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Abstract: With the increasing importance of reduced-energy wireless communication in 5G networks,
maximizing the energy efficiency of device-to-device (D2D) communication has gained a lot of
research interest. But so far, the methods have only been able to address the single-cell scenario. This
paper proposes an algorithm to improve the non-convex problem in underlaid D2D communication
for multiple band scenarios. In 5G wireless communications, device to device is one of the methods
used for achieving better energy efficiency. It also reduces the throughput latency. The optimization
problem is formulated with a derivative algorithm and proposed modified derivative algorithm. Both
the algorithms are compared, and this comparison shows that the modified derivative algorithm is
more efficient than the derivative algorithm.

Keywords: 5G; D2D communication; energy efficiency; optimization; derivative algorithm

1. Introduction

In conventional cellular communication, the cellular user uses communication to
uplink and downlink via the base station. Whereas in underlay D2D communication, the
cellular users and D2D users share frequency sub-channels; this increases frequency reuse.
However, it also causes interference to one another. The cellular users cause interference
to D2D users and the D2D users cause interference to cellular users. This decreases the
signal-to-interference noise ratio. which consequently decreases the transmission rate of the
users. Device-to-device communication draws extensive attention in industry, scademia,
and standardization bodies with the sudden increase in the demand for higher data rates.
Device-to-device communication without the base station (BS) facilitates direct wireless
communication between two transceivers. It is used to increase energy efficiency (EE) and
to consume less power while transmitting information without loss and it is a key technique
for 5G networks. It connects the devices directly and it also improves the quality of the
network, as well as itsthroughput, and reduces the latency. It can achieve improved spectral
efficiency and energy efficiency. It also uses the same frequencies as cellular networks
which pull down the network quality as extra interference will occur [1–7].

To have better performance, D2D underlaying cellular networks are considered and
focused on energy efficiency maximization. The existing technologies work only on a
single-cell scenario. More attention was paid to a single-cell scenario, rather than the
multiple bands because in multiple bands it takes a lot of power; so research is focused on
how to increase energy efficiency with less power consumption. An uplink or a downlink
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is taken into consideration to transmit and receive the information [8]. Whenever there
is a need for maximum energy efficiency, the usage of energy efficiency optimization is
required. The solution to the energy efficiency optimization problem for getting maxi-
mum EE (energy efficiency) is given in [9,10]. The branch and bound (BB) algorithm is
a conventional algorithm used for energy optimization in wireless networks [11]. After
achieving maximum energy efficiency, interference will occur due to which the information
may be lost and not be in a position to send the packets through the transmitter. So, to
overcome this, transmission probability and average sum rates are used to find the average
sum of values to obtain the maximum value [12–14]. By considering data rate, energy
usage, and battery lifespan, the RICA (A Radial Basis Function (RBF) Iterative Construction
Algorithm) algorithm with fixed power provides superior performance [15]. A dynamic
reward approach with deep reinforcement learning, a novel iterative power allocation
algorithm, and robust power allocation (PA) solution achieve a much higher EE [16–20].
Due to higher spectral efficiency, underlaid is considered superior to overlaid. The different
topologies of underlaid communication by using the same frequency channels as cellular
and D2D users is explained in [21–23]. The improved data rate, efficient bandwidth use,
power control, and energy-efficient methods are used [24–30].

The main purpose of implementing D2D in cellular networks is to reduce the data
traffic in the network. Underlaid D2D communication is considered to achieve spectral
efficiency by reusing the cellular resources as well as to achieve better link quality [31].
D2D underlaid communication improves spectral efficiency and provides more incentives
for local coverage compared to pure cellular networks. Here, centralized management
schemes are proposed [32]. The dynamic power control mechanism is studied to control
D2D cellular interference by controlling D2D power [33]. Power control methods are
discussed in this paper [34]. D2D enables the communication between two approximation
distant devices without the help of a base station. It reduces the delay and increases spectral
efficiency. But the distance between the two device users greatly affects the performance
of D2D communication [35]. Among the emerging technologies, D2D communication
and massive MIMO are key enablers in achieving 5G targets [36]. The possibilities and
challenges are discussed here [37]. Advanced wireless techniques, energy efficiency opti-
mization, and non-convex problems are also discussed [38,39] as well as the SWIPT-based
EE optimization challenge for D2D communications supporting IoT networks with UAV
assistance [40,41]. In addition, a joint resource management approach that ensures the
quality of service (QoS) of both cellular and D2D communications while improving the
overall energy efficiency of D2D communications is discussed in this paper [42].

The objective of this paper is to develop an algorithm for high-energy efficient device-
to-device communication.

The remainder of this paper is set out as follows. The system model is explained
briefly in Section 2. The proposed modified derivative algorithm is explained in Section 3.
The simulation findings are summarized in Section 4. The comparison of simulation results
is summarized in Section 5. The conclusion of the paper is given in Section 6.

2. System Model

Figure 1 shows the whole network underlaid with D2D communication. The D2D
users and the cellular users share the same bandwidth in the uplink direction. Here,
the base station is used to allocate the resources to the whole network underlaid with
D2D communication [24].
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Figure 1. The system model of underlaid with D2D communication.

At present, the existing works were based on a single-cell scenario, but in this paper,
we tried to work on multiple bands which means that at a specific time it transfers the
data to various devices. The total bandwidth of the ith band is Wi and it is divided into
M sub-bands. The bandwidth of each sub-band is Wi, i = 1, 2, 3, . . . , M, having these
parameters the channel fading may vary and the power transmission is adjustable and it
also improves energy efficiency [24,25]. Both cellular and D2D are divided into sub-bands
so they can use these sub-bands with the density λc,i, λd,i. For each, there is a different
density and if we use more bandwidth for both users, the multiple users are allowed to
transmit and the density also increases.

The transmission power allocation for the ith band for cellular users is Cp,i and the
total transmission power Cp.

∑k
i=1 Cp,i = Cp (1)

Similarly, the transmission power for the ith band for D2D users is Dp,i and the total
transmission power for D2D is Dp.

∑k
i=1 Dp,i = Dp (2)

We considered the channel model as a channel path loss and small-scale channel
fading, which represents the Rayleigh fading. To observe the performance of cellular and
D2D communication of the whole network, we focused on the typical receiver without loss,
the typical receiver for D2D communication, and the typical base station for the cellular
network [26]. The received power for both devices obtained by considering small and
large-scale fading is expressed as

Rp= TpδR−α (3)

where Tp represents power transmission, δ indicates Rayleigh fading, R is for the distance
between transmitter and receiver, Rp represents the power received for cellular and D2D
users and α represents the path loss exponent.

To obtain a better quality of communication, the probabilities should be less than the
threshold values.

1 − Pr (SIRc,i ≥ Tc,i) ≤ θc,i, (4)

1 − Pr (SIRd,i ≥ Td,i) ≤ θd,i, (5)

where θc,i and θd,i are the probabilities for cellular transmission and device to device
communication for the ith band. But the power transmission for D2D can’t hold interference
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for very long, in which case the network is complicated to coordinate. In that situation, the
base station reduces the number of D2D users to access until the probabilities become small.

The power in the ith band should not be less than zero and it should not be greater
than the upper bound and it is represented as Dp,i,up. Then we get

0 ≤ Dp,i ≤ Dp,i,up (6)

The optimal resource allocation is mainly used to maximize energy efficiency; finally,
we obtain the maximum EE.

Any optimization issue where the objective or any of the limitations are non-convex
is referred to as a non-convex problem. Such a problem may have several possible zones,
each with several locally optimal points.

Dp,i,inf and Dp,i,sup are used to represent the lower limit and upper limit of the feasible

area of Dp,i. We have Dp,i,inf = max
{

0, Dp,i,low

}
and Dp,i,sup = min

{
Dp,i,up, Dp,i,high

}
.

max
Dp,i

EEd = ∑k
i=1 EEd,i (7)

Dp,i,inf ≤ Dp,i ≤ Dp,i,sup

∑k
i=1 Dp,i = Dp (8)

The goal function of our optimal solution is the total EE of D2D communication
(EEd). EE of the ith band D2D communication is EEd,i. It achieves the description of
the optimization process to maximize the EE across the entire cellular network using
D2D communication.

3. Proposed Modified Derivative Algorithm

The difference between a derivative algorithm and a proposed modified derivative
algorithm is a computational complexity. In the proposed modified derivative algorithm,
computational complexity is less when compared with the derivative algorithm; this is
explained clearly from Step 8 to Step 10 and in the corresponding flow chart for the
proposed modified derivative algorithm. Here we considered the parameters of both
the methods the same because with those parameters the proposed modified derivative
algorithm produced better performance when compared to the exiting method. Here we
plotted both the method’s performance graphs.

We proposed a modified derivative algorithm as shown in Figure 2. The maximum
value of fi

(
Dp,i

)
can be obtained by Dp,i = Dp,i,max. Where Dp,i,max denotes the global

maximum point of fi
(
Dp,i

)
on the interval [Dp,i,inf, Dp,i,sup]. The EEd achieves the maxi-

mum value when every EEd,i achieves the maximum value in the feasible region. This is
obtained when every Dp,i is mutually independent. Here every Dp,i is mutually indepen-
dent when the equality constraint ∑k

i=1 Dp,i = Dp is removed. We can calculate Dp,i,max for
I = 1, 2, . . . , K; the least reduction in EEd can be achieved by adjusting the value of Dp,i to
meet the equality constraint ∑k

i=1 Dp,i = Dp.
Step 1: Initialize the threshold value.
Step 2: Calculate the power transmission of D2D users for ith band.
Step 3: After calculating we get the maximum Dp,j

Dp,i = Dp,i,max

Step 4: To achieve the least reduction in EE, the value of Dp,j needs to be adjusted to
meet the equality constraint.

Step 5: Consider “n” as the parameter that checks the balance between performance
and computation. Hence, according to practical requirements, we can adjust the value.
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Step 6: We consider the deri variable to set a value to save. It is used to select an
appropriate value for Dp,j in further steps.

Step 7: To exit the loop, we used a threshold value instead of a counter. Because if Dp,j
was chosen in the latest iteration, it will surpass the global optimum; in this case, we had to
choose another Dp,j iteration to modify. This situation is unpredictable and iterations are
not determined either.

Steps 8 and 9: After all adjustments in Dp,j, if it was overstepping the feasible re-
gion, we set derj to infinite, preventing j from being chosen. As a result, we avoided the
occurrence of an infinite loop.

Step 10: In this, we updated the derj variable instead of every deri variable since for
i = 1, 2, 3, . . . , k & not equal to j, deri remains unchanged after adjusting Dp,j.
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4. Simulation Results
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Table 1. Simulation parameters by using the derivative algorithm.

Parameter Value

K (no of bands) 5
Wi (bandwidth of ith band) 20 MHz

α (Path loss exponent) 4
θc,i (cellular probability for ith band) 0.1
Θd,i (D2D probability for ith band) 0.1
Tc,i (cellular threshold for ith band) 0 dB
Td,i (D2D threshold for ith band) 0 dB

[Rc,00,1 , Rc,00,2, . . . , Rc,00,5] [50,60,70,80,90] m[
Rd,00,1 , Rd,00,2, . . . , Rd,00,5] [10,20,30,20,10] m

[λc,1 , λc,2, . . . , λc,5] [10,1,10,10,10] × λc,ref[
λd,1 , λd,2, . . . , λd,5] [10,1,10,10,10] × λd,ref

Dp (total transmission power of D2D users) 60 mW
Dp,i,up 20 mW

ε (tolerance) 1 × 10−3

Figure 3 shows the energy efficiency of D2D users with the reference density of
D2D users by using the derivative algorithm. We assumed an uplink environment where
5 multiple bands of spectrum with bandwidth 20 MHz are shared by cellular and devices
users. As the D2D users increase the EE rises, and then it slowly decreases; if the cellular
user’s transmission power is 325 mW, 375 mW, and 425 mW are fixed. This is a result of
the increasing distortion brought on by cellular transmission. We also observed that the
EE decreases with the increase of cellular power because the increase in cellular power
creates interference.
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Figure 4 shows the energy efficiency of D2D users with the reference density of cellular
users by using the derivative algorithm. We assumed an uplink environment where
5 multiple bands of the spectrum with a bandwidth 20 MHz are shared by cellular and
device users. We can observe that the EE decreases with the increase in the reference density
of cellular users if the D2D user’s reference distances of 15 m, 20 m, and 25 m are fixed. We
are aware that the severity of the channel fading worsens with distance, causing a fall in
signal-to-interference ratio. As a result, the average sum rate declines, which lowers the EE.
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Table 2 presents the main simulation parameters by using the modified derivative
algorithm.

Table 2. Simulation parameters by using the modified derivative algorithm.

Parameter Value

K (no of bands) 5
Wi (bandwidth of ith band) 25 MHz

α (Path loss exponent) 4.1
θc,i (cellular probability for ith band) 0.1
θd,i (D2D probability for ith band) 0.1
Tc,i (cellular threshold for ith band) 0 dB
Td,i (D2D threshold for ith band) 0 dB

[Rc,00,1 , Rc,00,2, . . . , Rc,00,5] [60,80,100,120,140] m[
Rd,00,1 , Rd,00,2, . . . , Rd,00,5] [20,20,20,20,20] m

[λc,1 , λc,2, . . . , λc,5] [10,1,10,10,10] × λc,ref[
λd,1 , λd,2, . . . , λd,5] [10,1,10,10,10]× λd,ref

Dp (total transmission power of D2D users) 65 mW
Dp,i,up 25 mW

ε (tolerance) 1.5 × 10−3

Figure 5 shows the energy efficiency of D2D users versus the reference density of
D2D users by using the modified derivative algorithm. We assumed an uplink environment
where 5 multiple bands of the spectrum with a bandwidth 25 MHz are shared by cellular
and device users and the total transmission power of D2D users is 65 mW, λd,ref = 10−4,
λc,ref = 10−5. As the D2D users increase, the EE rises and then it slowly decreases if the
cellular user’s transmission power is 325 mW, 375 mW, and 425 mW are fixed. This is a
result of the increasing distortion brought on by cellular transmission. We also observed
that the EE decreases with the increase in cellular power because the increase in cellular
power creates interference.
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Figure 6 shows the energy efficiency of D2D users versus the reference density of
cellular users by using the modified derivative algorithm. We assumed an uplink envi-
ronment where 5 multiple bands of the spectrum with a bandwidth 25 MHz are shared
by cellular and device users and λd,ref = 10−4, λc,ref = 10−5. We were able to observe that
EE decreases with an increase in the reference density of cellular users if the D2D user’s
reference distances of 15 m, 20 m, and 25 m are fixed. We were aware that the severity of
the channel fading worsens with distance, causing a fall in signal-to-interference ratio. As a
result, the average sum rate declines, which lowers the EE.
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Table 3 Presents the simulation parameters by using the modified derivative algorithm
with different parameters.

Table 3. Simulation parameters by using the modified derivative algorithm with different parameters.

Parameter Value

K (no of bands) 8
Wi (bandwidth of ith band) 25 MHz

α (Path loss exponent) 4.1
θc,i (cellular probability for ith band) 0.1
θd,i (D2D probability for ith band) 0.1
Tc,i (cellular threshold for ith band) 0 dB
Td,i (D2D threshold for ith band) 0 dB

[Rc,00,1 , Rc,00,2, . . . , Rc,00,5] [50,60,70,80,90,100,100,90] m[
Rd,00,1 , Rd,00,2, . . . , Rd,00,5] [10,20,30,20,10,10,10,10] m
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ε (tolerance) 1.5 × 10−3

Figure 7 shows the energy efficiency of D2D users versus the reference density of
cellular users by using the modified derivative algorithm with different parameters. From
Figure 7 we assumed an uplink environment where 8 multiple bands of the spectrum
with a bandwidth of 25 MHz are shared by cellular and devices users and λd,ref = 10−4,
λc,ref = 10−5; we were able to observe that EE decreases with an increase in the reference
density of cellular users if the D2D user’s reference distances of 15 m, 20 m, and 25 m
are fixed. We were aware that the severity of the channel fading worsens with distance,
causing a fall in signal-to-interference ratio. As a result, the average sum rate declines,
which lowers the EE.
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Figure 8 shows the energy efficiency of D2D users versus the reference density of
D2D users by using the modified derivative algorithm with different parameters. We as-
sumed an uplink environment where 8 multiple bands of the spectrum with a bandwidth
25 MHz are shared by cellular and device users and λd,ref = 10−4, λc,ref = 10−5. As the
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D2D users increased, the EE rose and then it slowly decreased if the cellular user’s trans-
mission power is 325 mW, 375 mW, and 425 mW are fixed. This is a result of the increasing
distortion brought on by cellular transmission. We also observed that EE decreases with
the increase in cellular power because the increase in cellular power creates interference.
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Figure 9 shows the graph between D2D power and EE. We observed that initially,
EE rises with D2D power until the maximum point after which EE decreases with D2D
power. In Figure 9, the feasible area lies to the left of the dashed line. Then fi

(
Dp,i

)
grows

steadily in the feasible area, hence fi
(
Dp,i

)
reaches its highest value at Dp,i = Dp,i,sup which

results from Dp,i,max = Dp,i,sup, and the feasible area lies to the right of the dashed line,
then fi

(
Dp,i

)
uniformly drops in the feasible area.
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5. Comparison of Simulation Results

Tables 4 and 5 show the comparison of EE of the proposed derivative algorithm
with the conventional derivative algorithm for both D2D users’ density and cellular users’
density, respectively. We observed that the EE of the proposed derivative algorithm is
better than the conventional derivative algorithm.
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Table 4. Comparison of energy efficiency with the D2D density users (users/m2).

D2D User
Density

(user/m2)

Total Energy Efficiency
(Kbps/J)

with
Cp,I = 325 mW

Total Energy Efficiency
(Kbps/J)

with
Cp,I = 375 mW

Total Energy Efficiency
(Kbps/J)

with
Cp,I = 425 mW

Derivative
Algorithm

Modified
Derivative
Algorithm

Derivative
Algorithm

Modified
Derivative
Algorithm

Derivative
Algorithm

Modified
Derivative
Algorithm

1 × 10−4 4.230 5.750 3.683 1.564 3.252 1.398
2 × 10−4 10.056 11.573 8.766 8.262 7.750 7.265
3 × 10−4 15.664 20.004 13.604 16.373 11.980 14.393
4 × 10−4 18.772 26.609 16.289 22.486 14.330 19.766
5 × 10−4 20.064 30.182 17.403 25.811 15.305 22.688
6 × 10−4 19.803 30.981 17.174 26.640 15.101 23.417
7 × 10−4 18.445 29.718 15.994 25.629 14.062 22.529
8 × 10−4 16.450 27.148 14.263 23.453 12.539 20.616
9 × 10−4 14.187 23.904 12.300 20.673 10.813 18.172

1.0 × 10−3 11.915 20.451 10.330 17.699 9.081 15.558

Table 5. Comparison of energy efficiency with the cellular density users (user/m2).

Cellular
User

Density
(user/m2)

Total Energy Efficiency
(Kbps/J)

with
Rd,ref = 15 m

Total Energy Efficiency
(Kbps/J)

with
Rd,ref = 20 m

Total Energy Efficiency
(Kbps/J)

with
Rd,ref = 25 m

Derivative
Algorithm

Modified
Derivative
Algorithm

Derivative
Algorithm

Modified
Derivative
Algorithm

Derivative
Algorithm

Modified
Derivative
Algorithm

0.5 × 10−5 7.644 10.851 4.780 7.045 2.153 3.278
0.6 × 10−5 5.460 7.669 3.366 4.912 1.505 2.271
0.7 × 10−5 4.138 5.760 2.509 3.632 1.113 1.666
0.8 × 10−5 3.277 4.526 1.949 2.802 0.857 1.275
0.9 × 10−5 2.684 3.682 1.563 2.234 0.681 1.007
1 × 10−5 2.258 3.079 1.285 1.827 0.554 0.816

1.1 × 10−5 1.942 2.635 1.077 1.525 0.459 0.674
1.2 × 10−5 1.702 2.298 0.917 1.294 0.387 0.566
1.3 × 10−5 1.516 2.038 0.791 1.113 0.330 0.481
1.4 × 10−5 1.369 1.833 0.690 0.969 0.285 0.414
1.5 × 10−5 1.251 1.670 0.607 0.851 0.248 0.360

6. Conclusions

Device-to-device communication is paving the way for many future realities such as
the Internet of Things and smart cities. This improves the spectrum efficiency and energy
efficiency, reduces the latency, and enhances the network throughput. In this work, a
modified derivative algorithm was proposed to optimize the energy efficiency of the entire
cellular network underlaid with device-to-device communication. We developed the model
for the derivative algorithm and the modified derivative algorithm in a MATLAB and we
compared the energy efficiency with the cellular density users and energy efficiency with the
D2D density users of both the models. From our simulation results, we assumed an uplink
environment where 5, 8 multiple bands of the spectrum with bandwidth 25 MHz are shared
by cellular and device users. The modified derivative algorithm energy efficiency improved
when compared with the derivative algorithm. Numerical results confirmed the proposed
algorithm’s nearly ideal performance. It is possible to look at the optimal D2D user and
cellular density for each band as well as the associated trade-off analyses. We concluded
that this algorithm can be used for 5G applications due to its high energy efficiency.
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