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Abstract: In order to improve the fault diagnosis accuracy of bearings, an intelligent fault diagnosis
method based on Variational Mode Decomposition (VMD), Composite Multi-scale Dispersion Entropy
(CMDE), and Deep Belief Network (DBN) with Particle Swarm Optimization (PSO) algorithm—
namely VMD-CMDE-PSO-DBN—is proposed in this paper. The number of modal components
decomposed by VMD is determined by the observation center frequency, reconstructed according to
the kurtosis, and the composite multi-scale dispersion entropy of the reconstructed signal is calculated
to form the training samples and test samples of pattern recognition. Considering that the artificial
setting of DBN node parameters cannot achieve the best recognition rate, PSO is used to optimize
the parameters of DBN model, and the optimized DBN model is used to identify faults. Through
experimental comparison and analysis, we propose that the VMD-CMDE-PSO-DBN method has
certain application value in intelligent fault diagnosis.

Keywords: fault diagnosis; variational mode decomposition; composite multi-scale dispersion
entropy; particle swarm optimization; deep belief network

1. Introduction

Rolling bearing is one of the most commonly used components in rotating machinery.
Its working state directly affects the performance of the whole equipment and even the
safety of the whole production line [1–4]. Therefore, research on intelligent fault diagnosis
technology of rolling bearing has important theoretical value and practical significance in
avoiding accidents. The operating conditions of rolling bearing in engineering applications
are complex and changeable [5–9]. The collected fault vibration signal is easily disturbed
by uncontrollable factors, and the subsequent diagnosis and prediction accuracy will also
be reduced [10–14].

The complex problem of signal noise reduction in practical engineering was studied
and analyzed by combining with the characteristics of wavelet packet decomposition,
leading to a new signal noise reduction method; experimental results show that the method
has good noise reduction ability [15–18]. A series of analyses on the problem were carried
out, revealing that the initial fault feature information of mechanical equipment is affected
by strong background noise, and verifying the effectiveness of the new denoising method
of the airspace and neighborhood of wavelet packet transforms [19–22]. In order to solve
the problem that the measured vibration signal of the discharge structure is interfered with
by noise, the wavelet packet threshold with the optimized empirical mode decomposition
was combined, and a new method to eliminate noise interference was proposed [23–28].
On the basis of EMD algorithm, many optimization algorithms with good effects have
been derived, which also have good performance in engineering applications. However,
they are all based on EMD in essence, so the mode aliasing problem is difficult to solve.
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Konstantin [29] proposed Variational Mode Decomposition (VMD) in 2014; the VMD
method not only has good a signal-to-noise separation effect for non-stationary vibration
signals, but also the decomposition scale can be preset according to the vibration signal itself.
If an appropriate scale can be selected, the occurrence of mode aliasing will be effectively
suppressed. Mostafa et al. [30] proposed a new complexity theory, namely Dispersion
Entropy (DE), for the defects of slow calculation speed and unreasonable measurement
methods of general complexity theory. The entropy of a single scale often cannot show more
complete information in feature extraction, which leads to the final classification not having
ideal results. More signals are analyzed by multi-scale analysis of complexity theory. For
example, Zhang et al. [31] extracted fault features by LMD multi-scale approximate entropy.
Wang et al. [32] calculated the gear signal with the Variational Mode Decomposition (VMD)
method, and selected four modal components after decomposition to calculate permutation
entropy to extract features. Li et al. [33] have significantly improved the fault identification
by combining Empirical Wavelet Transform (EWT) with various algorithms of dispersion
entropy (DE). In 2006, Hinton et al. [34] published a significant paper. In Science, they
told many scholars about the concept of deep learning, and specifically expounded the
Deep Belief Network (DBN), which stimulated people’s enthusiasm for deep learning
theory research and learning. Lei et al. [35] have found that training mechanical vibration
signals of relevant faults through deep learning neural network is more conducive to fault
identification and classification. This paper also points out the advantages of using deep
learning theory for fault diagnosis, which is mainly reflected in breaking the researchers’
dependence on many types of signal processing technology and fault diagnosis experience.
Starting with the statistical characteristics of vibration signals, Shan et al. [36] achieved
the simultaneous identification of different types and degrees of bearing faults, and finally
obtained a high classification accuracy. It was confirmed that the application of DBN in
fault diagnosis has a good effect compared with traditional fault diagnosis. Shi et al. [37],
through experimental verification, found that when pattern recognition is carried out on
gears, the recognition rate of fault features using Particle Swarm Optimization support
vector machine is considerable. Other fault diagnosis methods have also been proposed in
recent years [38–47].

In this paper, the data of the Electrical laboratory of Case Western Reserve University
have been used for experiments. Through the noise reduction method of variational mode
decomposition, the signals of the four states of normal bearing condition, bearing inner ring
fault, rolling body fault, and bearing outer ring fault are decomposed into multiple modal
components. The reconstructed signals preprocessed by variational mode decomposition
were combined with multi-scale permutation entropy, multi-scale dispersion entropy, and
composite multi-scale dispersion entropy, and their method principles were analyzed. The
rolling bearing data were used for simulation, and the eigenvalues of the three methods
were calculated as the input of the classification model. Three kinds of multi-scale entropy
values were used as feature vectors and input into the Deep Belief Network (DBN) model
for fault pattern recognition. In order to solve the problem that it is time consuming to
debug the network layer structure in a deep belief network (DBN) when it is used for
bearing fault diagnosis, a fault identification model of DBN bearing based on Particle
Swarm Optimization (PSO) was proposed. The model uses particle swarm optimization
(PSO) algorithm to find the optimal solution of hidden layer node parameters, and then
compares the function between DBN model and PSO-DBN model and draws a conclusion.

2. Composite Multi-Scale Dispersion Entropy Based on VMD
2.1. Variational Mode Decomposition Algorithm

The essence of the VMD decomposition method is related to selecting the number of
components (parameter K) to decompose the original signal f (t) into a corresponding
number of sub-signal components uk; these decomposed modal components can ensure
the sparsity and reproduce the input signal. In short, the Gaussian smoothing of demodu-
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lated signal is used to estimate the bandwidth, and then the constraints are divided into
the following:

min
{uk},{ωk}

∑
k

||∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jwkt‖2

2

 , s.t.∑
k

uk = f (1)

Most of the optimal solutions of constrained models are solved by alternative direction
method of multipliers (ADMM), alternately updating un+1

k , ωn+1
k , and λn+1 to look for a

Lagrangian augmented “saddle point”; the specific steps are as follows:
Initialize

{
ul

k

}
,
{

ωl
k

}
, λ′; n← O ; make n← n + 1 for k = 1 : K to update Uk:

ûn+1
k (ω) =

f (ω)−∑i 6=k u(ω) + λ(ω̂)
2

1 + 2α(ω−ωk)
2 (2)

For all ω ≥ 0, update ûk; the formula is as follows:

ûn+1
k (ω)←

f̂ (ω)−∑i<k ûn+1
i (ω)−∑i>k ûn

i (ω) + λ̂n(ω)
2

1 + 2α
(
ω−ωn

k
)2 , k ∈ {1, K} (3)

Update ωk:

λ̂n+1(ω)← λ̂n(ω) + τ

 f̂ (ω)−
∧

∑
k

un+1
k (ω)

 (4)

Repeat (3)~(4) until the following iterative conditions are met:

∑
k
‖∧u

n + 1 ∧ n
k − u k ‖

2
2/‖ûn

k ‖
2
2 < ε (5)

Usually, the un+1
k problem is transformed into the minimum problem; the same is true

for the solution of center frequency ωn+1
k :

ωn+1
k = argmin

ωk

{
‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖2

2

}
(6)

2.2. Composite Multi-Scale Dispersion Entropy
2.2.1. Dispersion Entropy Algorithm

Dispersion Entropy (DE) is an index to measure the complexity of a time series. When
it was first proposed, it was mostly applied in the field of biology. The main construction
steps and descriptions of DE are described as follows [30]:

Supposing a time series x = {xi, i = 1, 2, · · · , N} of length N, the normal distribu-
tion Function (7) is used to map time series x to y =

{
yj, j = 1, 2, · · · , N

}
, yj ∈ (0, 1).

yj =
1

σ
√

2π

∫ xi

−∞
e
−(t−µ)2

2σ2 dt (7)

where µ is mathematical expectation and σ2 is variance.
The linear transformation is performed using Formula (8), mapping y to the range of

[1, 2, . . . , c]:
zc

j = R
(
c · yj + 0.5

)
(8)

where R is an integral function and c is the number of categories.
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Calculating the embedded vector zm,c
i is as follows:

zm,c
i =

{
zc

i , zc
i+d, · · · , zc

i+(m−1)d

}
, i = 1, 2, . . . , N − (m− 1)d (9)

where m is an embedded dimension and d is time delay.
Calculating the probability p

(
πvvv1···vm−1

)
of πv0v1···vm−1 for each dispersion mode is

as follows:

p
(
πv0v1···vm−1

)
=

Number
(
πv0η1···vm−1

)
N − (m− 1)d

(10)

where Number
(
πv0v1···vm−1

)
represents the number of maps zm,c

i to πv0v1···vm−1 .
The DE value of the original signal x is

DE(x, m, c, d) = −∑cm

π = 1 p
(
πv0v1···vm−1

)
ln
(

p
(
πv0v1···vm−1

))
(11)

2.2.2. Composite Multi-Scale Dispersion Entropy

The calculation method of composite multi-scale dispersion entropy involves optimiz-
ing the multi-scale process on the basis of multi-scale dispersion entropy; the steps and
instructions are as follows:

For an initial time series {u(i), i = 1, 2, · · · , L}, when the time is in the k-th coarsening
sequence and the scale factor is τ, xτ

k =
{

x(τ)k,1 , x(τ)k,2 , . . .
}

can be given by Formula (12):

xτ
k,j =

1
τ ∑k+jτ−1

i = k+τ(j−1) ui, 1 ≤ j ≤ L/τ (12)

where 1 ≤ k ≤ τ.
The CMDE under each scale factor is defined as

CMDE(X, m, c, d, τ) =
1
τ ∑τ

k = 1 DE(xτ
k , m, c, d) (13)

2.3. Fault Eigenvalue Based on VMD Composite Multi-Scale Entropy

In this paper, the experimental data of the bearing data center of Case Western Reserve
University are selected for the simulation test, and the selection of important parameters
is compared and analyzed. The specific data of bearing are as follows: the acquisition
frequency is 12,000 Hz; the motor speed is 1797 r/min; and four vibration signals are
included, namely an inner ring (IR) fault, outer ring (OR) fault, rolling element (BE) fault,
and a local single-point pitting normal state (Norm).

2.3.1. The Process of Fault Eigenvalue Calculation

The specific steps of VMD composite multi-scale dispersion entropy are as follows:
Step 1: Firstly, the original vibration signals (inner and outer ring fault signals, roller

fault signals, and normal signals) in the four bearing databases are decomposed and
preprocessed by VMD.

Step 2: The kurtosis of the decomposed modal components is calculated and sorted.
Step 3: The first three modal components are selected for signal reconstruction.
Step 4: The composite multi-scale dispersion entropy of the reconstructed four signals

is calculated.

2.3.2. Simulation Signal Analysis

In this paper, a vibration signal with a motor speed of 1797r/min in the bearing exper-
iment database of Western Reserve University is decomposed by VMD, where determining
the value of modal component K is the primary task. For example, the center frequency
of the modal component of the outer ring fault signal is simulated. The value of K in the
simulation diagram is reflected in the number of curves in the center frequency diagram of
the modal component, and its value is determined by observing the convergence trend of
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the curve. Selecting K = 4, K = 5, and K = 6, the corresponding center frequency curves are
described as follows.

The abscissa in the figure represents the number of iterations, and the ordinate repre-
sents the center frequency. The four curves represent the central frequency convergence
process of the four modal components, respectively. When K = 4, as shown in Figure 1, the
four curves do not overlap, which proves that there is no mode mixing. There are occasional
fluctuations in the previous iteration, and the convergence is fast. When the number of
components K is 5, the relationship between the center frequency of the modal component
and the iteration parameters is as shown in Figure 2. With the increase in the number of
abscissa iterations, the center frequencies corresponding to the five modal components
converge smoothly and fluctuate less, and there is no curve intersection. When the number
of decomposition K = 6 is selected and the same vibration signal is decomposed, the central
frequency convergence process of the modal component is as shown in Figures 3 and 4. The
abscissa in the figure represents the number of iterations, and the ordinate represents the
center frequency. From the curves corresponding to the six modal components, it is obvious
that the third, fourth, and fifth curves also correspond to the intersection of the third, fourth,
and fifth order modal components, respectively. This proves that there is modal mixing
between modal components, and the convergence speed is slow. In summary, in the VMD
decomposition preprocessing of this kind of bearing vibration signal, the preset value of
the modal component is 5, which is more effective for the signal decomposition effect and
helpful for the next feature extraction.
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Figure 4. VMD-CMDE at τ = 8.

From the calculation formulas of multi-scale dispersion entropy and composite multi-
scale dispersion entropy, it can be seen that five parameters need to be selected. They are
the length N of the sequence, the embedding dimension m, the number of categories c,
the time delay d and the scale factor τ. In this paper, the length n = 1024, the embedding
dimension m = 3, the number of categories c = 6, the time delay d = 1, and the scale factor
are selected through simulation analysis. Figures 4–6 show a random point entropy curve
corresponding to scale factors 8, 10, and 12, respectively.
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The abscissa in the figure is the number of scale factors, and the ordinate is the
composite multi-scale dispersion entropy. Since the selection of basic theory and parameters
and the multi-scale dispersion entropy are roughly the same, the curves are roughly the
same as a whole. Except for the normal signals, the overall trend of the vibration signals of
the other three faults is to decline first and then flatten. During the change of scale factors
from 1 to 4, except when they are in the upward trend under normal conditions, the other
three fault signals are in the downward trend, and the downward trend is obvious from
the instantaneous change rate. When the scale factor ranges from 4 to 8, the overall decline
is relatively gentle, with occasional fluctuations, and the decline of the inner ring fault is
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more obvious. When the scale factor ranges from 8 to 10, the decline is gentle, and the
entropy of the fault signal is slowly approaching. The reason why the normal situation
is different from the three fault signals is that there is no periodic vibration similar to the
fault signal. When the scale factor ranges from 10 to 12, the entropy of the fault signal has a
tendency to coincide, and the CMDE value does not change much, but the simulation time
is longer with the increase of parameters.

Combined with the above simulation and analysis of the CMDE of the four pre-
processed vibration signals, when the scale factor is 10, it can not only ensure that the
deep-seated information of the vibration signal is extracted, but also ensure that the time
will not be consumed too much. Therefore, the composite multi-scale dispersion entropy
scale factor in this paper is 10.

3. Fault Identification Model Based on PSO-DBN
3.1. DBN Network Structure

As one of the typical deep learning algorithms, the Deep Belief Network (DBN) has
good development prospects in the field of fault identification. The Deep Belief Network
(DBN) is a probabilistic artificial neural network with multiple hidden layers, constructed
by stacking multiple Restricted Boltzmann Machines (RBMs). By looking at the Restricted
Boltzmann Machine architecture, we can obtain the associated functions as follows:

E(v, h | θ) = −∑n
i = 1 aivi −∑m

j = 1 bihi −∑n
i = 1 ∑m

j = 1 viWijhj (14)

where

θ—node parameters of Restricted Boltzmann Machine and θ =
{

Wij, ai, bj
}

are all real num-
bers;
ai—offset coefficient of visible unit i;
Wij—weight values of hidden unit j and visible unit i;
bj—offset coefficient of hidden unit j.

When these parameters are constant, based on this function, the joint probability
distribution can be obtained, as shown in Formula (15):

P(v, h | θ) =
e−E(v,h|θ)

Z(θ)
, Z(θ) = ∑v,h e−E(v,h|θ) (15)

where

Z(θ)—partition function (Normalization factor);
ai, bi—offset coefficient;
hj, vi—state variables for hidden and visible units;
Wij—hidden and visible unit weights.

In this energy function, it can be seen from the special structure that there is a connec-
tion between the layers of RBM and there is no connection between nodes in layers and
star lakes. When the state of the hidden layer is known, the activation states for different
visible units are conditionally independent. The probability of visible node activation is
shown in Formula (16):

P(vi = 1 | h, θ) = σ(ai + ∑j Wjihj) (16)

Similarly, the activation probability of the hidden unit is

P
(
hj = 1 | v, θ

)
= σ(bj + ∑i viWij) (17)

where σ(x) = 1
1+exp(−x) is the Sigmoid activation function. The complete Deep Belief

Network structure is shown in Figure 7.
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3.2. PSO-Optimized DBN Model

The particle swarm optimization algorithm is the same as many algorithms; that
is, after the system initialization, it starts to iterate through a group of solutions, and
constantly looks for the optimal solution in the iterative process. Particles (potential
solutions) will follow the best particles in space to explore, so the number of iterations
required to reach the best solution is relatively small. In the engineering application
in the field of bearing diagnosis, particle swarm optimization can be easily employed
because of its simple principle, strong universality, and strong anti-interference. Moreover,
the algorithm supports group search and takes a short time. Combined with the above
advantages, this paper selects the PSO optimization algorithm to improve the DBN model.

Bengio [48] has performed many experiments to illustrate a problem: the application
effect of a multi-layer deep confidence network is often higher than that of a single layer.
Larochelle and others [49] have proven through many tests that when the hidden layer
of the deep confidence network model is about three layers, the classification accuracy
reaches the highest value. Before the number of layers reaches four, the recognition rate is
directly proportional to the increase in the number of hidden layers. When the number of
hidden layers reaches four or more, the classification accuracy of the model will decline.
This paper selects three hidden layers, corresponding to m1, m2, m3 neurons. N represents
the number of particles, which generally ranges from 10 to 20. In this paper, the number of
particles is 10. The maximum iteration number of particle swarm optimization is M. This
paper takes 20. The process of the PSO-optimized DBN model is shown in Figure 8.
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The specific steps are as follows:
Step 1: Preprocess the original vibration signal of the bearing of Western Reserve

University. Because the time and accuracy of training the original vibration signal are
directly greatly affected, VMD decomposition is needed to reconstruct the signal according
to kurtosis.
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Step 2: In order to improve the accuracy of fault identification, the decomposed and
reconstructed signals are combined with multi-scale arrangement entropy, multi-scale dis-
persion entropy, and composite multi-scale dispersion entropy to construct feature vectors.

Step 3: For the test data of four states, 100 samples are taken for each state, and a total
of 400 samples are obtained. The fault feature set is P; the 100 samples of each signal in the
obtained feature set are randomly divided into 70 training sets, recorded as P1, and 30 test
sample sets, recorded as P.

Step 4: Initialize particle swarm velocity Vk = 0
i ; initialize the position of the particle

swarm Xk = 0
i .

Step 5: Calculate the classification error rate of all particles, and find the optimal parti-
cles of this round of particle swarm, including the optimal particles that have completed
the search before.

Step 6: The velocity and position of each particle are updated by Formulas (18) and (19).

Xk+1
I = Xk

i + Vk+1
i (18)

Vk+1
i = ωVk

i + c1r1

(
Xk

iphest − Xk
i

)
+ c2r2

(
Xk

ighest − Xk
i

)
(19)

where

ω—inertia weight;
c1, c2—acceleration parameters;
r1, r2—random value.

Among them, the value range of inertia weight is generally between 0 and 1, and
ω = 0.7 is taken in this paper. The acceleration parameters generally range from 0 to 4. Shi
et al. have done many tests; it was found that the selection of this parameter will affect the
optimization results. In order to make the results not too disturbed by external factors and
make the two acceleration parameters equal and have the best effect, parameter c1 = c2 = 2
is selected in this paper. Random values generally range from 0 to 1.

Step 7: One of two conditions needs to be met when PSO ends optimization. One is
that the classification error rate of experimental data is lower than the pre-set value, or the
number of iterations reaches the preset value. If one of the two meets, it can be stopped.
Otherwise, go to step 5, increase the number of iterations, and repeat step 6 and step 7 until
the discrimination conditions are met.

Step 8: The optimized parameters are substituted into the original DBN model, and
the rolling bearing fault classification results are obtained by retraining and retesting the
data samples.

4. Experimental Verification

The optimized DBN is applied to the experiment to analyze the data and construct the
classifier. Aiming at the problem of rolling bearing fault pattern recognition proposed in
this paper, the specific experimental steps and instructions are as follows:

Step 1: For the experimental data of four states, take 100 samples at random, with a
total of 400 samples. Calculate the eigenvalues according to the VMD-CMDE composition
method, combine them into the eigenvector set, and record them as the fault feature P.
A total of 70 groups of eigenvalues are randomly selected from P as the training set and
recorded as P1. The remaining 30 sets of eigenvalues are divided into test sets, namely P2.

Step2: Input P1 into DBN for training. In order to more comprehensively verify the
reliability of the rolling bearing fault identification model, this paper selects the rolling
bearing data of 1797r/min speed for research. Different bearing fault types are replaced by
different numbers, as shown in Table 1. Here, 1 represents inner ring fault, 2 represents
roller ring fault, 3 represents outer ring fault, and 4 represents normal condition.
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Table 1. Description of bearing pattern recognition dataset.

Bearing Status Training Sample
Numbers

Test Sample
Numbers Categorization Label

Inner ring fault 70 30 1
Roller ring fault 70 30 2
Outer ring fault 70 30 3
Normal signal 70 30 4

Here, the experimental results of the DBN model input by the composite multi-scale
scattered entropy eigenvector obtained after the decomposition of the original signal are
analyzed. As shown in Figure 9, the recognition rate of each fault type of rolling bearing can
be seen. According to the different numbers marked in this paper, they represent different
fault types. Number 1 corresponds to the inner ring fault signal, and the recognition
rate is 90%. Number 3 represents the outer ring fault signal, and the recognition rate is
100%. Number 2 corresponds to the roller fault signal, and the recognition rate is 73.33%.
Number 4 corresponds to the normal bearing signal, and the recognition rate is 100%. After
calculation, the overall recognition accuracy reaches 90.33%.
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Among them, 27 groups were correctly identified by 30 groups of bearing with inner
ring fault, 22 groups were correctly identified by 30 groups of roller fault, 30 groups were
correctly identified by 30 groups of bearing with outer ring fault, and 30 groups were
correctly identified by 30 groups of bearing under normal conditions. Compared with
the previous two models, the overall recognition rate of this group can reach 90.33%, and
the roller fault recognition rate has also been greatly improved, but there is still room for
improvement. Based on this data, Table 2 is established.

Table 2. Accuracy rate of DBN model with VMD-CMDE as input.

Bearing Status Total Number of Test Set Samples Correct Number Accuracy

Inner ring fault 30 27 90%
Roller ring fault 30 22 73.3%
Outer ring fault 30 30 100%

Normal condition 30 30 100%
Whole bearing 120 109 90.33%
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The key parameters of the VMD-CMDE-DBN model are optimized by the particle
swarm optimization algorithm to obtain the VMD-CMDE-PSO-DBN model. Through the
analysis of the experimental results of the optimized DBN model input by the composite
multi-scale dispersion entropy eigenvector obtained after the decomposition of the original
signal, as shown in Figure 10, we can see the recognition rate of each fault type of rolling
bearing. According to the different numbers marked in this paper, they represent different
fault types. Numbers 1, 2, 3, and 4 correspond to inner ring fault signal, roller fault signal,
outer ring fault signal, and normal bearing signal, respectively.
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According to this data, Table 3 is established. From Table 3, we can clearly see the
identification number of each fault type; among them, 30 groups of bearing with inner ring
fault are correctly identified, 30 groups of roller fault are correctly identified, 30 groups
of bearing with outer ring fault are correctly identified, and 30 groups of bearing under
normal conditions are correctly identified.

Table 3. PSO-DBN model accuracy with VMD-CMDE as input.

Bearing Status Total Number of Test Set Samples Correct Number Accuracy

Inner ring fault 30 30 100%
Roller ring fault 30 30 100%
Outer ring fault 30 30 100%

Normal condition 30 30 100%
Whole bearing 120 120 100%

In order to fully prove the effectiveness of VMD-CMDE-PSO-DBN fault identification
model, Multi-scale Permutation Entropy (MPE) and Multi-scale Dispersion Entropy (MDE)
are substituted into the DBN model and optimized model in this paper. Observing and
compare the recognition rate, the number of samples in the training set and the test set is
the same as above; the recognition rate data input into the DBN model is shown in Table 4.

The number of nodes after particle swarm optimization is substituted into the three
models, and the same eigenvalues of the three entropy are used as the input of particle
swarm optimization DBN model. The recognition rate data are shown in Table 5.
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Table 4. DBN model accuracy.

Bearing Status VMD-MPE VMD-MDE VMD-CMDE

Inner ring fault 100% 100% 90%
Roller ring fault 43.33% 33.33% 73.33%
Outer ring fault 70% 100% 100%

Normal condition 100% 100% 100%
Whole bearing 78.33% 88.33% 90.33%

Table 5. PSO-DBN model accuracy.

Bearing Status VMD-MPE VMD-MDE VMD-CMDE

Inner ring fault 96.67% 100% 100%
Roller ring fault 96.67% 93.33% 100%
Outer ring fault 100% 100% 100%

Normal condition 100% 100% 100%
Whole bearing 98.33% 98.33% 100%

5. The Result Discussion

A total of 70 sets of multi-scale entropy eigenvalues of rolling bearing fault signals
were substituted into the DBN model for recognition training. The DBN model was
tested with 30 groups of test set data. Through the test, the experimental results show
that the recognition accuracy of multi-scale arrangement entropy and DBN is 78.33%,
the recognition accuracy of multi-scale dispersion entropy and DBN is 83.33%, and the
recognition accuracy of composite multi-scale dispersion entropy and DBN is 90.33%. Each
model is not particularly ideal in roller fault recognition. The experimental results show
that the recognition accuracy of multi-scale arrangement entropy and optimized DBN is
98.33%, the recognition accuracy of multi-scale dispersion entropy and optimized DBN
is 98.33%, and the recognition accuracy of composite multi-scale dispersion entropy and
optimized DBN is 100%. Compared vertically, the PSO-DBN classification effect of the
DBN model after optimizing parameters by the particle swarm optimization algorithm has
been improved in different multi-scale entropy. Compared horizontally, the classification
effect of the PSO-DBN model with different multi-scale entropy eigenvectors as input has
also been significantly improved. Especially in the identification of roller fault, the three
models have been greatly improved.

Through theoretical proof and experimental verification, the combination of VMD,
CMDE, DBN, and PSO algorithm is very effective in rolling bearing fault diagnosis and
identification. The main conclusions are as follows:

The rolling bearing fault recognition model is established; the eigenvectors are substi-
tuted into the DBN and PSO-DBN models, trained and tested; and the final experimental
results are obtained. By comparing the recognition accuracy of DBN and PSO-DBN, it can
be concluded that the PSO-DBN model has a higher recognition rate than the DBN model.
Overall, the recognition rate based on VMD-CMDE-PSO-DBN is the best, which provides
new insight for signal pattern recognition.

6. Conclusions

In this paper, an intelligent fault diagnosis method based on Variational Mode De-
composition (VMD), Composite Multi-scale Dispersion Entropy (CMDE), and Deep Belief
Network (DBN) with Particle Swarm Optimization (PSO) algorithm—namely VMD-CMDE-
PSO-DBN—is proposed. The decomposed number of modal components of VMD is deter-
mined by the observation center frequency, reconstructed according to the kurtosis, and
the composite multi-scale dispersion entropy of the reconstructed signal is calculated to
form the training samples and test samples of pattern recognition.

• The experimental data used in this paper are manually added faults, which may
not fully reflect the diversified faults of rolling bearings, single fault forms, and low
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bearing speed. Under actual working conditions, bearings are mostly in high-speed
operation and the fault forms are complex, so the next step should be to focus on the
high-speed operation of rolling bearings and the composite fault state.

• VMD multi-scale permutation entropy eigenvector, VMD multi-scale dispersion en-
tropy eigenvector, and VMD composite multi-scale dispersion entropy eigenvector is
used as the inputs of the Deep Belief Network classification model. The accuracy of
VMD decomposition composite multi-scale dispersion entropy is the best.
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