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Abstract: A dual-cylinder erection mechanism, in which two telescopic cylinders physically connect
to a load, is a nonlinear system with model uncertainties and coupled dynamics. In this paper, a novel
synchronous control algorithm with thrust-allocation law is proposed for eliminating the excessive
internal forces caused by the unbalanced rotation and lateral moments during the erection process.
With regulated internal forces, the “pull and drag” issue is attenuated and better synchronization
performance is attained. For improved tracking accuracy, the inter-stage collision dynamics of
the telescopic cylinder are considered for model compensation to enhance stage-changing and in-
position performance. A radial basis function (RBF) neural network is utilized to estimate the model
uncertainties and external disturbances, which alleviates reliance upon the accuracy of a system
model for controller implementation. As a result, theoretical analysis revealed that the semi-global
asymptotic stability and synchronized motion performance with decreased internal forces can be
achieved via the presented synchronous controller with thrust-allocation strategy. Contrasting
simulations were implemented on a multi-link erection mechanism and the results confirmed the
superiority and effectiveness of the proposed synchronous control algorithm.

Keywords: dual-cylinder erection mechanism; synchronous control; thrust allocation; inter stage
collision; neural network

1. Introduction

Since the superiorities of large power-to-weight ratio, large force/torque supply, high
redundancy and high concordance, dual-drive actuators have extensive applications in di-
verse industrial fields, such as gantry cranes, lifting systems and robotic manipulators [1–5].
As studied in this paper, a large-scale erection mechanism is driven by two telescopic
cylinders in a collaborative manner, which uses a multi-link mechanism to transmit power.
A physical connection of the actuators to the erection load is necessary for joint thrust
generation. Thus, the two telescopic cylinders might interfere with each other, from which
emerges the “pull and drag” problem [6,7], leading to load deformation and destruction.
Nevertheless, it is essential to ensure synchronous motions of dual cylinders without exces-
sive internal forces for a stable erection. In addition, the electro-hydraulic servo-erection
system under study is subjected to many nonlinearities [8–10] including mechanism non-
linearities arising from the conversion between the displacement and rotation, distinct
dynamics of the asymmetric two chambers of the telescopic cylinder, and pressure and flow
nonlinearities of the hydraulic system. Furthermore, the electro-hydraulic erection mecha-
nism generally suffers from various model uncertainties, such as friction, flow leakage and
external disturbances [11–13]. Therefore, the development of a high-performance control
approach has significant theoretical and practical implications for the electro-hydraulic
erection system.

So far, scholars have investigated several synchronous control algorithms of multiple
actuators to follow the same motion trajectory. Generally, the commonly used synchronous
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control strategies [14–16] can be classified into three categories: (a) parallel synchronization
method or synchronized master command generator, in which the multiple actuators follow
the respective control loops severally, (b) master-slave synchronous control scheme, in
which the instruction to the slave actuator is generated from the master actuator who
follows the ideal trajectory, and (c) cross-coupling synchronous control scheme, in which a
synchronous compensator is established on the basis of position or velocity discrepancies
from dual actuators [17]. The first two designs are simple to implement but have intrinsic
performance restrictions due to the non-sharing of feedback information and a time delay
of control signals. The third design adds position or velocity feedback and discrepancies to
the synchronized master command generator, and thus a closed-loop control framework
is formed to achieve better motion synchronization. It is worth noting that there are
radical distinctions between the synchronous control of the dual-cylinder erection system
investigated in this paper and the synchronous or coordinated control of two individual
actuators for trajectory tracking missions. The dynamics of dual-cylinder drives in the
synchronous control design considered in this paper are fully coupled, which is different
from the basically decoupled dynamics of the coordinated motion control. In particular,
owing to the hinges between the two cylinders, linkage mechanism and erection load,
physical constraints restrict dual-cylinder relative motion or mechanically synchronize
the motions of each other. if the control performance of the dual cylinders is not highly
synchronized, excessive internal forces caused by unbalanced rotation and lateral moments
may result in performance deterioration, load deformation and even damage to the system
components [7]. Aware of these potential adverse effects, the synchronous control strategy
is not only required to synchronize motions but also to avoid excessive internal forces for
erection stability. Nevertheless, the issue of appropriately handling internal forces of such
synchronization systems with coupled dynamics has been neglected in most synchronous
control strategies.

As for the advanced motion control algorithms, a sliding mode control strategy called
robust integral of the sign of the error (RISE), first presented in [18], is utilized to handle
matched uncertainty of nonlinear systems. This controller was integrated into an adaptive
backstepping framework in [19–22] to pledge asymptotic tracking performance in the pres-
ence of various uncertainties. In [23], Yao et al. used an adaptive RISE controller to handle
parametric uncertainty and unmodeled disturbance, which can acquire excellent transients
and steady-state tracking performance. However, high-gain or high-frequency feedback
was usually adopted to eliminate severe unknown dynamics, which may deteriorate the
control precision. The radial basis function neural network (RBFNN) is a universal feed-
forward approximator widely utilized in the intelligent control field. Due to less reliance
on an accurate system model and fast convergence speed, it has been broadly applied to
approximate and compensate unknown dynamics and indeed improve the tracking per-
formance of mechanical and hydraulic servo systems in [24–27]. The RBF neural network
was combined with a sliding mode control method to approximate model uncertainties
and excellent performance was acquired in [24–26]. The RBF neural network was validly
integrated with a continuous RISE feedback term to deal with the uncertain dynamics
and external disturbance and attain asymptotic stability in [27]. Motivated by the above
observation, the characteristics of the RBF neural network, such as simple architecture,
accelerating learning speed, and avoiding the local minimum issue, which are all crucial
factors in real applications, make it suitable for experiment implementation. Hence, it is
worth believing that the model uncertainties and disturbance of the real erection system
can be well approximated and compensated through the RBFNN.

However, the combination and design of a synchronous control strategy and the
RBFNN for the dual-cylinder erection mechanism is still rare in the existing literature. In
this paper, a novel synchronous control strategy with thrust allocation law is proposed to
address excessive internal forces generated from complex coupling dynamics mentioned
above. Distinguished from the existing sheer synchronous or coordinated motion control
schemes, the presented synchronous control strategy focuses not only on synchronization
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performance of the dual cylinders but also the regulation of internal forces for erection
stability. Specifically, in step 1, the dual-cylinder kinematics model with thrust-allocation
law is derived with the knowledge of unbalanced rotational dynamics for subsequent
synchronous controller design. To avert deterioration of stage-changing and in-position
tracking performance, the inter-stage collision dynamics of the telescopic cylinder are
established for model-based compensation. A dynamic model of the erection system
is then derived, considering mechanism kinematics, hydraulic dynamics, and external
disturbances. An RBFNN is utilized to approximate the unknown dynamics and a RISE
control law is synthesized to address the residual uncertainties. Subsequently, in step 2, the
virtual-control input thrusts of the two cylinders are derived on the basis of total thrust
virtual-control input generated in step 1 via the thrust-allocation strategy, and then the
actual control inputs for the dual-cylinder erection system can be obtained. The semi-
global asymptotic stability is acquired via Lyapunov analysis. Comparative simulations
of the dual-cylinder erection mechanism demonstrate the effectiveness of the RBFNN
approximator and the presented synchronous control strategy.

The contributions of this manuscript mainly include the following aspects: (1) A
novel synchronous control strategy with thrust allocation law is proposed to deal with
the “pull and drag” issue and to regulate excessive internal forces caused by coupled
rotational dynamics, which is distinguished from the existing sheer motion synchroniza-
tion schemes. (2) On the basis of an improved damping model, the inter-stage collision
dynamics of the telescopic cylinder are constructed for model compensation to attain better
stage-changing and in-position tracking performance. (3) An RBFNN is incorporated into
the synchronous control strategy design for unknown dynamics approximation and com-
pensation. (4) Comparative simulations of the dual-cylinder erection mechanism reveal the
superiority of the presented synchronous control strategy.

This paper is arranged as follows: Section 2 gives the system modeling of the dual-
cylinder erection mechanism. Section 3 presents the neural network-based synchronous
control strategy design procedure and its stability analysis. Comparative simulation results
are given in Section 4. The conclusions are contained in Section 5.

2. System Modeling

The large-scale erection system under research is depicted in Figure 1. Multi-link
mechanisms are mounted symmetrically on both sides of the erection load, each of which
consists of five hinge points. The erection mechanism is driven by two telescopic cylinders.
The aim is to enable the erection load to track the desired erection trajectories as closely as
possible and decrease the synchronous errors of two cylinders simultaneously.

Figure 1. Schematic diagram of the erection system.

2.1. Dynamics of Multi-Link Erection Mechanism

Using the motion vector equations of a multi-link mechanism, the following expression
can be obtained based on Figure 2.

ϕ = 2arctan
b +
√

a2 + b2 − c2

a− c
(1)
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where a = L4 − L1 cos(β0 − θ), b = −L1 sin(β0 − θ), c = 0.5(a2 + b2 − L2
2 + L2

3)/L3 are
defined as auxiliary variables to solve ∠ABH; L1, L2, L3 and L4 denote the length of
linkage CO, AC, AB and BO respectively; β0 denotes the value of ∠BOC; θ denotes the
erection angle.

The axial displacement of the telescopic cylinder AE can be obtained based on the
cosine theorem as

xp =
√

L2
3 + L2

5 − 2L3L5 cos(π − α− ϕ)− L6 (2)

where L5 denotes the distance from B to E; L6 is the initial length of the telescopic cylinder;
and α denotes the value of ∠OBE.

According to the moment equilibrium, the dynamics of the erection system can be
given as

J
..
θ = τ(θ)(F1 + F2)−mgL8 cos(β2 + θ)− B

.
θ − A f S f (

.
θ)− d(t) (3)

where J represents the rotational inertia of the load relative to O; τ(θ) = ∂xp/∂θ represents
the erection arm of force; F1 and F2 are the thrust forces of the two telescopic cylinders
severally; m is the mass of erection load; L8 denotes the distance from G to O; β2 represents
the value of ∠COG; B represents the viscous friction coefficient; A f S f represents the
approximated Coulomb friction, in which A f is the Coulomb friction amplitude and S f
is a known shape function; d denotes unknown dynamics including friction, external
disturbances and unmodeled dynamics.

Figure 2. Schematic diagram of the multi-link mechanism.

2.2. Dynamics of Inter-Stage Collision

During the extension process of the telescopic cylinder, the position is limited by
the contact collision between the cylinder shell and piston rod, which has a great effect
on the dynamic characteristics of the erection process. In order to calculate the collision
force, the collision process is decomposed into four states: contact-deformation-recovery-
detachment [28]. Deformation is generally limited in the neighborhood of the contact area.
The spring contact force is determined based on the Hertz contact law, and the energy
loss is considered through a damper parallel to the spring. The cylinder motion model is
depicted in Figure 3.
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Figure 3. Schematic diagram of the cylinder motion model.

The collision force model considering damping loss was first proposed by Kelvin-Voigt.
The formula is as follows

FN =


Kaδn + Ca

.
δ x ≤ Sa

0 Sa < x < Sb

Kbδn + Cb
.
δ x ≥ Sb

(4)

where Ka and Kb denote effective spring stiffness; Ca and Cb denote effective damping
coefficient; δ is normal penetration depth in contact position, and

.
δ is normal relative

velocity of the contact point; n is material-related nonlinear coefficient; x denotes piston
displacement; Sa and Sb are the lower and upper values of stroke, respectively.

As expressed in the formula, the energy loss of collision is described via a viscous
damper with constant damping coefficient. Nevertheless, the contact force exists in the
light of the above formula, which is not in accord with the actual state. Subsequently, a
modified equivalent damping model with hysteresis factor is proposed, considering the
relation between energy loss and deformation.

FN =


Kaδn + Dδn

.
δ x ≤ Sa

0 Sa < x < Sb

Kbδn + Dδn
.
δ x ≥ Sb

(5)

where hysteresis damping factor D is given as

D =
3k(1− C2

r )e2(1−Cr)

4
.
δ0

(6)

in which Cr is Newton’s recovery coefficient;
.
δ0 is the initial impact velocity.

The computed results of deformation and contact force are illustrated in Figures 4 and 5.
There exist no deformation and contact forces at the inception phase, which is consistent
with the real situation. As deformation rises to the maximum value, contact force reaches the
maximum value. Subsequently, contact force reduces with deformation recovery. Since the
instantaneous collision force is large, the effect on the erection process cannot be neglected
as unmodeled uncertainties, which may degrade the transient control performance.
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Figure 4. Schematic diagram of collision deformation.

Figure 5. Contact force curve of collision.

2.3. Dual-Cylinder Kinematics with Thrust Allocation

Due to manufacturing and assembly, load eccentricity issues broadly exist in the
practical mechanism. As shown in Figure 1, OXYZ is defined as the fixed inertial frame
with its origin at the rotation point, The X-axis is inward perpendicular to plane; the Y-axis
is parallel to the ground; and the Z-axis is perpendicular to the ground. G is defined as the
centroid of the inertia load. Gxyz is defined as a moving ideal coordinate frame at G with
the y-axis parallel to the inertia load and the z-axis perpendicular to the inertia load. Gx̃ỹz̃
is defined as a physically fixed coordinate frame to the inertia load at G, which revolves
with the unbalanced rotation of the inertia load during the erection process.

As shown in Figure 6, let D1 and D2 denote the force point of the unbalanced rotation
force. The positions of D1, D2 and G are denoted as D1(x1, y1, z1), D2(x2, y2, z2) and
G(xG, yG, zG) in OXYZ respectively. Gx̃′ỹ′ is the projection of Gx̃ỹ on plane Gxy and Gx̃′ z̃′

is the projection of Gx̃z̃ on plane Gxz. Let ω1 denote the rotation angle of Gx̃′ỹ′ relative
to Gxy and ω2 denote the rotation angle of Gx̃′ z̃′ relative to Gxz. Denote the distances
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from the centroid G to the two force points as |GD1| = l1 and |GD2| = l2, and the distance
between the two force points as |D1D2| = l, as seen from Figure 6,

x1 = xG − l1 cos ω1 ≈ xG − l1
y1 = yG − l1 sin ω1 ≈ yG − l1ω1
z1 = zG − l1 sin ω2 ≈ zG − l1ω2
x2 = xG + l2 cos ω1 ≈ xG + l2
y2 = yG + l2 sin ω1 ≈ yG + l2ω1
z2 = zG + l2 sin ω2 ≈ zG + l2ω2

(7)

From which xG, ω1, and ω2 can be obtained by

xG =
l2
l

x1 +
l1
l

x2, ω1 =
1
l
(y2 − y1), ω2 =

1
l
(z2 − z1) (8)

Taking the lateral displacement and the unbalanced rotation of the inertia load into
account, the dynamics of dual-cylinder synchronous servo system are thus described by

m
..
x̃G = −Ks x̃G + Cxω1 ω1 + Cxω2 ω2

J1
..
ω1 = −(F1 − Fr1)l1 cos ψ + (F2 − Fr2)l2 cos ψ +

2
∑

i=1
Mω1i

J2
..
ω2 = −(F1 − Fr1)l1 sin ψ + (F2 − Fr2)l2 sin ψ +

2
∑

i=1
Mω2i

(9)

where x̃G is the displacement of G in relation to the state of equilibrium along the X-
axis; J1 and J2 represents the rotational inertia of the mass center G; Ks represents lateral
displacement stiffness; Fr1 and Fr2 represent the friction of the two cylinders severally. The
coupling coefficient Cxω1 and Cxω2 between the dynamics of the lateral displacement and
the dynamics of the rotational angle can be ignored because the construction of the erection
mechanism is practically symmetrical [7].

In Equation (9), Mω1i and Mω2i are the moments induced by the lateral forces of dual
cylinders which are described as

2
∑

i=1
Mω1i ≈ Cxω1 x̃G − Kω1 ω1

2
∑

i=1
Mω2i ≈ Cxω2 x̃G − Kω2 ω2

(10)

where Kω1 and Kω2 represent the rotational stiffness.
To avoid the effect of excessive internal forces on the stable erection of dual-cylinder

synchronous servo system, it is required that the unbalanced rotation angle and lateral
moments should be small enough. Noting that the lateral moments in the dynamic
Equation (10) is the proportional feedback of the unbalanced rotation angle, thus the syn-
chronous erection requirement can be assured only if the following conditions are satisfied

[(F2 − Fr2)l2 − (F1 − Fr1)l1] cos ψ = 0
[(F2 − Fr2)l2 − (F1 − Fr1)l1] sin ψ = 0

(11)



Electronics 2022, 11, 2542 8 of 23

Figure 6. Motion analysis diagram of the unbalanced rotation. (a) Projection of rotation on plane
Gxy, (b) Projection of rotation on plane Gxz.

2.4. Dynamics of Pump-Controlled Hydraulic Actuator

The erection mechanism is powered by a typical pump-controlled electro-hydraulic
servo system (EHSS). As seen from Figure 7, the telescopic cylinder is driven directly by an
axial piston pump, which is powered by a permanent magnet synchronous motor (PMSM).
The combination of the three-way direct-acting directional valve and the counterbalance
valve is adopted to satisfy the oil replenishment and drain automatically in extension mode
and retraction mode of telescopic cylinder. The angular displacement of the erection load
and the cylinder chamber pressures can be measured via sensors.
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Figure 7. Schematic diagram of hydraulic circuit.

The pressure dynamics can be written as [29]

VZ
βe

.
PZ = QZ − AZ

∂xp
∂θ

.
θ − Ct(PZ − PF)

VF
βe

.
PF = QF + AF

∂xp
∂θ

.
θ + Ct(PZ − PF)

(12)

where VZ = V0Z + AZxp and VF = V0F − AFxp denote the total control volumes of the
piston chamber and the rod chamber respectively; V0Z and V0F are the original volumes
of the two chambers severally; βe denotes the effective bulk modulus; PZ and PF denote
the cylinder pressures of the piston chamber and the rod chamber; QZ and QF denote the
flow rates of the two chambers severally; Ct denotes the internal leakage coefficient of the
cylinder. Furthermore, the effective areas of the piston chamber and the rod chamber are
severally defined as

AZ =

{
A1Z xp ≤ ls
A2Z xp > ls

, AF =

{
A1F xp ≤ ls
A2F xp > ls

(13)

where A1Z and A1F are the effective areas of the piston chamber and the rod chamber of the
first stage; A2Z and A2F are the effective areas of the piston chamber and the rod chamber
of the second stage; ls is the maximum stroke of the first stage.

Based on the analysis of hydraulic circuit, the flow rates of the two chambers can be
described as

QZ = QE1 + Qc1 −Qr1
QF = QR2 + Qc2 −Qr2

(14)

where QE1 = −QR2 = Q denotes the supplied and absorbed flow rates of the pump; Qr1
and Qr2 denote the flow rates through the relief valves, Qr1 = Qr2 = 0, when under normal
working conditions; Qc1 denotes the drained flow rate when the cylinder retracts, and Qc2
denotes the replenished flow rate when the cylinder extends. We define the extension of
the cylinder as positive movement, i.e.,

.
xp ≥ 0, then Qc1 and Qc2 can be written as

Qc1(
.
xp) =

.
xp(AZ − AF)sm(− .

xp)
Qc2(

.
xp) =

.
xp(AZ − AF)sm(

.
xp)

(15)
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in which sm(∗) is defined by

sm(∗) =
{

1 ∗ ≥ 0
0 ∗ < 0

(16)

For the pump-controlled hydraulic system under study, the flow rates of the pump
suction and discharge ports ought to be equal. Thus, the pump flow model can be given as

Q = Dpkωu− Cp(PZ − PF) (17)

where Dp denotes the displacement of the piston pump; u is the control input, which is
proportional to the speed of the servo motor via the coefficient kω; Cp denotes the pump
leakage flow coefficient.

From Equation (4) to Equation (9), the pressure dynamics can be further expressed as

VZ
βe

.
PZ = Q− AZ

∂xp
∂θ

.
θ − Ct(PZ − PF) +

∂xp
∂θ

.
θ(AZ − AF)sm(− ∂xp

∂θ

.
θ)

VF
βe

.
PF = −Q + AF

∂xp
∂θ

.
θ + Ct(PZ − PF) +

∂xp
∂θ

.
θ(AZ − AF)sm(

∂xp
∂θ

.
θ)

(18)

x = [x1, x2, x3, x4]
T = [θ,

.
θ, AZPZ1 − AFPF1, AZPZ2 − AFPF2]

T
is defined as a set of

state variables of the erection mechanism; thus, the state-space equations of the system can
be described as

.
x1 = x2

J(x1)
.
x2 = (x3 − FN1) + (x4 − FN2)− f21 − B f22 − A f f23 − D(x, t)
.
x3 = f31βeQ1 − f32βe − f33Ctβe − f34βe.
x4 = f41βeQ2 − f42βe − f43Ctβe − f44βe

(19)

where J(x1) = J/τ(x1) and

f21 = mgL8 cos(β2+x1)
τ(x1)

, f22 = x2
τ(x1)

, f23 =
S f (x2)

τ(x1)
, D(x, t) = d(x,t)

τ(x1)

f31 = AZ
VZ

+ AF
VF

, f32 = (
A2

Z
VZ

+
A2

F
VF

)
∂xp
∂x1

x2, f33 = ( AZ
VZ

+ AF
VF

)(PZ1 − PF1)

f34 = − ∂xp
∂x1

x2(AZ − AF)[
AZ
VZ

sm(− ∂xp
∂x1

x2)− AF
VF

sm(
∂xp
∂x1

x2)]

f41 = AZ
VZ

+ AF
VF

, f42 = (
A2

Z
VZ

+
A2

F
VF

)
∂xp
∂x1

x2, f33 = ( AZ
VZ

+ AF
VF

)(PZ2 − PF2)

f44 = − ∂xp
∂x1

x2(AZ − AF)[
AZ
VZ

sm(− ∂xp
∂x1

x2)− AF
VF

sm(
∂xp
∂x1

x2)]

(20)

Our objective is to synthesize two control inputs for each servo motor to make the
erection angle track the reference trajectory and improve the dual-cylinder synchronized
motion with decreased internal forces. Before proceeding to the detailed controller design,
the following assumption is given.

Assumption 1. The desired motion trajectory x1d ∈ C3 and is bounded in the actual erection
system under conventional operating conditions.

3. Neural Network-Based Synchronous Controller Design
3.1. Control Model Design

The controller is designed to make the angular position x1(t) track the desired erection
trajectory x1d(t). The position tracking error z1(t) is defined as

z1 = x1 − x1d (21)

By using the backstepping method, a switching-function-like quantity is designed as

z2 =
.
z1 + k1z1 = x2 − x2eq, x2eq ,

.
x1d − k1z1

r =
.
z2 + k2z2, z3 = x3 − α3, z4 = x4 − α4

(22)
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where k1 and k2 are positive feedback gains; x2eq, α3 and α4 are virtual control laws for
x2, x3 and x4, respectively; r is an auxiliary error signal for ease of the subsequent design.
Hence, making z1 converging to zero is equivalent to making z2 converge to zero.

In the erection mechanism under research, the values of J(x1), FN1 and FN2 cannot be
measured precisely. Hence, to replace the real values, the nominal values J0(x1), F0N1 and
F0N2 can be defined as

J0(x1) = J(x1)− ∆J(x1)
F0N1 = FN1 − ∆FN1, F0N2 = FN2 − ∆FN2

(23)

where ∆J(x1), ∆FN1 and ∆FN2 are parametric uncertainties. The unmodeled dynamics can
be expressed as D(x1, x2, t) = f1(x1, x2) + ∆(t), ∆(t) is the time-varying disturbance, using
(19), (21)–(23), the following expression can be obtained

J(x1)r = Fd + S− ∆(t) + ∆d + x3 + x4 (24)

where the auxiliary function Fd(x1d,
.
x1d,

..
x1d) is defined as

Fd , −J0(x1d)
..
x1d − F0N1 − F0N2 − f21(x1d)− B f22(x1d,

.
x1d)− A f f23(x1d,

.
x1d) (25)

and the auxiliary function S(x1, x2, x1d,
.
x1d,

..
x1d) is defined as

S , J(x1)(k1
.
z1 + k2z2)− J0(x1)

..
x1d + J0(x1d)

..
x1d − ∆J(x1)

..
x1d + ∆J(x1d)

..
x1d − f21(x1)

+ f21(x1d)− B f22(x1, x2) + B f22(x1d,
.
x1d)− A f f23(x1, x2) + A f f23(x1d,

.
x1d)

− f1(x1, x2) + f1(x1d,
.
x1d)

(26)

the unknown dynamics ∆d which can be estimated via an RBF neural network subsequently
is given as

∆d , −∆J(x1d)
..
x1d − ∆FN1 − ∆FN2 − f1(x1d,

.
x1d) (27)

Assumption 2. f1(x1, x2) is a smooth function and the time-varying disturbance ∆(t) is smooth
enough that

|∆(t)| ≤ σ1,
∣∣∣ .
∆(t)

∣∣∣ ≤ σ2,
∣∣∣ ..
∆(t)

∣∣∣ ≤ σ3 (28)

where σ1, σ2 and σ3 are some unknown positive constants.

3.2. RBF Neural Network Estimation

The characteristics of the RBF neural network, such as simple architecture, accelerating
learning speed and avoiding the local minimum issue, which are all crucial factors in
real applications, make it suitable for experiment implementation and have universal
approximation ability to approximate any nonlinear function. The basic structure of an
RBF neural network with five neurons in the hidden layer is illustrated in Figure 8.

Figure 8. Schematic diagram of the RBFNN architecture.
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To estimate the unknown dynamics, the RBF neural network is given as follows

f (χ) = ∆d = WTh(χ) + ε (29)

hj = exp

(∥∥χ− cj
∥∥2

−2b2
j

)
(30)

where χ= [χ1, χ2, χ3, χ4]
T = [1, x1d,

.
x1d,

..
x1d]

T represents the network input, h(χ) = [hj]
T is

the Gaussian function utilized in the network, cj is the center vector of the jth network node,
bj is the width of the jth node, W = [wj] represents the ideal weight vector, ε represents the
network approximation error.

In order to determine the number and the center of hidden neurons, the K-means clus-
tering algorithm is employed in the self-organization learning stage [24]. Firstly, initialize
the cluster center, and K groups of different samples are selected randomly as the initial
center cji(0), (j = 1, 2, . . . , K, i = 1, 2, 3, 4). Secondly, compute the distance between the
input vector and the cluster centers, and classify them in accordance with the principle of
minimum distance, that is, find j to satisfy the following formula

j = argmin
∥∥∥χ− cn

j

∥∥∥ (31)

where cn
j is the j center of the basis function at n iteration.

Thirdly, use the mean of each cluster as a new cluster center. Then repeat the second
and third step until all the samples are finished and the center distribution is no longer
changed, the self-learning process can be finished. Finally, the optimal number of hidden
neurons is determined by comparing the corresponding estimation errors in the case of
different numbers of initial centers utilized in the self-learning process.

Since the ideal weight cannot be obtained accurately, the actual output of the network is

f̂ (χ) = ŴTh(χ) (32)

where Ŵ denotes the estimation of W. Due to the lack of knowledge about the unknown
dynamics of the dual-cylinder erection system, the weights and biases are simply initialized
so that the NN output is equal to zero, for then the RISE controller keeps the system stable
until the RBF neural network begins to learn. However, practical experiments show that
it is important to initialize the weights suitably. A good choice is to select Ŵ(0) equal to
zero [30,31].

The weight adaptive law was designed as follows

.
Ŵ = Γhz2 (33)

where Γ is a definite weight adaptive velocity matrix.

Assumption 3. Based on Assumption 2, a set of inequalities can be obtained as follows

|ε| ≤ ε1,
∣∣ .
ε
∣∣ ≤ ε2,

∣∣..ε∣∣ ≤ ε3 (34)

where ε1, ε2 and ε3 are known positive constants.

3.3. Controller Design with Thrust Allocation

By utilizing (22) and (29)–(32), r can be expanded as the following formula

J(x1)r = z3 + α3 + z4 + α4 + Fd + S− ∆(t) + ŴTh + W̃Th + ε (35)
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where W̃ = W − Ŵ denotes the approximation error of ideal weight, and the resultant
virtual control law of the total thrust Ft is specified as

Ft = α3 + α4 = Fta + Fts, Fts = Fts1 + Fts2
Fta = −Fd − ŴTh, Fts1 = −(kr + ks)z2

Fts2 = −
∫ t

0 (kr + ks)k2z2 + βsign(z2)dν

(36)

in which kr is a positive feedback gain and ks is a positive constant; Fta functions as a model-
based feedforward compensation term utilized to acquire a refined model compensation; Fts
as a robust control law where Fts1 is a linear robust feedback term and Fts2 is a RISE-based
integral term to remove the impact of approximation error ε and residual dynamics; β is an
integral robust feedback gain; and sign(z2) is a standard signum function with regard to z2.

To avoid excessive internal forces caused by asynchronous motion, the virtual control
thrust of each side is synthesized via thrust allocation law as follows

[(α4 − Fr2)l2 − (α3 − Fr1)l1] cos ψ = 0
[(α4 − Fr2)l2 − (α3 − Fr1)l1] sin ψ = 0
α3 + α4 = Ft

(37)

Since hydraulic forces generated to drive the erection mechanism are relatively much
larger than frictions, (37) can be simplified as α4l2 − α3l1 = 0, i.e., α3/α4 = l2/l1.

Based on Equations (35) and (36), the time derivative of r can be given as

J(x1)
.
r = −

.
J(x1)r +

.
z3 +

.
z4 +

.
Fts +

.
S−

.
∆(t) +

.
W̃

T
h + W̃T

.
h +

.
ε (38)

in which the time derivative of Fts can be given as

.
Fts = −(kr + ks)r− βsign(z2) (39)

and the Equation (38) can be rewritten as

J(x1)
.
r = −1

2

.
J(x1)r + Ñ + N − (kr + ks)r− βsign(z2) +

.
z3 +

.
z4 (40)

in which the unmeasurable auxiliary terms Ñ(z1, z2, r, t), N(W̃, χ,
.
χ, t) are defined as

Ñ , −1
2

.
J(x1)r +

.
S +

.
W̃

T
h (41)

and
N , NB + Nd

NB , W̃T
.
h, Nd , −

.
∆(t) +

.
ε

(42)

Lemma 1. Due to continuously differentiable property, the following upper bound of Ñ can be
acquired via the Mean Value Theorem [32]∥∥∥Ñ

∥∥∥≤ ρ(‖ z‖ )‖ z‖ (43)

where z(t) , [z1, z2, r, z3, z4]
T , and the bounding function ρ(‖ z‖) ∈ R is a positive globally

invertible nondecreasing function.

Property 1. According to Assumptions 2 and 3, we can obtain the inequalities as follows

‖Nd‖ ≤ ς1, ‖NB‖ ≤ ς2,
∥∥∥ .

Nd

∥∥∥ ≤ ς3,
∥∥∥ .

NB

∥∥∥ ≤ ς4 (44)
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where ς1, ς2, ς3, ς4 are known positive constants.

According to Equations (19) and (22), Equation (40) can be rewritten as

J(x1)
.
r =

.
x3 −

.
α3 +

.
x4 −

.
α4 − 1

2

.
J(x1)r + Ñ + N − (kr + ks)r− βsign(z2)

= f31βeQ1 − f32βe − f33Ctβe − f34βe −
.
α3 + f41βeQ2 − f42βe − f43Ctβe

− f44βe −
.
α4 − 1

2

.
J(x1)r + Ñ + N − (kr + ks)r− βsign(z2)

(45)

thus, the control input flow rate Q1 and Q2 can be designed as

Q1 = Q1a + Q1s, Q1s = − k3z3
f31βe

Q1a = ( f31βe)−1( f32βe + f33Ctβe + f34βe +
.
α3)

(46)

Q2 = Q2a + Q2s, Q2s = − k4z4
f41βe

Q2a = ( f41βe)−1( f42βe + f43Ctβe + f44βe +
.
α4)

(47)

in which Q1a and Q2a are model compensation terms, Q1s and Q2s are robust control laws to sta-
bilize the system; k3 and k4 are positive feedback gains. Based on Equations (17), (46) and (47),
the actual control inputs are designed as

u1 =
Q1 + Cp(PZ − PF)

Dpkω
(48)

u2 =
Q2 + Cp(PZ − PF)

Dpkω
(49)

Applying the resulting control inputs, Equations (48) and (49), (45) could be changed to

J(x1)
.
r = −1

2

.
J(x1)r + Ñ + N − (kr + ks)r− βsign(z2)− k3z3 − k4z4 (50)

and the dynamics of z3 and z4 are transformed to

.
z3 = −k3z3,

.
z4 = −k4z4 (51)

The schematic diagram of the proposed synchronous control strategy is depicted in
Figure 9.

Figure 9. Schematic diagram of the proposed synchronous control strategy.
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3.4. Stability Analysis

Lemma 2. Define an auxiliary function L(t) ∈ R as

L(t) , r[Nd(t) + NB(t)− βsign(z2)] (52)

From Property 1, there does exist a constant β in accordance with the following condition

β ≥ ς1 + ς2 +
ς3

k2
+

ς4

k2
(53)

then based on [22,23], the function P(t) ∈ R defined below is always positive

P(t) , β|z2(0)| − z2(0)N(0)−
∫ t

0
L(ν)dν (54)

Define D ⊂ R6 as a domain containing h(t) = 0, and h(t) is given as

h(t) , [z(t),
√

P(t)]
T

(55)

Define VL(y, t) as a positive Lyapunov function

VL(y, t) =
1
2

z2
1 +

1
2

z2
2 +

1
2

z2
3 +

1
2

z2
4 +

1
2

J(x1)r2 + P (56)

which satisfies the following inequalities

U1(y) ≤ VL(y, t) ≤ U2(y) (57)

In (57), the continuous positive definite functions U1(y), U2(y) are defined as

U1(y) , λ1‖y‖2, U2(y) , λ2‖y‖2 (58)

in which
λ1 ,

1
2

min{1, Jmin}, λ2 ,
1
2

max{1, Jmax}

where Jmax and Jmin are the maximum and minimum values of function J(x1), severally.
By using Equations (22), (36) and (48)–(50), we can obtain the time derivative of VL(y, t)

.
VL(y, t) = z1

.
z1 + z2

.
z2 + z3

.
z3 + z4

.
z4 + J(x1)r

.
r + 1

2

.
J(x1)r2 +

.
P

= −k1z2
1 + z1z2 − k2z2

2 + z2r− (kr + ks)r2 − k3z2
3 − k3rz3

−k4z2
4 − k4rz4 + rÑ

(59)

By utilizing Equation (43) and choosing appropriate feedback gains k1, k2, kr, k3 and
k4, such that the following defined matrix Λ is positive

Λ =


k1 − 1

2 0 0 0
− 1

2 k2 − 1
2 0 0

0 − 1
2 kr

k3
2

k4
2

0 0 k3
2 k3 0

0 0 k4
2 0 k4

 (60)

then, Equation (59) can be simplified as

.
VL(y, t) ≤ −κmin(Λ)‖z‖2 − (ks|r|2 − ρ(‖z‖)|r|‖z‖) (61)
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in which

−(ks|r|2 − ρ(‖z‖)|r|‖z‖) = −
(√

ks|r| −
ρ(‖ z‖ )‖ z‖

2
√

ks

)2

+
ρ (‖ z‖)2‖z‖2

4ks
≤ ρ (‖ z‖)2‖z‖2

4ks
(62)

and κmin(∗) denotes the minimum eigenvalue of the argument. Thus, the following in-
equality can be acquired

.
VL(y, t) ≤ −κmin(Λ)‖z‖2 +

ρ (‖ z‖)2‖z‖2

4ks
≤ −U(y) (63)

where U(y) = n‖z‖2, for some positive constant n, is a continuous positive semi-definite
function and defined on the following domain

D ,
{

y ∈ R6
∣∣∣∣‖y‖ < ρ−1

(
2
√

κmin(Λ)ks

)}
(64)

Based on Equations (56) and (64), it can be known that VL ∈ L∞ in D. From Equations
(21), (22), (25), (26), (29), (43), (44), (48) and (49), it can be inferred that system signals are
bounded. The definitions of U(h) and z(t) prove that U(y) is uniformly continuous in D.

Define Υ ⊂ D as a set as follows

Υ ,

{
y(t) ⊂ D

∣∣∣∣U2(y(t)) < λ1

(
ρ−1

(
2
√

κmin(Λ)ks

)) 2
}

(65)

By invoking [32], it can be stated that

n‖z‖2 → 0 as t→ ∞ ∀ y(0) ∈ Υ (66)

In addition, according to the definition of z(t), (66) can be used to prove that

z1(t)→ 0 as t→ ∞ ∀ y(0) ∈ Υ (67)

Hence, it can be ensured that all system signals are bounded and a semi-global
asymptotic tracking performance can be obtained via the presented control algorithm.

4. Simulation Results

The parameters of the dual-cylinder erection mechanism are listed in Table 1. The
disturbance was set as d(t) = 50, 000 sin(t) N·m.

Table 1. Physical parameters of the dual-cylinder erection mechanism.

Parameter Value Parameter Value

m(kg) 10, 000 ls(m) 2.442
J(kg·m2) 2.61× 105 V0Z(m3) 1.075× 10−4

kω(rpm/V) 300 V0F(m3) 2.83× 10−2

Dp(m3/rev) 1.8× 10−4 Ct(m3/s/Pa) 4.82× 10−13

A1Z(m2) 2.69× 10−2 Cp(m3/s/Pa) 2.56× 10−11

A1F(m2) 6.8× 10−3 B(N·m·s/rad) 8× 104

A2Z(m2) 1.43× 10−2 A f (N·m) 3500
A2F(m2) 4.8× 10−3 βe(Pa) 7× 108

The following four controllers are contrasted to validate the effectiveness of the pre-
sented control strategy.

(1) RISE-NN-TAS: This is the neural network-based synchronous controller integrated
with the RISE feedback term and a thrust-allocation strategy. The controller gains are:
k1 = 10, k2 = 10, k3 = 30, k4 = 30, kr = 20, β = 5. The RBFNN is designed based
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on the K-means clustering algorithm with five neurons in the hidden layer, and the
parameters are: cj = [−1,−0.5, 0, 0.5, 1], bj = 10, Ŵ(0) = [0; 0; 0; 0; 0]. The definite
weight adaption velocity matrix is: Γ = diag{1000, 1000, 1000, 1000, 1000}.

(2) RISE-TAS: This is the RISE-based controller with thrust allocation strategy, the de-
signed virtual control law and control inputs are as follows:

Ft = −Fd − (kr + ks)z2 −
∫ t

0 (kr + ks)k2z2 + βsign(z2)dν

u1 = (Dpkω)−1[( f31βe)−1( f32βe + f33Ctβe + f34βe +
.
α3 − k3z3) + Cp(PZ − PF)]

u2 = (Dpkω)−1[( f41βe)−1( f42βe + f43Ctβe + f44βe +
.
α4 − k4z4) + Cp(PZ − PF)]

(68)

The controller gains are corresponding to the RISE-NN-TAS controller for the conve-
nience of comparing the controller performance.

(3) RFC-TAS: This the robust feedback controller introduced in [20] with thrust allocation
strategy. In order to ensure the fairness of the comparison, the controller gains k1, k2,
k3, k4 are the same as RISE-NN-TAS, and RISE gain coefficients are given by kr = 0,
β = 0.

(4) PID-CC: This is the proportional-integral-derivative controller with cross-coupling
compensation, which is widely employed and tested in industrials for synchronous
motion control. The P-gain, I-gain and D-gain are chosen as kP = 40, kI = 80, kD = 0,
respectively. The cross-coupling gain is tuned as kC = 1.5.

The maximum, average, standard deviation of the errors, denoted as Me, µ and σ
severally [21,23], are utilized to assess the efficiency of the aforementioned controllers.
These criteria are defined as follows:

(i) Maximal absolute tracking/synchronization error:

Me = max
i=1,...,N

{|e(i)|} (69)

(ii) Average tracking/synchronization error:

µ =
1
N

N

∑
i=1
|e(i)| (70)

(iii) Standard deviation of the tracking/synchronization error:

σ =

√√√√ 1
N

N

∑
i=1

(|e(i)| − µ)2 (71)

Case 1: The four controllers were first tested for a slow-erection trajectory, which was
planned via the constant-power strategy. The maximum angular velocity and acceleration
were 0.094 rad/s and 0.033 rad/s2, respectively. In this case, the tracking performance
under the proposed controller depicted in Figures 10 and 11 shows the tracking errors of
the four controllers. From these simulation results, it can be concluded that the RISE-NN
controller attained the best tracking performance in contrast to the other three controllers.
Meanwhile, excellent stage-changing and in-position performance were also achieved
under the RISE-NN controller. This was due to the compensation for the effects of inter-
stage collision and the approximation of the unknown dynamics acquired from the RBFNN.
Figure 12 shows the synchronization errors for the four controllers. It can be seen that both
the model-based intelligent controllers with thrust allocation strategy achieved much better
synchronization performances than the cross-coupling PID controller, which neglected
the effects of unbalanced internal forces. Additionally, a cross-coupling compensation
compulsively operated on the dual-cylinder system would result in severe “pull and drag”
phenomena and a worse tracking performance. Moreover, the thrust-allocation strategy
presented in this paper was easy to implement and capable of eliminating the interference
of the dual-cylinder drives. In addition, the estimation for f is provided in Figure 13,
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and Figure 14 depicts the control inputs of the presented RISE-NN controller with thrust
allocation. As shown in Tables 2 and 3, the superiority of the RBFNN approximation ability
and the proposed thrust allocation strategy can be further verified on the basis of listed
performance indexes, respectively.

Figure 10. Tracking performance under RISE-NN-TAS controller in case 1.

Figure 11. Tracking errors of the four controllers in case 1.

Figure 12. Synchronization errors of the four controllers in case 1.
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Figure 13. RBFNN estimation for f .

Figure 14. Control inputs of RISE-NN-TAS with thrust allocation.

Table 2. Tracking performance indexes of the four controllers in case 1.

Indexes Me µ σ

RISE-NN 0.0741 0.0042 0.0066
RISE 0.0924 0.0338 0.0230
RFC 0.1509 0.0433 0.0323
PID 1.0644 0.2302 0.2552

Table 3. Synchronization performance indexes of the four controllers in case 1.

Indexes Me µ σ

RISE-NN-TAS 0.0083 0.0055 0.0018
RISE-TAS 0.0087 0.0058 0.0020
RFC-TAS 0.0089 0.0060 0.0023
PID-CC 0.0147 0.0033 0.0038

Case 2: To further validate the effectiveness of the proposed approach, a fast erection
trajectory was tested, with the maximum angular velocity 0.133 rad/s and acceleration
0.045 rad/s2. In this case, the inter-stage collision effect raised and led to a stronger transient
interference to the system, which could decrease the tracking performance and erection
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stability. The tracking performance under the presented controller is shown in Figure 15.
Figure 16 shows the tracking errors of the four controllers. Obviously, the stage-changing
and in-position performance can still be ensured via the inter-stage collision compensation
and the RBFNN approximation of the unknown dynamics. The synchronization errors
of the four controllers are shown in Figure 17. It indicates that, with the proposed thrust
allocation strategy, the resistance of improving synchronization performance caused by the
internal forces was well handled and the “pull and drag” phenomena could be avoided.
Furthermore, the performance indexes in case 2 are presented in Tables 4 and 5, which
exhibits the superiority of the RBFNN in unknown dynamics approximation and the pro-
posed thrust allocation strategy in solving synchronous control problems coupling with
internal forces. Last but not least, virtually identical synchronization performances were en-
sured via the three different model-based controllers with thrust allocation strategy, which
verified the universal applicability for the proposed methods in intelligent synchronous
control systems with coupled dynamics.

Figure 15. Tracking performance under RISE-NN-TAS controller in case 2.

Figure 16. Tracking errors of the four controllers in case 2.
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Figure 17. Synchronization errors of the four controllers in case 2.

Table 4. Tracking performance indexes of the four controllers in case 2.

Indexes Me µ σ

RISE-NN 0.0760 0.0059 0.0099
RISE 0.1026 0.0372 0.0261
RFC 0.1525 0.0482 0.0369
PID 1.7179 0.4394 0.4540

Table 5. Synchronization performance indexes of the four controllers in case 2.

Indexes Me µ σ

RISE-NN-TAS 0.0084 0.0056 0.0019
RISE-TAS 0.0087 0.0059 0.0022
RFC-TAS 0.0089 0.0062 0.0026
PID-CC 0.0152 0.0048 0.0042

5. Conclusions

In this paper, a neural network (NN) based novel synchronous scheme integrated with
thrust allocation strategy was proposed for a multi-link erection mechanism driven by a
dual-cylinder system. The inter-stage collision dynamics of the telescopic cylinder were
established for model compensation, which enhanced stage-changing and in-position track-
ing performance. An easily designed RBFNN was then utilized for unknown dynamics’
approximation and compensation to attain a high-accuracy tracking performance. Mean-
while, a synchronous control strategy with thrust-allocation law was constructed to deal
with excessive internal forces caused by unbalanced rotation and lateral moments, which
attenuated the impact of the “pull and drag” issue and synchronized the motions of the
two cylinders via regulating internal forces. These characteristics determined the intrinsic
distinctions from commonly used synchronous controllers for multiple manipulators with
decoupled dynamics, which mainly pursue excellent motion synchronization performance
under various working conditions. The Lyapunov method was employed to analyze the
stability of the designed control algorithm, which indicated that the semi-global asymptotic
tracking performance could be attained. Contrasting simulation results were derived to
validate the effectiveness of the RBFNN and the proposed synchronous controller with a
thrust-allocation strategy. It is worth noting that the implementation of the thrust allocation
control strategy depended on the location identification of the center of mass, which might
have been tough to be determined precisely. As for future studies, it is vital to conduct a
validation experiment on a practical erection platform and introduce on-line adaptation of
the thrust allocation factor into synchronous controller design.
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