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Abstract: The world has been facing the COVID-19 pandemic, which has come with an unprece-
dented impact on general physical health and financial and social repercussions. The adopted
mitigation measures also present significant challenges to the population’s mental health and health-
related programs. It is complex for public organizations to measure the population’s mental health to
incorporate its feedback into their decision-making process. A significant portion of the population
has turned to social media to express the details of their daily life, making these public data a rich field
for understanding emotional and mental well-being. To this end, by using open sentiment analysis
tools, we analyzed 760,064,879 public domain tweets collected from a public access repository to
examine the collective shifts in the general mood about the pandemic evolution, news cycles, and
governmental policies. Several modern language models were evaluated and compared using intrin-
sic and extrinsic tasks, that is, the sentiment analysis evaluation of public domain tweets related to
the COVID-19 pandemic in Mexico. This study provides a fair evaluation of state-of-the-art language
models, such as BERT and VADER, showcasing their metrics and comparing their performance
against a real-world task. Results show the importance of selecting the correct language model for
large projects such as this one, for there is a need to balance costs with the model’s performance.

Keywords: sentiment analysis; language model evaluation; big data; COVID-19; machine learning;
Mexico; twitter

1. Introduction

As the world has been facing the ongoing COVID-19 (COronaVIrus Disease 2019)
pandemic, governments and public and private organizations must prioritize public well-
being in their decision-making process. The challenges the COVID-19 pandemic presents,
both in individuals’ emotional and psychological well-being, raise the need to collect health-
related data and, moreover, to build dashboards that show critical information, make it
easily accessible, and gather the day-to-day data of the pandemic progression and ongoing
infection rates and fatality, among other statistics. However, emotional health, previously
studied in other geographic locations such as the United States [1] and Mexico [2] has also
shown to have long-term implications for the well-being of the populations and how it is
affected by news and government decisions related to the pandemic. This situation presents
the need for a tool to measure the impact of communications transmitted to the population,
which can also serve as a feedback mechanism to better adjust future announcements. Such
a mechanism faces many challenges: data recollection, processing capabilities, and deciding
what measurement instrument to utilize.

Acquiring and processing this amount of information is not easy, as this is a perfect
example of the challenges encountered by the three Vs of big data: volume, variety, and ve-
locity [3]. We adhere to the most common definition of big data based on the three Vs, first
introduced by [4]. However, there are multiple definitions containing different aspects
of these architectures, such as analysis, value, computer power, visualization, variability,
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and veracity, among various others. An in-depth description of these definitions is de-
scribed by [5], but suffice to say that this research work adheres to the big data concept by
most definitions. It presents several problems, such as those listed next:

• Acquiring feedback on the emotional state is both expensive and time-consuming.
• Having these data available presents a significant challenge in processing capabilities

and comes with a long wait time to receive feedback.
• Building such systems is costly, regardless of the volume variations in the data.

Traditional survey methods, such as interviews or surveys, are prohibitive. Besides the
high expense, they require significant time to gather feedback on a small portion of the
population, providing information on discrete periods rather than a continuous flow.
Twitter is a mature, well-established, and popular microblogging service that offers users a
platform to share their opinions, conversations, reviews, and other information. A large
corpus of heterogeneous data was collected [6], which we refer to as the COVID-19 Twitter
chatter dataset. It includes raw text, tweet metadata, images, videos, URLs, and popularity.
This corpus is an excellent candidate for performing sentiment analysis to follow public
opinion on any given topic or event but presents several challenges, including the high
computing resources needed for the research and a curated, well-defined training corpus.
Furthermore, the advances in technology nowadays allow the processing of data in large
volumes, at a fast velocity, and from numerous heterogeneous sources, making possible the
analysis of sentiments on a near real-time basis [7].

Sentiment analysis is a discipline that allows the determination of the sentiment clas-
sification and polarity of any given free-form text. While there are multiple sentiment
analyzers, they all share the same basic pipeline: preprocessing, where we normalize the
input text and transform it into a form that a machine can process; the actual sentiment
classification or polarity determination, which a language model calculates; and postpro-
cessing, where the outputs need further normalization or interpretation. We often find two
types of language models: rule-based models, where we try to construct an expert system
to interpret the text, or statistical-based models, often used with deep learning architec-
tures, which provide the most robust and best-performing models to date. However, we
train and evaluate these models using a curated corpus of data, from which we calculate
their intrinsic measurements. These intrinsic measurements can be optimistic and do not
guarantee that a well-performing model will remain so when used on real-world data,
for the model will evaluate data significantly different from the data used during training.

For these reasons, we provide an empirical study comparing these language models to
each other in terms of this real-world extrinsic task: the emotional response of the Mexican
population by performing a sentiment analysis on COVID-19-related tweets. In addition to
presenting a summary of each model’s measurements, we compare how this affects the
said study, highlighting their relevance and cost/performance trade-offs. This work is
organized as follows. The introduction showed the context of the problem, a brief overview
of the proposed solution, a general background of existing COVID-19 studies based on
Twitter data, and an overview of the language models to be evaluated. The Methods
section highlights the evaluation process and an in-depth review of the language models
included in this work. Experiment and Results show the measurements taken and the
results gathered, with some explanations of the meanings and interpretations drawn from
the results. Finally, we close this work with a brief discussion of the conclusions drawn
here, as well as future steps that can be taken to explore this area further.

Literature Review

Next, a quick literature review is presented, dividing the literature into two parts:
language model evaluation and sentiment analysis performed for COVID-19-related data
taken from Twitter. Natural language processing has recently seen novel architectures
implement language models in a way that provides robustness and accuracy. All imple-
mentations use nonlinear statistical models as language representations, in different ways,
from vast attention-based deep learning architectures to simpler dictionary-based deploy-
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ments, such as VADER [8]. VADER is an open-source, rule-based robust language model
that can handle commonly employed complex grammar structures commonly used in social
media. For training data, it utilizes a curated corpus evaluated by humans. BERTweet [9]
is based on BERT [10], using a pretraining procedure somewhat similar to that utilized
by RoBERTa [11], both of which use publicly available tweets in English for training and
evaluation. TimeLMs [12] introduces a time concept into the language model by utilizing
continuous learning and thus accounts for future and out-of-distribution tweets it might
encounter. This language model also uses publicly available tweets in English for training
and evaluation.

The implementer of each novel language model architecture provides a set of metrics
that serve as the basis for each of the improvements provided. These are intrinsic metrics,
for they evaluate the model’s performance against a previously defined test corpus, which
is usually part or a superset of the training dataset. Table 1 provides a summary of these
metrics for different implementations of language models. However, the behavior of
the models can be different when faced with the real world, as the data might present
another distribution or present new cases that were not part of the training. This makes
it indispensable to evaluate models using real-world data on real-world conditions with
a real task. This evaluation method is known as an extrinsic metric, where the model is
not directly evaluated but compared with other models based on its performance on a
real-world task. For example, TweetEval [13] evaluates a few selected language models,
with the single exception of VADER which was measured in a different study [14], training
and evaluating them under a curated corpus appropriate for the task [15], collecting metrics,
and concluding on a single clear winner. However, we have no information on how such a
winner model would behave with accurate, non-curated data.

Table 1. Summary of different popular language models evaluated using a sentiment analysis
corpus [15]. The evaluation of VADER was performed [14].

Author Model Name Summary Score

Nguyen et al. [9] BERTweet Uses pretraining over BERT
for Tweets in English 73.4

Barbieri et al. [13] RoBERTa on Twitter A RoBERTa variant trained on
a Twitter corpus 69.1

Hutto and Gilbert [8] VADER Uses rule-based evaluation
and human-tagged data 69

Table 2 displays a summary of sentiment analysis studies performed on Twitter data
related to COVID-19, where we found them to utilize a small dataset, either in volume or
in the length of the analyzed time frame. In general, only tweets written in English were
accepted, restricted to the U.S., with just a few exceptions. For example, the study in [16]
restricts the studied tweets to those that originated only in Australia, in contrast to the
survey [17], which uses a global dataset. Note that most of these studies [1,16–21] focus
on panel data analysis, except for [2,22–26], which use a time series analysis. There have
been other works that provide additional information; for example, the study [27] in the
U.S. and [28] in Canada, which provide ample evidence on the correlation of beliefs shared
on Twitter and the social distancing practices in real life, providing good indicators for risk
management. Since the study [2] also provides a public dataset and enough details of the
technology and language model utilized, we focused our methodology on matching it as
closely as possible and performing comparisons with the other models accordingly.
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Table 2. Summary of studies evaluating sentiment polarity over COVID-19-related tweets.

Author Summary
Dataset

Location Time Span (in 2020) n

Adikari et al. [16] Topic analysis, follows popular
subjects, pre/post lockdown Australia Jan to Sep 73 K

Abd-Alrazaq et al. [18] Uses PostgreSQL and topic analysis,
pre/postlockdown Feb 2 to Mar 15 167 K

Boon-Itt and Skunkan [19] Topic analysis, 3 panel data analysis US Dec 13 to Mar 9 108 K

Lwin et al. [17] Uses the Plutchik basic sentiments,
pre/postlockdown Global Jan 28 to Apr 9 20 M

Xue et al. [20] Topic analysis, pre/postlockdown US Mar 7 to Apr 21 4 M

Valdez et al. [21] Topic analysis, pre/postlockdown,
follows popular subjects US Jan 28 to Apr 7 86 M

Huerta et al. [1] Pre/postlockdown MA, US Jan 1 to May 14 2.88 M
Crocamo et al. [22] Time series Jan 19 to Mar 2 3.3 M

Chandra and Krishna [23] Time series, topic analysis India Mar to Sep 150 K
Alam et al. [24] Time series, topic analysis Dec 21 to Jul 21 125.9 K

Garcia and Berton [25] Time series, topic analysis,
multilanguage US and Brazil Apr to Aug, 2021 6.5 M

Singh et al. [26] Time series, topic analysis May 3 to Aug 29, 2021 400 K
León-Sandoval [2] Time series, multilanguage Mexico Feb 1 to Dec 31 760 M

2. Data and Methods

We collected a dataset of tweets from an open-access repository of global COVID-19-
related tweets, which we refer to as the COVID-19 Twitter chatter dataset [6]. The dataset
was designed to collect every tweet related to the COVID-19 pandemic and included
metadata to facilitate analysis and filtering before consumption. This COVID-19 Twitter
chatter dataset provides a broad collection of tweet IDs, geographical locations, and de-
tected language, utilizing the following schema: [tweet_id, date, time, lang, country_code].
However, we encountered schema inconsistencies over time. For example, the annotation
of country_code, which is necessary for filtering before requesting a tweet lookup, was not
introduced until the second half of the year, and even then, a large number of tweets lacked
this metadata annotation.

For this reason, we had to load them via Twitter’s public API to filter out tweets
originating from outside Mexico, which may have left out data from those users who
chose not to share their location. We used this information to download each tweet in
Mexico, discarding all other metadata provided by Twitter’s API for privacy reasons.
Specifically, we retrieved COVID-19-related tweets posted in Mexico from 1 February 2020
to 31 December 2020. All tweets were scrubbed of personally identifiable information to
ensure user privacy and comply with ethical practices in social networks, resulting in
the following simplified schema: full_text, id, time_stamp. It is worth mentioning that this
dataset included tweets in both English and Spanish, for a large part of the population
engages on social media in English. This methodology followed the same consumption
strategy previously followed [2].

Figure 1 shows the data ingestion pipeline, for which we used the regular lookup
V2 API. Note that the resulting sample size for the dataset was quite large, consisting of
n = 2,142,800 unique tweets, resulting in an ample sample to perform this analysis. Previous
studies, summarized in Table 2, used large-scale sentiment analysis to accurately predict
public mood and how it applied to several domains, including those of emotional and
psychological well-being [29].
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Figure 1. Data Flow Overview. We process the data in three main stages: first, we load the desired
tweet IDs from the COVID-19 Twitter chatter dataset then consult them directly from Twitter using
the official APIs. For pre-processing, we clean up and filter the data, and then we process this dataset
to produce a time series of the perceived COVID-19-related sentiment.

Natural language processing has recently seen novel architectures implement language
models, increasing robustness and accuracy for several natural language tasks, such as
sentiment polarity determination. These implementations, particularly those compared
in this work, are listed in Table 1. All implementations use nonlinear statistical models
as language representations, in different ways, from vast attention-based deep learning
architectures to more straightforward dictionary-based implementations, such as VADER.
These are the language models evaluated in this work, and we briefly describe each.
VADER [8] is an open-source rule-based robust language model that can handle complex
grammar structures commonly employed in social networks. VADER is reliable, fast to
deploy, and needs few resources to evaluate new text entries. However, for training, it
utilizes a curated corpus evaluated by humans, making adapting it, or incorporating new
data, a difficult task. BERTweet [9] is based on BERT [10], using a pretraining procedure
similar to that utilized by RoBERTa [11] and uses publicly available Tweets in English for
training and evaluation. TweetEval [13] already has scored and compared both BERTweet
and RoBERTa, finding better performance in this particular task in the former. Both
provide a robust language model, which is enormous both in size and evaluation resources
needed. Still, we can quickly update the model if required by exploiting pretraining and
multilanguage support. TimeLMs [12] introduces a time concept into the language model
by utilizing continuous learning, gaining the ability to account for both future and out-
of-distribution tweets the model might encounter. The TimeLMs language model also
uses publicly available tweets in English for training and evaluation. This results in a
robust language model that prefers novel entries and can deal with out-of-distribution
evaluations. However, it is susceptible to adversary attacks, and its performance can fall
over time. Although we can mitigate this issue by following standard MLops practices, this
last language model is not part of this study.

F1_score = 2 ∗ precision ∗ recall
precision + recall

(1)

TweetEval [13] proposes a metric comparing multiple language models with each
other, evaluated using a properly curated corpus provided by SemEval [15], from which we
obtained the intrinsic measurements for all models except VADER, for which [14] calculated
its measurement. This strategy is appropriate as TweetEval uses a standardized protocol
consisting of seven NLP tasks, one being sentiment analysis, and uses Twitter corpora to
train the models. It also provides a single global metric, which is handy though somewhat
straightforward, as it averages the scores for each task [30]. The scoring used standard
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averaged F1 scores, an harmonic mean of precision and recall defined by Equation (1),
for most tasks except sentiment analysis, which relies on recall alone. The results for
the sentiment analysis task are in Table 1, along with a small summary of the models.
However, while there is extensive use of Twitter corpora in training these language models,
the measurements are still considered to be intrinsic, which leaves the question of the
performance of these models over real-world data open. This remains true even if the data
in question are another Twitter corpora.

For the time series analysis, we employed a similar methodology to that of [2], pre-
sented next. We consumed data using the Twitter public API, which were then stored in
hard storage, triggering change events that fed the entries into a data pipeline, making it
easy to swap them for near-real-time tweet streams. Data were then cleaned and stored in a
sizeable non-SQL database, from which we queried data for exploration, experimentation,
or model training. Once again, we used data triggers to feed them into the sentiment
polarity calculator, ending in another large non-SQL database instance. This final instance
was a source for aggregation and analysis, from which we could calculate daily aggregates.
For the time series analysis, we started by denoising the series. We opted for a moving
average of seven days as we also found solid weekly seasonality in the data. Next, the data
were detrended by fitting a regular time series model. Several partial autocorrelation
tests were performed to find a good initial parameter approximation and validate the
model. The residuals and the box tests revealed a good fit of the model, resulting in a
p-value < 2.2 × 10−16 for the sentiment polarities calculated by all models. These steps
were repeated for several aggregation statistics, keeping the mean and the standard devia-
tion relevant, as they summarized the behavior observed in the data well. More details are
available in the Experiments section.

This study also followed the technical implementation suggested by [2], as it is easy
to replicate and flexible enough to alter without significant changes for our purposes.
The system was implemented on top of Google cloud services (GCP), allowing a tight
TensorFlow integration, loose coupling, and dynamic scaling, and was written in Python
3.6, with its data-focused libraries, such as TensorFlow. Using this technology allowed
the integration of MLops practices, making it easy to update models. Figure 2 shows an
overview of this technical architecture. The general flow is as follows:

1. Data are ingested directly from Twitter, using the identifiers provided by the COVID-
19 Twitter chatter dataset and the general query API provided by Twitter.

2. We then publish the tweet in Pub/Sub, which is written directly in cloud storage for
future reference and debugging.

3. Pub/Sub feeds this data entry into a serverless function, which then evaluates the
tweet polarity using: VADER [8], BERTweet [9], and RoBERTa [11] implementations,
all of them written in Python and TensorFlow, and post the results again in Pub/Sub
to be fed into BigTable for final consumption.

4. The data are now ready for consumption by a managed Dataproc instance with two
different approaches:

(a) One where we execute periodic batch jobs to calculate the daily aggregations,
stored in cloud storage and BigTable for easy access.

(b) Another is where we publish dynamic and executable Jupyter notebooks for
manual data exploration.

Regarding the time series, VADER uses a composed metric obtained by normalizing
both the positive and negative scores and using an external factor to better approximate a 1
to −1 distribution [8],

norm_score =
sum_polarities√

sum_polarities2 + α
(2)

where sum_polarities is the simple addition of positive and negative polarities, and α is
initialized as α = 15. We need to adjust this α for every operation based on a heuristic
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and the lexicon collected by the language model. This alone gives us a clue regarding the
differences found in the time series, for the deep-neural-network-based language models
implement a so f tmax layer that already provides this normalization for us. However, we
considered this difference by adjusting the results accordingly, calculating the α used by
VADER to replicate its distribution approximation used for normalization. Although this
would not be necessary for either BERTweet or RoBERTa, as the deep learning network
uses a so f tmax layer to calculate this distribution, we wanted to match the methodology as
much as possible. Still, it is something to keep in mind moving forward.

Figure 2. General Architecture implemented in Google Cloud Platform (GCP) [2]. This cloud-based
architecture ingests tweets using the official Twitter APIs, sending each one of these through Google’s
Pub/Sub, which uses as endpoints essential preprocessing, raw storage, and a serverless function
to calculate the sentiment polarity. This function’s results are fed into BigTable through another
Pub/Sub pipeline.

With these adjustments in place, we generated the time series using a rolling average
of 7 days to denoise the data, which we found to work best, and it was aligned with the
seasonality found [31] while also matching the strong weekly seasonality found in this
analysis. Then, we detrended the data by fitting a regular time series model. We performed
several partial autocorrelation tests to find a good initial parameter approximation and
validate the ARIMA model, revealing good results using the residuals, providing season-
ality and trends. Although there was a precise offset in the data, the model fit, trends,
and seasonality followed by the time series were similar. We confirmed this by conducting
a simple Pearson correlation test, which yielded low correlation levels on the time series
with the lag present, which was not an issue in our case. We present more details in the
Experiments and Results sections.

3. Experiments

We performed a sentiment analysis on COVID-19-related tweets posted in Mexico
from 1 February 2020 to 31 December 2020, forming a corpus of 760,064,879 tweets, which
after preprocessing and filtering came to a total of n = 2,142,890 utilized tweets, retrieved
from the COVID-19 Twitter chatter dataset [6]. Note that the ranges of polarity values went
from −1 (i.e., entirely negative) to 1 (i.e., completely positive), where 0 was considered a
neutral value or an utterly objective tweet (but given that these tweets were for the most
part opinions, this was rarely the case). We performed this sentiment polarity determination
using three language models: VADER, BERTweet, and RoBERTa. Table 3 presents a monthly
summary of the sentiment polarity for a given month, but the analysis was performed with
daily granularity.
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Table 3. Monthly summary statistics for the compound sentiment polarity in Mexico, utilizing several
language models. Note that the polarity is expressed in the range (−1, 1).

Month VADER BERTweet RoBERTa
µ p50 σ2 µ p50 σ2 µ p50 σ2

February −0.0984257 −0.0429283 0.0751305 −0.161653 −0.279797 0.166135 −0.329798 −0.331657 0.0751666
March −0.180352 −0.296000 0.171638 −0.0670456 −0.0105233 0.0825488 −0.248890 −0.237242 0.0988796
April −0.175834 −0.286133 0.186721 −0.0405222 0.00839683 0.0837904 −0.197245 −0.166518 0.108357
May −0.135060 −0.266584 0.227397 0.0414142 0.0569896 0.0990766 −0.120022 −0.121882 0.171598
June −0.187039 −0.302487 0.214230 0.0349433 0.0514157 0.0933161 −0.117042 −0.106476 0.165380
July −0.171287 −0.296000 0.216006 0.0297321 0.0500704 0.0890589 −0.106039 −0.0941371 0.155880

August −0.156576 −0.283995 0.220971 0.0338199 0.0504739 0.0920116 −0.105613 −0.0978736 0.158233
September −0.137832 −0.284002 0.231412 0.0276182 0.0598745 0.112541 −0.101315 −0.113173 0.179672

October −0.144219 −0.277552 0.223694 0.0351052 0.0524153 0.0972368 −0.0956743 −0.0840913 0.165041
November −0.157551 −0.283380 0.216210 0.0507385 0.0620046 0.0995041 −0.0828981 −0.0851012 0.167781
December −0.133056 −0.281765 0.228512 0.0493567 0.0687692 0.0951525 −0.0654149 −0.0741181 0.166066

We calculated a smoothed time series, where the box-test showed a p-value < 2.2 ×
10−16 for all models, indicating a high probability of encountering autocorrelations in the
data. This led to a further exploration using a partial ACF (auto correlation function).
These ACF values are reported in the Appendix A. Here, we observed strong indications of
weekly autocorrelations, which helped us quickly find the correct coefficients for fitting
an ARIMA (autoregressive integrated moving average) model and decomposing the time
series. Although the coefficients suggested a substantial similarity in the ARIMA models,
there were some differences as well, more noticeable in the VADER model. Thus, we
performed a Pearson correlation test for the different language models. These models
should present no time lag nor noise in the time dimension, making this test a good
candidate as opposed to a more time-consuming and resource-intensive test, such as the
dynamic time warping distance [32].

Table 4 summarizes the Pearson correlation index between the language models
for the compound sentiment polarity, while Table 5 shows the same correlations for the
positive polarity only. This shows a strong correlation between BERTweet and RoBERTa,
an expected behavior given that both are based on the BERT architecture and use Twitter
data for fine-tuning. However, there is a stronger correlation with VADER for the positive
polarity. Remember that compound polarity is calculated based on positive and negative
polarities, and VADER uses a heuristic-based approximation replicated for both BERTweet
and RoBERTa. We executed these experiments in the GCP pipeline described by Figure 2
using a CPU-only solution for VADER and a GPU configuration for evaluating both
BERTweet and RoBERTa. Nevertheless, the time series analysis was evaluated in a CPU-only
managed instance inside GCP. A more in-depth analysis and visualizations are presented
in the next Section Results.

Table 4. Pearson’s correlation coefficients for the compound sentiment polarity. Note the low
correlation coefficient when comparing both BERTweet and RoBERTa language models with VADER.

VADER BERTweet RoBERTa

VADER 1 0.3305117 0.3018875
BERTweet 0.3305117 1 0.9337619
RoBERTa 0.3018875 0.9337619 1

Table 5. Pearson’s correlation coefficients for the positive sentiment polarity. Note the high correla-
tions between all of the language models.

VADER BERTweet RoBERTa

VADER 1 0.8715221 0.8809533
BERTweet 0.8715221 1 0.9763189
RoBERTa 0.8809533 0.9763189 1

4. Results

We performed a sentiment analysis on a corpus of 760,064,879 tweets posted from
Mexico from 1 February 2020, to 31 December 2020 in multiple languages, which after
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preprocessing and filtering came to a total of n = 2,142,890 utilized tweets, retrieved
from the COVID-19 Twitter chatter dataset [6]. We performed this sentiment polarity
determination using three language models, VADER, BERTweet, and RoBERTa. The result-
ing smoothed time series showed a p-value < 2.2 × 10−16, indicating a high probability
of encountering autocorrelations in the data. Here, we observed strong indications of
weekly autocorrelations, which helped us quickly find the correct coefficients for fitting
an ARIMA (autoregressive integrated moving average) model and decomposing the time
series. For comparison, we performed the Pearson correlation test, for we did not expect to
see any time warping in the time series.

From the Figures 3–5, we observe a somewhat similar shape in the data, and all
language models agree on the spikes caused by important events or governmental decisions,
as reported [2]. For a detailed list of these events, please refer to [2], but they were
all nationwide events or official announcements regarding COVID-19 by the relevant
authorities. While the magnitude is not precisely the same, the spikes exist on similar dates,
indicating a “good-enough” sensibility of the measurement tool to repeat the analysis
and reach the same conclusions, at least as far as the sensibility of the data to important
real-world events. Figure 6 presents the time series decomposition, that is, the raw data,
the trend, seasonality, and Gaussian noise, from which we can observe a robust weekly
seasonality and a trend of m = 0.0004020335. The appendix includes the same charts for
VADER (Figure A1) and RoBERTa (Figure A2), excluded here for clarity, showing similar
trends in all of the language models (m = 0.00001110643 for VADER, m = 0.0004020335 for
BERTweet, and m = 0.0006753483 for RoBERTa) as well as a similar seasonality.

-

Figure 3. Year–Long time series of daily averaged VADER’s compound sentiment polarity of COVID-19-
related tweets, detrended, with its variance and significant events in Mexico. This time series is based on
the same dataset collected [6] and restricted to Mexico from 2 February to 31 December 2020. Data
were smoothed over via a 7-day rolling mean. Variance is also included for readability, as well as
significant events found to cause an impact [2].
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-

Figure 4. Year–Long time series of daily averaged of BERTweet’s compound sentiment polarity of COVID-19-
related tweets, detrended, with its variance and significant events in Mexico. This time series is based on
the same dataset collected [6] and restricted to Mexico from 2 February to 31 December 2020. Data
were smoothed over via a 7-day rolling mean. Variance is also included for readability, as well as
significant events found to cause an impact [2].

-

Figure 5. Year–Long time series of daily averaged RoBERTa’s compound sentiment polarity of COVID-19-
related tweets, detrended, with its variance and significant events in Mexico. This time series is based on
the same dataset collected [6] and restricted to Mexico from 2 February to 31 December 2020. Data
were smoothed over via a 7-day rolling means. Variance is also included for readability, as well as
significant events found to cause an impact [2].
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(days)

Figure 6. Year–Long time series of daily averaged compounded sentiment polarity of COVID-19-related
tweets, utilizing BERTweet in Mexico. Shown is the decomposed sentiment analysis: the averaged time
series, trends, weekly seasonality, and random data. The time axis is shown in days, starting from 2
February up to 31 December 2020.

Table 1 summarizes a compound metric evaluating different implementations of
language models. This single global metric follows a similar methodology as GLUE [30] in
that it uses an average of the relevant metrics for the given dataset. The metric utilized for
this sentiment analysis task was the macroaveraged recall.

Figure 7 shows the daily average of the detrended compound sentiment polarity
ranging from 2 February to 31 December 2020. Note that the Appendix A contains the
average positive, negative, and raw compound sentiment polarity for the same period.
This time series was smoothed over a 7-day rolling average, for we found a solid weekly
seasonality, which matched the seasonality previously found [31] as well. We see an offset
in each language model from here, but they follow a similar trend and present peaks at
similar points, though their magnitude can be somewhat different, resulting in a similar
sentiment intensity between VADER and RoBERTa, BERT having the group’s least intense
magnitude. This behavior was expected as the RoBERTa implementation uses English
tweets as a dataset for fine-tuning. Tables 4 and 5 summarize the Pearson’s correlation test
indexes obtained when comparing the models. It is interesting to see a strong correlation
with positive sentiments, particularly with RoBERTa, which should not be surprising as
this model was also trained on Twitter data. However, when we calculated the compound
sentiment polarity using VADER’s coefficient (see Equation (2)), we saw low results typical
of noisy signals. This would suggest that the most significant difference and drawback in
utilizing VADER is its approximation function, defined in Equation (2), for calculating the
compound sentiment polarity.

BERTweet and RoBERTa are large, deep-learning-based language models, sharing the
same architecture BERT uses. A pretraining dataset of 80 GB is used for both, containing
850M English-only tweets. This architecture comes with two optimization levels, where
BERTweet requires 135 M parameters and RoBERTa 355 M parameters, both for forward
and backward propagation, resulting in an expensive training and evaluation architec-
ture. Meanwhile, VADER needs human intervention to tag the data, but the model is a
lightweight, rule-based language model. This makes VADER much cheaper to use and
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deploy; however, as Figure 8 shows, the variance in BERT is significantly better than all
other models, leaving VADER as the least stable model.

Figure 7. Year–Long time series of daily averaged compound sentiment polarity of COVID-19-related tweets,
detrended, in Mexico. Each line represents a time series based on the same dataset collected [6]
and restricted to Mexico, from 2 February to 31 December 2020. Data were smoothed via a 7-day
rolling mean.

Figure 8. Year–Long time series of daily averaged compound sentiment polarity variance of COVID-19-
related tweets in Mexico. Each line represents a time series based on the same dataset collected [6]
and restricted to Mexico, from 2 February to 31 December 2020. Data were smoothed via a 7-day
rolling mean.

Another exciting result lies in the Pearson’s correlation test, which shows a strong
correlation between the models, as is shown in Table 5. This suggests temporal stability in
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the language models and that their difference lies in the magnitude of the sentiment polarity.
Of course, this is the expected behavior as we are analyzing the same Twitter corpus. There
is no reason why a particular language model would cause temporal warping in the time
series. As summarized in Figures 7 and 8, there is an offset in magnitude between the
different language models. The same is true of the variance. Regarding the ARIMA models,
we have a good fit for all language models with a p-value < 2.2 × 10−16, and a robust
weekly seasonality is present in the data. The charts for these models can be found in
the Appendix A. As expected, the trend is almost 0 with m = 0.00001110643 for VADER,
m = 0.0004020335 for BERTweet, and m = 0.0006753483 for RoBERTa.

These results make the different language models analyzed for this particular sizeable
twitter-based task similar in terms of robustness and stability but not so in terms of senti-
ment polarity intensity. However, this last metric can be compensated for by normalizing
all three results and adjusting the results gathered by VADER, though better results are
obtained by utilizing either the positive or negative polarity. Given these minor differences
but the similar trend, seasonality, and event reaction, we can draw similar conclusions
from this data analysis project, making the language models interchangeably. The only
real difference lies within the magnitude of the variance of the sentiment polarities, which
should be considered when deciding on any given language model.

5. Discussion

We performed a sentiment analysis on a large COVID-19-only Twitter-based corpus [6],
restricted to Mexico, and ranging from February to December 2020, collecting a total of
n = 760,064,879 unique tweets. To enable this study, we implemented a flexible software
architecture based on cloud-native and serverless technologies to adjust the scale and
handle large datasets and streaming data while allowing one to swap out different language
models promptly and effortlessly. This solution utilized micro triggers to produce and
process a data stream with the modularity of a single tweet, thus allowing one to change
data sources and provide the sentiment polarity in a near-real-time fashion. The same was
valid for the preprocessing and a portion of the analysis made. We followed the same
time series analysis to compare the impact of choosing VADER, BERT, or RoBERTa, as the
measurement instrument for determining the sentiment polarity.

To safeguard the users’ privacy and comply with international and Twitter’s privacy
policy, we stripped down all data from personally identifiable information and any meta-
data, regardless of whether it could be used against a user. To this end, the final schema
only had two points, the raw tweet text and the timestamp, adding the needed sentiment
polarity calculations for the multiple language models utilized. Doing so did impose some
limitations on the data analysis we were able to perform. For example, [16] ranked users
and followed the trends and topics for the most popular users, regardless of whether it was
COVID-19-related or not. This was not possible for us, as we did not keep users’ IDs, nor
did we consume tweets that had nothing to do with the COVID-19 pandemic. Another
self-imposed limitation of the study was to consider data only from the geographical loca-
tion of Mexico and only for the year 2020. This was chosen to better align with a previous
study [2] and due to a limitation of resources since we preferred to analyze a large data
corpus of n = 760,064,879 and have multilanguage data there. Another limitation that can
be addressed in the future was the inclusion of other families of language models. We
only selected the top state-of-the-art architectures in terms of performance, but it would be
interesting to see how other language models, particularly ones with different implementa-
tions, perform when executing this extrinsic task. Finally, other authors have performed an
additional analysis using as a base the sentiment analysis, such as correlating it to following
social distancing during the COVID-19 pandemic [27]; however, this study was limited to
the sentiment polarity time series analysis and the language model comparisons.

We provided a time-series analysis of n = 2,142,800 comparing the results of different,
popular, state-of-the-art language models reusing a methodology that relied solely on the
VADER implementation. The results showed a better stability of modern architectures,
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especially BERT, which its training dataset could explain. While BERTweet uses a gen-
eral, curated corpus, RoBERTa utilizes a Twitter-based corpus for fine-tuning, allowing
BERTweet to handle better text outside the known distribution. On the contrary, the mag-
nitude of the sentiment polarities varied slightly. Modern architectures showed a more
vital polarity, but when adjusting for VADER’s distribution estimation for normalizing
results, VADER and RoBERTa produced similar results, with smaller peaks observed in
the latter. However, all models showed similar trends and reacted similarly to real-world
events, making all three good options for large-scale sentiment analysis systems. RoBERTa
is built with 355M parameters, making both forward and backward propagation an expen-
sive operation. In contrast, VADER being a rule-based language model provides a faster,
less-expensive solution.

6. Conclusions

We performed a sentiment analysis on a large COVID-19-only Twitter-based corpus,
which we referred to as the COVID-19 Twitter chatter dataset [6], but consumed it with a
geolocation restricted to Mexico, and ranging from February to December 2020, collecting
a total of n = 760,064,879 unique tweets. To enable this study, we implemented a flexible
software architecture based on cloud-native and serverless technologies to adjust the scale
and handle large datasets. This solution utilized micro triggers to produce and process a
data stream with the modularity of a single tweet, thus allowing one to change data sources
and provide the sentiment polarity in a near-real-time fashion. The same was valid for the
preprocessing and a portion of the analysis made.

We produced a public dataset of a multilanguage sentiment analysis of COVID-19-
related tweets in Mexico, utilizing multiple language models as measurement instruments
and providing insights on the differences in results in each of them. Although there were
differences in the results provided, they were comparable. We remarked that they could
be safely used in this study, highlighting the differences in sentiment polarities, stability,
and evaluation cost for each. This can be used as a guideline for the technology to be
used as well as provide clear insights into the behavior of these models in the real world,
keeping in mind that, for the most part, the performance of a language model in a specific
extrinsic task is still unclear when only taking into account the intrinsic measurements of
each model.
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Autocorrelation function
API Application programming interface
ARIMA Autoregressive integrated moving average
BERT Bidirectional Representation for Transformers
CONACyT Sciences Research Council
COVID-19 Coronavirus disease 2019
CPU Central processing unit
GCP Google Cloud Platform
GLUE General Language Understanding Evaluation
GPU Graphics processing unit
MLops Machine learning operations
NLP Natural language processing
RoBERTa Robustly optimized BERT pretraining approach
TimeLM Time language model
VADER Valence Aware Dictionary for Sentiment Reasoning

Appendix A

We present additional graphs and tables showcasing noncritical information on the
sentiment polarity time series for the multiple languages analyzed in this research work.

(days)

Figure A1. Year–Long time series of daily averaged compounded sentiment polarity of COVID-19-related
tweets, utilizing VADER in Mexico. Shown is the decomposed sentiment analysis: the averaged time
series, trends, weekly seasonality, and random data. The time axis is shown in days, starting from
2 February up to 31 December 2020.



Electronics 2022, 11, 2483 16 of 19

(days)

Figure A2. Year–Long time series of daily averaged compounded sentiment polarity of COVID-19-related
tweets, utilizing RoBERTa in Mexico. Shown is the decomposed sentiment analysis: the averaged time
series, trends, weekly seasonality, and random data. The time axis is shown in days, starting from
2 February up to 31 December 2020.

Figures 6, A1 and A2 showcase a summary of the ARIMA model for each of the
language models analyzed in this study, ranging from 2 February to 21 December 2020,
with a daily unit of time in the x axis. The time series were smoothed using a 7-day rolling
average, and we can observe similar trends between BERTweet and RoBERTa and similar
seasonality in all of the models. The ARIMA models present a p-value < 2.2 × 10−16 for all
of them, and the trend is almost 0 with m = 0.00001110643 for VADER, m = 0.0004020335
for BERTweet, and m = 0.0006753483 for RoBERTa.

Figure A3. Year–Long time series of daily averages of positive sentiment polarity of COVID-19-related tweets
in Mexico. Each line represents a time series based on the same dataset collected [6] and restricted to
Mexico, from 2 February to 31 December 2020. Data were smoothed via a 7-day rolling mean.
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Figure A4. Year–Long time series of daily averaged negative sentiment polarity of COVID-19-related tweets
in Mexico. Each line represents a time series based on the same dataset collected [6] and restricted to
Mexico, from 2 February to 31 December 2020. Data were smoothed via a 7-day rolling mean.

Figure A5. Year–Long time series of daily averaged compound sentiment polarity of COVID-19-related tweets
in Mexico. Each line represents a time series based on the same dataset collected [6] and restricted to
Mexico, from 2 February to 31 December 2020. Data were smoothed via a 7-day rolling mean.

Figures A3–A5 show the daily average of positive, negative, and compound sentiment
polarity from 2 February to 31 December 2020. Please note that the compound component
was calculated using the same α as VADER used for that data entry and is defined by
Equation (2); this was to make a similar comparison between the data. All the time
series were smoothed over a 7-day rolling average, ranging from (0, 1) for the positive
and negative polarities, and (−1, 1) for the compound polarity. Note that in the positive
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polarity, VADER is the least intense, followed by BERT and, lastly, by RoBERTa, while in
the negative polarity, BERT is the least intense, followed by VADER, and then by RoBERTa.

Table A1 summarizes the partial autocorrelation function indexes. We observed strong
indications of weekly autocorrelations, which helped us quickly find the correct coefficients
for fitting an ARIMA model and use it to decompose the time series.

Table A1. Partial ACF (auto correlation function) of the sentiment polarity time series.

Lag Partial ACF
VADER BERTweet RoBERTa

1 0.888493947 0.981322253 0.9830592776
2 −0.188964510 0.058733847 0.0372013134
3 −0.119674873 −0.009975352 −0.0251595535
4 −0.030455558 −0.010288171 −0.0380042091
5 −0.059030857 −0.071735183 −0.0150139920
6 −0.009066172 −0.021977650 0.0105725987
7 −0.074336784 −0.006658723 0.0308749961
8 0.483162228 0.070486755 0.0321131066
9 −0.174833350 0.018110652 0.0085143348
10 −0.106022420 −0.026950394 −0.0216328943
11 −0.042640744 −0.016666002 −0.0391064396
12 0.036015376 0.054023430 0.0005282503
13 −0.001715747 0.057808036 −0.0174470950
14 −0.022592658 0.041424359 −0.0488539568
15 0.262433976 −0.018884831 0.0616588475
16 −0.113870361 −0.025551679 −0.0041771775
17 0.014280624 −0.030573729 −0.0247434641
18 −0.095572696 −0.028879640 −0.0417809239
19 0.040884337 −0.060802245 −0.0123302508
20 −0.050324985 −0.023285051 −0.0306742896
21 0.007294918 −0.019094493 −0.0023443146
22 0.183424253 0.060710941 −0.0083751616
23 −0.077040062 −0.012948749 −0.0258095563
24 −0.088658363 −0.045977837 −0.0529454175
25 −0.023658966 −0.044841702 0.0490646129

References
1. Huerta, D.T.; Hawkins, J.; Brownstein, J.; Hswen, Y. Exploring discussions of health and risk and public sentiment in MA during

COVID-19 pandemic mandate implementation: A Twitter analysis. SSM-Popul. Health 2021, 15, 100851. [CrossRef] [PubMed]
2. León-Sandoval, E.; Zareei, M.; Barbosa-Santillán, L.I.; Falcón Morales, L.E.; Pareja Lora, A.; Ochoa Ruiz, G. Monitoring the

Emotional Response to the COVID-19 Pandemic Using Sentiment Analysis: A Case Study in Mexico. Comput. Intell. Neurosci.
2022, 2022, 4914665. [CrossRef] [PubMed]

3. El Alaoui, I.; Gahi, Y.; Messoussi, R. Full Consideration of Big Data Characteristics in Sentiment Analysis Context. In Proceedings
of the 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 12–15
April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 126–130.

4. Laney, D. 3D data management: Controlling data volume, velocity and variety. META Group Res. Note 2001, 6, 1. Available
online: http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-
and-Variety.pdf (accessed on 23 June 2022).

5. Ylijoki, O.; Porras, J. Perspectives to Definition of Big Data: A Mapping Study and Discussion. J. Innov. Manag. 2016, 4, 69–91.
[CrossRef]

6. Banda, J.M.; Tekumalla, R.; Wang, G.; Yu, J.; Liu, T.; Ding, Y.; Artemova, K.; Tutubalina, E.; Chowell, G. A large-scale COVID-19
Twitter chatter dataset for open scientific research—An international collaboration [DataSet]. Epidemiologia 2021, 2, 315–324.
[CrossRef]

7. Cenni, D.; Nesi, P.; Pantaleo, G.; Zaza, I. Twitter vigilance: A multi-user platform for cross-domain Twitter data analytics, NLP
and sentiment analysis. In Proceedings of the 2017 IEEE SmartWorld Ubiquitous Intelligence and Computing, Advanced and Trusted
Computed, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation,
SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017, San Francisco, CA, USA, 4–8 August 2017; IEEE: Piscataway, NJ, USA,
2018; pp. 1–8. [CrossRef]

http://doi.org/10.1016/j.ssmph.2021.100851
http://www.ncbi.nlm.nih.gov/pubmed/34355055
http://dx.doi.org/10.1155/2022/4914665
http://www.ncbi.nlm.nih.gov/pubmed/35634092
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://dx.doi.org/10.24840/2183-0606_004.001_0006
http://dx.doi.org/10.3390/epidemiologia2030024
http://dx.doi.org/10.1109/UIC-ATC.2017.8397589


Electronics 2022, 11, 2483 19 of 19

8. Hutto, C.; Gilbert, E. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the
International AAAI Conference on Web and Social Media, Ann Arbor, MI, USA, 1–4 June 2014; Volume 8.

9. Nguyen, D.Q.; Vu, T.; Nguyen, A.T. BERTweet: A pre-trained language model for English Tweets. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 16–20 November 2020;
Association for Computational Linguistics: Vancouver, BC, Canada, 2020. Available online: https://aclanthology.org/2020
.emnlp-demos.2/ (accessed on 23 June 2022).

10. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; MAG ID: 2896457183.

11. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

12. Loureiro, D.; Barbieri, F.; Neves, L.; Anke, L.E.; Camacho-Collados, J. TimeLMs: Diachronic Language Models from Twitter.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Dublin,
Ireland, 22–27 May 2022. Available online: https://aclanthology.org/2022.acl-demo.25/ (accessed on 23 June 2022).

13. Barbieri, F.; Camacho-Collados, J.; Neves, L.; Espinosa-Anke, L. TweetEval: Unified Benchmark and Comparative Evaluation
for Tweet Classification. In Findings of the Association for Computational Linguistics; Association for Computational Linguistics:
Vancouver, Canada, 2020. Available online: https://aclanthology.org/2020.findings-emnlp.148/ (accessed on 23 June 2022).

14. Wan Min, W.N.S.; Zulkarnain, N.Z. Comparative Evaluation of Lexicons in Performing Sentiment Analysis. J. Adv. Comput.
Technol. Appl. 2020, 2, 14–20.

15. Rosenthal, S.; Farra, N.; Nakov, P. SemEval-2017 Task 4: Sentiment Analysis in Twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), Vancouver, BC, Canada, August 2017; Association for Computational
Linguistics: Vancouver, Canada, 2017; pp. 502–518. [CrossRef]

16. Adikari, A.; Nawaratne, R.; De Silva, D.; Ranasinghe, S.; Alahakoon, O.; Alahakoon, D. Emotions of COVID-19: Content Analysis
of Self-Reported Information Using Artificial Intelligence. J. Med. Internet Res. 2021, 23, e27341. [CrossRef]

17. Lwin, M.O.; Lu, J.; Sheldenkar, A.; Schulz, P.J.; Shin, W.; Gupta, R.; Yang, Y. Global Sentiments Surrounding the COVID-19
Pandemic on Twitter: Analysis of Twitter Trends. JMIR Public Health Surveill. 2020, 6, e19447. [CrossRef]

18. Abd-Alrazaq, A.; Alhuwail, D.; Househ, M.; Hamdi, M.; Shah, Z. Top Concerns of Tweeters During the COVID-19 Pandemic:
Infoveillance Study. J. Med. Internet Res. 2020, 22, e19016. [CrossRef]

19. Boon-Itt, S.; Skunkan, Y. Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study.
JMIR Public Health Surveill. 2020, 6, e21978. [CrossRef]

20. Xue, J.; Chen, J.; Hu, R.; Chen, C.; Zheng, C.; Su, Y.; Zhu, T. Twitter Discussions and Emotions About the COVID-19 Pandemic:
Machine Learning Approach. J. Med. Internet Res. 2020, 22, e20550. [CrossRef]

21. Valdez, D.; ten Thij, M.; Bathina, K.; Rutter, L.A.; Bollen, J. Social Media Insights Into US Mental Health During the COVID-19
Pandemic: Longitudinal Analysis of Twitter Data. J. Med. Internet Res. 2020, 22, e21418. [CrossRef]

22. Crocamo, C.; Viviani, M.; Famiglini, L.; Bartoli, F.; Pasi, G.; Carrà, G. Surveilling COVID-19 Emotional Contagion on Twitter by
Sentiment Analysis. In European Psychiatry; Cambridge University Press: Cambridge, UK, 2021; Volume 64, p. e17. [CrossRef]

23. Chandra, R.; Krishna, A. COVID-19 sentiment analysis via deep learning during the rise of novel cases. PLoS ONE 2021,
16, e0255615. [CrossRef]

24. Alam, K.N.; Khan, M.S.; Dhruba, A.R.; Khan, M.M.; Al-Amri, J.F.; Masud, M.; Rawashdeh, M. Deep Learning-Based Sentiment
Analysis of COVID-19 Vaccination Responses from Twitter Data. Comput. Math. Methods Med. 2021, 2021, 4321131. [CrossRef]

25. Garcia, K.; Berton, L. Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA.
Appl. Soft Comput. 2021, 101, 107057. [CrossRef]

26. Singh, M.; Dhillon, H.; Ichhpujani, P.; Iyengar, S.; Kaur, R. Twitter sentiment analysis for COVID-19 associated mucormycosis.
Indian J. Ophthalmol. 2022, 70, 1773. [CrossRef]

27. Porcher, S.; Renault, T. Social distancing beliefs and human mobility: Evidence from Twitter. Plos ONE 2021, 16, e0246949.
[CrossRef]

28. Shofiya, C.; Abidi, S. Sentiment Analysis on COVID-19-Related Social Distancing in Canada Using Twitter Data. Int. J. Environ.
Res. Public Health 2021, 18, 5993. [CrossRef]

29. Jaidka, K.; Giorgi, S.; Schwartz, H.A.; Kern, M.L.; Ungar, L.H.; Eichstaedt, J.C. Estimating geographic subjective well-being from
Twitter: A comparison of dictionary and data-driven language methods. Proc. Natl. Acad. Sci. USA 2020, 117, 10165–10171.
[CrossRef]

30. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. arXiv 2018, arXiv:1804.07461. [CrossRef]

31. Kmetty, Z.; Koltai, J.; Bokányi, E.; Bozsonyi, K. Seasonality pattern of suicides in the US—A comparative analysis of a Twitter
based bad-mood index and committed suicides. Intersect. East Eur. J. Soc. Politics 2017, 3, 56–75. [CrossRef]

32. Müller, M. Dynamic time warping. Inf. Retr. Music. Motion 2007, 69–84.

https://aclanthology.org/2020.emnlp-demos.2/
https://aclanthology.org/2020.emnlp-demos.2/
https://aclanthology.org/2022.acl-demo.25/
https://aclanthology.org/2020.findings-emnlp.148/
http://dx.doi.org/10.18653/v1/S17-2088
http://dx.doi.org/10.2196/27341
http://dx.doi.org/10.2196/19447
http://dx.doi.org/10.2196/19016
http://dx.doi.org/10.2196/21978
http://dx.doi.org/10.2196/20550
http://dx.doi.org/10.2196/21418
http://dx.doi.org/10.1192/j.eurpsy.2021.3
http://dx.doi.org/10.1371/journal.pone.0255615
http://dx.doi.org/10.1155/2021/4321131
http://dx.doi.org/10.1016/j.asoc.2020.107057
http://dx.doi.org/10.4103/ijo.IJO_324_22
http://dx.doi.org/10.1371/journal.pone.0246949
http://dx.doi.org/10.3390/ijerph18115993
http://dx.doi.org/10.1073/pnas.1906364117
https://doi.org/10.48550/ARXIV.1804.07461
http://dx.doi.org/10.17356/ieejsp.v3i1.302

	Introduction
	Data and Methods
	Experiments
	Results
	Discussion
	Conclusions
	Appendix A
	References

