bands. A 2D PBG material
behaves as a two-way mirror, as seen in Figure 9. The same substance is transparent at
complementary frequencies [57].

Figure 8. (a) Crystal dispersion diagram: shaded prohibited bands, lattice period a, light velocity c.
This graphic shows forbidden bands. (b) Triangular crystal dispersion diagram: shaded restricted
bands; air holes in a high permittivity dielectric form the lattice (ε = 13) [57]; (c) Crystal dispersion
diagram. Shaded restricted bands.

Figure 9. Calculated and measured transmission diagram of 18 rows of 11 1.5 mm alumina rods with
a 3 mm period (transverse magnetic polarization: electric field E is parallel to rod axis) [57].

The authors of [61] designed a millimeter-wave antenna to improve the antenna
patch; PBG substrate and superstrate were created above the radiating element as a cover.
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Rectangular-shaped Alumina was utilized as a PBG cover to boost gain (from 7.7 dB to
15.52 dB). The same authors [62] designed PBG planar Inverted-F antenna (PIFA). The PBG
structure was placed on the substrate (Teflon εr = 2.65) to decrease surface waves. The
design’s impedance bandwidth was 27.5% (1.984–2.621 GHz), a 2.1% improvement from or-
dinary PIFA. The innovative PBG PIFA may be used in wireless 2.4 and Bluetooth systems.

5.3. Defected Ground Structure (DGS)

The DGS technique stops the wave propagation through the substrate over a frequency
range. It makes slots in different sizes or defects on the ground layer of the microstrip
patch antenna (MSP). These mistakes or slots may involve one or more DGS arranged
horizontally or vertically on an antenna patch.

DGS Principle

Defects in the ground plane alter the flow of current across the ground plane, leading
to various consequences. There are a few parameters that are added to a transmission
line (or any other construction) in order to change its properties (slot resistance, slots
capacitance, slots and inductance) [50]. Three features differentiate the DGS from the PBG:
(1) PBG circuit boards have many periodic structures. A few DGS elements may yield
similar properties. DGS shrinks circuits; (2) Both DGS and its circuit are easy to develop and
implement; (3) Defect-free structures are more precise. DGS unit and periodic DGS improve
its effectiveness. Several unique geometries implanted on the ground plane beneath the
microstrip line have been documented [63].

By crafting different-shaped slots inside the patch, this approach reduces antenna size
and achieves multi-band [44].

In [45], Duroid (tm) substrate was used to design the proposed antenna and improve-
ment in gain was observed after adding DGS to the antenna and bandwidth and return loss
enhancement. On the other hand, a 4 GHz microstrip patch antenna was designed using
Glass epoxy FR-4 by, which promoted bandwidth enhancement from 105 MHz to 415 MHz
and the gain improvement from 4.12 dB to 6 dB. Meanwhile, the proposed antenna by [59]
exhibited a simple improvement in the gain, and it was operated at 2.45 GHz for ISM
applications with DGS using different flexible materials like felt (dielectric constant 1.36)
and Teflon (dielectric constant 2.1) as a substrate for microstrip antenna. Table 5 compares
commonly used techniques highlighted in this paper regarding antenna gain, size of the
antenna and influence on fabrication. Table 6 shows how these techniques have been used
in recent studies.

Table 5. Techniques Comparison.

Technique Influence on Gain Influence on Size Influence on Fabrication

AMC array Medium High High

Photonic band gap High High High

Ground structure (DGS) High Medium Medium

Table 6. Recent studies (AMC, PBG, DGS).

Ref. Year Technique B. W Gain (dBi) Substrate Size (mm)

[64] 2022 AMC 51 / FR-4 46 × 46 × 1.6

[65] 2021 AMC 5.71 / Jeans 45 × 45 × 2.4

[66] 2019 AMC 14.58 6.56 PDMS 60 × 60 × 8.5

[67] 2017 AMC / 5.6 PDMS 40 × 60 × 5

[68] 2018 AMC / 7.5 Fabric 60 × 60 × 2.4

[69] 2016 AMC 13.7 7.3 Fabric 81 × 81 × 4
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Table 6. Cont.

Ref. Year Technique B. W Gain (dBi) Substrate Size (mm)

[70] 2018 AMC 17 6.55 fabric 60 × 60 × 2.4

[71] 2017 PBG 21.5 / Vacuum 25 × 25 × 0.8

[72] 2021 PBG-DGS 9.4 9.0828/9.2161 Rogers RT/duroid 5880 (tm) /

[73] 2020 PBG 8.18 10 Rogers 5880 44 × 48

[74] 2019 PBG 3.714 16.6 / 35 × 45 × 3

[75] 2022 PBG / 1 / /

[76] 2022 DGS 1.45 12.20 textile 90 × 100

[77] 2021 DGS 15.7 30.3 / /

[78] 2021 EBG-DGS 9 20 Taconic TLY-5 31.1 × 34.7

[79] 2020 DGS 13.5 / FR-4 58 mm × 58
mm × 1

[80] 2019 DGS 3.82 3.5 FR-4 44 × 76

[81] 2018 DGS 2.48 65 FR-4 120 × 60 × 1.6

6. Implemented Wearable Antenna Styles
6.1. Helmet and Vest Antenna

Certain professions require specific conditions, tools and equipment to carry out
their tasks; for instance, the police force and fire brigade need hands-free wireless de-
vices. The best solution is to design a wearable antenna that can be incorporated into
garments such as helmets or vests, but it has become increasingly challenging with the
escalation of bandwidth frequency. In addition, it is important to adhere to the radiation
safety mandate while maintaining the low-cost and lightweight feature of antennas and
fulfil a wide-bandwidth requirement at the same time. The vest and helmet antennas are
examples of wide-bandwidth antennas application that matched the needs of their users.

The safety of the wearer is a top priority in antenna design and applications: i.e.,
in military applications, the fabric antenna is built-in within the helmets. The research
in [82] describes how it is better to use air gap to protect users’ heads in new military
applications instead of energy-absorbing foam. An omnidirectional helmet was introduced
by [83] by utilizing the whip antenna with much higher and wider bandwidth, connectivity
stability, and flexibility, to be worn on humans than other models. On top of that, the
helmet antenna has other benefits like the loss due to the helmet is estimated to be less than
1 dB. Further impedance matching would enhance its gain by 0.2 to 1.2 dB, depending on
the operating frequency.

6.2. Wearable Monopole and Zip Antenna

A zip antenna is designed to realize a monopole antenna which is widely used in
clothes. It is recommended to implement a hidden antenna in a pocket; hence, a pocket zip is
preferred for practical considerations. This type of wearable antenna (zip antenna) results in
the good performance of Wi-Fi communication systems. The felt material is one of the most
commonly used materials to fabricate this type of antennas; for instance, in [3], the textile
monopole antenna was designed as a zip antenna operated at 2.5 GHz. A prototype was
fabricated and characterised based on the return loss and radiation pattern. It was found
that the antenna operated well within 2.4 to 2.7 GHz and suitable for Wi-Fi applications.

6.3. Cloth Antenna (Implemented on Clothes)

The usage of the UHF band is preferred in long-range communication devices due
to its good propagation characteristics, as such can be found in Industrial Scientific and
Medical (ISM) devices. In some special cases, the radio must be hidden under clothes or
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implemented on clothes and still maintain the ability to meet the application performance
requirements. The antenna design in these applications should be a fabric antenna that can
be worn, lightweight and suitable for human body curves to overcome human body effects
like radiation and low-profile (below 10 mm) with sufficient bandwidth. For example, [84]
implemented a dual-resonance and ultra-wide-band antenna with an operating frequency
of 430 MHz with a simple structure and low profile. Figure 10 shows implanted antenna
on clothes [85].

Figure 10. Implemented Antenna on Clothes [85].

7. Conclusions

Wearable antennas design and applications have been discussed, especially in the
medical field. In this paper, the focus was on the factors affecting the performance and
efficiency of a wearable antenna to avoid the problems faced by antenna designers. It was
concluded that the human body has a strong and fundamental effect on the characteristics
and performance of the antenna since a certain percentage of the antenna radiation is
absorbed. Therefore, the effect of the human body that was discussed must be taken into
account. Based on the effect of external operators on the antenna’s behaviour, its manu-
facture was studied in terms of materials, techniques and shapes that contribute to high
efficiency in applications related to human health. Comparisons were made between the
common materials and techniques used in manufacturing wearable antennas to maintain
their good performance. Based on these comparisons, it is possible to develop antennas
with the best specifications and assist the antenna designers in their decision making by
considering relevant factors in antenna development. In human activity-related WBNs ap-
plications, the future direction for wearable antennas is the production of high-performance
fabric substrate antennas that have the capacity to overcome the detrimental effects of the
human body.
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