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Abstract: Convolutional network models have been widely used in image segmentation. However,
there are many types of boundary contour features in medical images which seriously affect the
stability and accuracy of image segmentation models, such as the ambiguity of tumors, the variability
of lesions, and the weak boundaries of fine blood vessels. In this paper, in order to solve these
problems we first introduce the dual-tree complex wavelet scattering transform module, and then
innovatively propose a learning scattering wavelet network model. In addition, a new improved
active contour loss function is further constructed to deal with complex segmentation. Finally, the
equilibrium coefficient of our model is discussed. Experiments on the BraTS2020 dataset show that
the LSW-Net model has improved the Dice coefficient, accuracy, and sensitivity of the classic FCN,
SegNet, and At-Unet models by at least 3.51%, 2.11%, and 0.46%, respectively. In addition, the
LSW-Net model still has an advantage in the average measure of Dice coefficients compared with
some advanced segmentation models. Experiments on the DRIVE dataset prove that our model
outperforms the other 14 algorithms in both Dice coefficient and specificity measures. In particular,
the sensitivity of our model provides a 3.39% improvement when compared with the Unet model,
and the model’s effect is obvious.
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1. Introduction

Image segmentation is a class of image processing problems, and its task is to divide
an image into two or more meaningful regions. The accuracy of image segmentation is
particularly important in practical applications. In particular, biomedical image segmenta-
tion is prominent in clinical analysis, diagnosis, treatment planning, and the measurement
of disease progression. Traditional image segmentation methods, such as the threshold
method [1], region growing method [2], level set method [3–5], etc., have struggled to meet
the need for accurate image segmentation in the context of big data.

In recent years, deep neural networks have made great progress in various artificial
intelligence tasks including image recognition and image segmentation. A convolutional
neural network (CNN) [6] introduces semantic information when segmenting objects;
thereby, injecting new vitality into semantic segmentation research. Fully convolutional
network models [7–9] based on CNN architecture have achieved excellent performance in
automatic medical image segmentation, which further promotes the application of deep
learning in image segmentation for applications such as brain tumor segmentation [10].
SegNet [11] adopts the encoder–decoder structure and transfers the pixel index value of
the maximum pooling operation in the encoding process into the decoder, which not only
retains the detailed information of the pixels but also improves the accuracy of semantic
segmentation. The Attention Unet network (At-Unet) [12] adds an attention gating unit to
the Unet model to provide pixel level attention for the feature map. The network tends to
focus on feature points with more information and improves the feature extraction ability

Electronics 2022, 11, 2616. https://doi.org/10.3390/electronics11162616 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11162616
https://doi.org/10.3390/electronics11162616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11162616
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11162616?type=check_update&version=1


Electronics 2022, 11, 2616 2 of 14

of the model. The Deeplab network [13,14] obtains multiscale context information by
cascading atrous convolutions with different atrous rates, and then introduces a conditional
random field to enhance the relevance of contextual semantic information, which in turn
improves the segmentation accuracy. Although the above-mentioned network models
have improved the image segmentation accuracy of some datasets, they are still unable
to accurately extract the boundary features of brain tumors in images. This is due to the
invasiveness of the imaging process and the ambiguity between biological forms, as is the
case between tumors and adjacent organs or changes in lesions over different periods. This
invasiveness and ambiguity can lead to the discontinuity of some segmentation boundaries,
as shown in Figure 1a. When comparing Figure 1a,b, there are many discontinuous
segmentations in Figure 1a.
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Figure 1. Medical image segmentation. (a) At-Unet; (b) Brain tumor ground truth; (c) AC-Loss;
(d) Retinal ground truth, where the yellow boxes indicate the regions where the methods are mis-
segmented compared to ground truth.

At the same time, many researchers are devoted to establishing the minimal loss energy
function model. A level set function is proposed, that is, the region term of the CV energy
function is used as the loss function, from which the CNN model can learn the spatial
information of the image, which can improve the accuracy of image segmentation [14]. In
order to solve the boundary error segmentation problem, an active contour loss function
(AC-Loss) is constructed [15]. The AC-Loss function fully considers the internal and
external areas of the segmented object, and the perimeter of the boundary. Unfortunately,
some experiments have shown that when dealing with biomedical images with complex
boundaries, such as retinal vessel images, because the AC-Loss function constrains the
perimeter of the segmentation object boundary, it also limits the model’s ability to segment
small boundaries. The under-segmentation phenomenon of fine blood vessels is avoided
in Figure 1c. By comparing Figure 1c,d, there are many small blood vessels that can be seen
in Figure 1d that are not segmented in Figure 1c.

The problem of complex boundary contour features in medical images, also increases
the difficulty of image boundary feature extraction and characterization in deep neural
network learning. Inspired by the dual-tree wavelet scattering transform, we propose a
boundary feature extraction module which can improve the network’s ability to extract
image boundary features. Specifically, the process can be described as follows: First, the
dual-tree complex wavelet scattering transform is used to separate the high-frequency and
low-frequency features of the feature map. Second, a convolution operator is adopted to
extract low-frequency body features and high-frequency boundary features. Finally, the
dual-tree complex wavelet scattering transform is then built into a fully convolutional
network model, and a new learning scattering wavelet network (LSW-Net) semantic seg-
mentation model is designed through end-to-end data-driven scattering learning transform
features. In order to enhance its ability to extract image boundary contour information,
the network utilizes the Unet network [8] as the backbone network and introduces the
dual-tree complex wavelet scattering transform (DTCWT-Scat) during downsampling for
boundary feature extraction. In order to further improve the network model’s ability to
extract complex boundary contours, an improved active contour loss function (IAC-Loss)
is further constructed on the basis of the LSW-Net network. This loss function not only
improves the network’s sensitivity to small boundaries, it also better solves the problem of
the under-segmentation of boundary contours.
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Our main contributions are summarized as follows:

• In order to separate the high-frequency and low-frequency features of the feature
map during downsampling, we introduce the DTCWT-Scat module into the Unet and
innovatively propose the LSW-Net model.

• We design an improved active contour loss function, which can improve sensitivity to
small boundaries and can better solve the problem of boundary under-segmentation.

• Through BraTS brain tumor segmentation experiments, our LSW-Net network has
advantages when compared with traditional FCN, SegNet, At-Unet, and some ad-
vanced segmentation algorithms in terms of Dice coefficient, accuracy, sensitivity, and
other indicators.

• Through the DRIVE retinal vessel segmentation experiments, the effectiveness and
robustness of the LSW-Net + IAC-Loss model are illustrated.

2. Related Work
2.1. Dual-Tree Complex Scattering Wavelet Transform

Wavelet transform is a local waveform transform that can provide local representation
of multiscale signals in both time and frequency domains. S. Mallat first proposed a wavelet
scattering network with a non-feedback structure [16]. This network can not only present
the image energy distribution in the frequency domain, but also maintain stability against
small deformations. This partially makes up for the shortcomings of the CNN model,
including small object segmentation and image boundary extraction capabilities. Some
scholars have also actively tried to combine the wavelet algorithm with the CNN model.
Oyallon [17] used a wavelet scattering network to replace the first layer of a residual
network. The modified residual network produces roughly the same performance as the
original residual network, but the training parameters are greatly reduced. Rodriguez [18]
proposed a deep adaptive wavelet network to capture basic information from the input
data for image classification. Through experiments on three image classification datasets, it
was found that the model achieved high accuracy and also reduced training parameters.
Recently, Cotter [19] proposed a dual-tree complex wavelet scattering network. After being
combined with a CNN model, it achieves high accuracy in image classification tasks as
well as fast inference ability. Figure 2 shows the output results of the first-order dual-tree
complex wavelet scattering of brain tumor MRI images, including one low-frequency signal
and high-frequency signals in six directions. The low-frequency signal is the main feature
of the image, and the six high-frequency signals are the boundary feature of the image.
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2.2. Related Loss Functions

While the widely used cross-entropy loss function (CE-Loss) is not sensitive to the
segmentation of small object boundaries, when the existing model is trained, the network
model will optimize its parameters using a gradient descent method according to the loss
function error. Figure 3 shows that the CE-Loss function does not perform very well for
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cases with small boundaries or a small number of misclassified boundaries. To solve this
problem, Williams [15] et al. proposed the AC-Loss loss energy function, which can be
described as; where the Region item is the area of the segmentation region, the AC item is
the boundary length of the segmentation object, the item is the area of the segmentation
region, and the item is the boundary length of the segmentation object. In order to reduce
false boundary segmentation, this energy function is expected to minimize the area energy
of the segmentation region and the energy of the segmentation target boundary length
during model training.
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Unfortunately, it can be observed that the AC-Loss function is more sensitive than
the CE-Loss term when there is a small boundary in complex medical images, such as the
retinal vessel shown in Figure 3. However, when the target segmentation is completely
correct, the AC-Loss term still maintains a high error value. As the model is further
trained, this will further reduce the length of the segmentation target boundary resulting in
under-segmentation for some boundaries.

3. Proposed Method

In this section, we first construct the DTCWT-Scat module and then propose a novel
LSW-Net network model after introducing the DTCWT-Scat module into the Unet network.
Furthermore, in order to solve the small target segmentation task, a new IAC-Loss function
is designed. Finally, we document the LSW-Net algorithm and the IAC-Loss function
calculation algorithm.

3.1. Learning Scattering Wavelet Network

Wavelet scattering can extract image texture features and boundary information but
cannot make full use of contextual semantic information for image segmentation. FCN
integrates multiscale contextual information through multilayer pooling and subsampling;
however, it is still unable to distinguish boundary information from overall information.
The natural solution of combining the two functional modules can not only enhance the
complementarity between the boundary information and the global information but also
improve the classification accuracy of image boundaries. Therefore, we designed a novel
LSW-Net model that combines a wavelet scattering network and a fully convolutional
network, which is based on the encoder–decoder structure of the fully convolutional
network [20]. The LSW-Net framework can be described in detail as follows: First, the
dual-tree complex wavelet scattering transform [19] is added during downsampling in
order to effectively separate the high-frequency features and low-frequency features of the
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feature map. Second, the convolution operator is used to select the low-frequency main
features and high-frequency boundary features of the feature map, respectively. Finally,
we concentrate these features. The decoder is a process that uses a multilayer upsampling
method to gradually restore its original resolution. The algorithm is shown in Algorithm 1.

Algorithm 1: Learning Scattering Wavelet Network

Input: Preprocess image, x;
Num of encoder–decoder layers, m = 4;
Kernel size, k = 3;
Num of encoder kernels, ni = 64× 2i;

Num of decoder kernels, nj = 64× 2j−1;
Output: Predictive segmentation map, u;
initialization;

x1 = F
(

x, k, ni
)

, (i = 0)

Encoder:
for i = 1 to m do

zi+1 = DTCWT_Scat(xi)
xi+1 = F(zi+1, k, n× 2i)

end
Decoder:
dm+1 = xm+1

for j = m + 1 to 2 do
pj−1 = concate(xj−1, upsample(dj))
dj−1 = F(pj−1, k, n× 2j)

end
u = softmax(conv(d1, 1))

return u

The LSW-Net framework contains a convolutional feature extraction module that is
followed by batch normalization [21] after each convolution. The purpose is to accelerate the
convergence speed of the LSW-Net framework and reduce the correlation between layers,
see Figure 4 for details. The details can be described as follows: First, we use a 3× 3 size
kernel for convolution and batch normalization. Then, we use the ReLU function to activate
and to achieve the purpose of nonlinear transformation. Finally, the above process is
repeated once. The mathematical expression is F(
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3.2. DTCWT-Scat Module

The DTCWT-Scat module can be described in detail as follows. First, the dual-tree
complex wavelet transform is performed on the feature map. Then the low-frequency infor-
mation is processed using average pooling low-pass filtering, that is, S = Avgpool(yl, 2),
and the magnitude (mag) of the high-frequency real and imaginary are also calculated,

i.e., U = mag(Re(yh), Im(yh)) =
√
(Re(yh))2 + (Im(yh))2. Then, we merge S and U,

as shown in Figure 4b, where yl, yh, Re(•), Im(•) represents low-frequency information,
high-frequency information, and real and imaginary operators, respectively.

The DTCWT-Scat module has two significant advantages. The first advantage is that
it is able to perform a dual-tree complex wavelet transform on the input image. This
transform supports the backpropagation of errors and can update the parameters so that
the parameters of the previous convolution layer can be learned. Afterwards, the frequency
domain features can be extracted. The second advantage is that the wavelet function has
local waveform characteristics and is stable to local deformation. As a result, the LSW-Net
model will be more stable and sensitive to small deformations in medical images such as
tumors and will be more accurate for small feature extraction.

3.3. IAC-Loss Function

The flaws of CE-Loss and AC-Loss are acknowledged in Section 2.2. After absorbing
the advantages of the AC-Loss function, we designed a contour segmentation minimum
energy function, which can be written as follows,

min
c1,c2

Region (1)

s.t.
∫

C
|∇u|ds =

∫
C
|∇v|ds. (2)

where Region =
∫

Ω ((c1 − v)2 − (c2 − v)2) · udx, u, v, s, C, Ω represents the predicted im-
age, segmentation image, curve arc length, segmentation contour curve, and image area,
respectively. The variables c1, c2 are constant variables. Since ||∇u| − |∇v|| ≤ |∇(u− v)|,
there is, ∫

C
||∇u|−|∇v||ds ≤

∫
C
|∇(u− v)|ds . (3)

Using the Lagrangian multiplier method, we construct a new contour segmentation
energy function.

min
c1,c2,C

LossIAC = Region + α · IAC(Length), (4)

IAC(Length) =
∫

C
|∇(u− v)|ds, (5)

where α is the equilibrium coefficient. The first item is the area of the segmentation target
area, and the second item is the difference between the target boundary length of the
predicted image and the ground truth.

Figure 3 verifies the image segmentation advantages of the IAC-Loss energy function
in complex backgrounds. It can be observed that when the segmentation target has no
small target, IAC(Length) = CE(Loss) = 0, but AC(Length) = 314, which indicates
that IAC-Loss and CE-Loss will stop during minimization, but AC-Loss will continue to
decrease. When the segmentation has small targets, IAC(Length) = 12,CE(Loss) = 1.109,
AC(Length) = 320, which shows that IAC-Loss not only improves the sensitivity to small
boundaries but also better solves the problem of under-segmentation, see Figure 3.

In order to facilitate numerical calculation, the specific calculation discrete are also written,

Region =
i=1,j=1

∑
Ω

ui,j
(
c1 − vi,j

)2
+

i=1,j=1

∑
Ω

(
1− ui,j

)(
c2 − vi,j

)2, (6)
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IAC(Length) =
i=1,j=1

∑
Ω

(∣∣∣∇uxi,j −∇vxi,j

∣∣∣+ ∣∣∣∇uyi,j −∇vyi,j

∣∣∣), (7)

where α is the balance coefficient, uij ∈ [0, 1] is the predicted probability map, vij ∈ {0, 1}
is the binary code of the ground truth, and c1, c2 can be defined as a constant of 1 or 0.
∇uxi,j ,∇uyi,j ,∇vxi,j ,∇vyi,j are the differences of ui,j and vi,j in the horizontal and vertical
directions, respectively. The algorithm flow is shown in Algorithm 2.

Algorithm 2: Improved AC-Loss function

Input: Predictive segmentation map, u;
Binary ground truth map, v;
Equilibrium coefficient, α;
Batch size, B; Channels, C;
Image width, W; Image height, H;

Output: IAC-Loss Error, LossIAC;
initialization;
cin = [1]B×C×W×H , cout = [0]B×C×W×H
Regionin = u× (v− cin)

2

Regionout = (1− u)× (v− cout)
2

Region = Regionin + Regionout
∇hx = h[:, :, 1 :, :]− h[:, :, : −1, :], h = u, v
∇hy = h[:, :, :, 1 :]− h[:, :, :, : −1], h = u, v
IAC(Length) =

∣∣∇ux −∇vx
∣∣+∣∣∇uy −∇vy

∣∣
LossIAC = Region + α · IAC(Length)
return LossIAC

4. Experiments

In the following experiments, we use the DRIVE [22] and MICCAI-BraTS2020 [23]
datasets. In the experimental results, the BraTS brain tumor segmentation evaluation
metrics were recorded when epoch = 200, and the DRIVE retinal blood vessel segmentation
evaluation metrics were recorded when epoch = 10.

All models are trained on an i7-10750H, NVIDIA RTX 2070 GPU with 8G RAM.
The Python language is used for programming and the deep learning framework used
is Pytorch.

4.1. Data Preprocessing and Evaluation Metrics

The BraTS2020 brain tumor dataset has 369 patient samples, and each patient contains
4 modalities of MRI image data. After splicing and slicing the four-modal data, slices are
obtained. In this experiment, 297 samples are randomly selected as the training set and
validation set, and the remaining 72 samples are reserved as the test set. After removing the
slices without lesions there are still 19,874 slices, of which 80% of the slices are randomly
selected as the training set and 20% of the slices are selected as the validation set. In the
DRIVE retinal dataset, the first 20 images are selected as the training set and validation set
and the last 20 images are used as the test set.

In the DRIVE retinal dataset, the first 20 images are selected as the training set and
validation set, and the last 20 images are used as the test set. In this experiment, since
there are only a small number of sample sets in the DRIVE retinal dataset, we preprocess
the images of the training set according to image rotation, horizontal flip, vertical flip,
translated, and random cropping, in order to expand the sample size of the training set.

In this paper, our model quality is evaluated in terms of the standard evaluation
metrics such as precision, Dice coefficient, sensitivity, specificity, and accuracy, which are
shown in Table 1. TP, FP, FN, TN represent true positives, false positives, false negatives,
and true negatives, respectively.
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Table 1. Evaluation metrics.

Metric Description

Pre (Precision) TP
FP+TP

Dice (Dice coefficient) 2·TP
2·TP+FP+FN

Sen (Sensitivity) TP
TP+FN

Spe (Specificity) TN
FP+TN

Acc (Accuracy) TP+TN
FP+FN+TP+TN

4.2. Experiment 1: BraTS Brain Tumor Segmentation

In this subsection, we will compare the evaluation metrics of the LSW-Net model with
FCN, SegNet, and At-Unet models, as well as the 3D visualization. We use a combination
of binary cross entropy (BCE) and Dice loss to train the LSW-Net. The loss is formulated as:

lossBraTs = lossDice + 0.5 · lossBCE, (8)

where lossDice = 1− 2∑ yi ·ŷi
∑ yi+∑ ŷi

, lossBCE = − 1
N ∑[yi· log(ŷi) + (1− yi) · log(ŷi)], yi ∈ {0, 1}

is the binary-coded value of the ground truth, and ŷi ∈ [0, 1] is the predicted value.
In Table 2, the evaluation metrics of the LSW-Net model are recorded, where ET, TC,

WT, and AVG represent the enhanced tumor area, tumor core, the entire tumor area, and
the average metric, respectively. After comparison to the classic FCN, SegNet, and At-Unet
models, it can be observed that the Dice coefficient, accuracy, and sensitivity of the LSW-Net
model are all excellent. The LSW-Net model improved the Dice coefficient, accuracy, and
sensitivity by at least 3.51%, 2.11%, and 0.46%, respectively.

Table 2. Comparison of LSW-Net model with classical segmentation algorithms on BraTS2020.

Method
Pre Dice Sen

ET TC WT AVG ET TC WT AVG ET TC WT AVG

FCN [7] 0.7650 0.6554 0.7831 0.7345 0.7656 0.6802 0.8125 0.7528 0.8197 0.7904 0.8722 0.8274
SegNet [11] 0.7748 0.7076 0.8669 0.7831 0.7316 0.6984 0.8448 0.7583 0.7615 0.7754 0.8464 0.7944
At-Unet [12] 0.7764 0.7235 0.8791 0.7930 0.7646 0.7312 0.8600 0.7853 0.8080 0.8240 0.8665 0.8328

LSW-Net (Ours) 0.8319 0.7447 0.9077 0.8281 0.7947 0.7448 0.8797 0.8064 0.8125 0.8308 0.8690 0.8374

Figure 5 shows the 2D visualization comparison of the segmentation results of four
brain tumor samples between the LSW-Net model and the classic FCN, SegNet, At-Unet
models. After comparison with the ground truth, it can be observed that the LSW-Net
model performs better than the three classical models in terms of segmentation and is more
suitable for BraTS brain tumor dataset image segmentation. In the segmentation results in
line one of Figure 5, it can be observed that the other three classic models have misclassified
in the enhanced tumor area and the edema area. Conversely, the LSW-Net model has a
clear and complete outline, which also shows the validity of the LSW-Net model.

The LSW-Net model segmentation results have fewer outliers and mis-segmented
blocks, so they are closer to ground truth when compared to the 3D visualization of the
classical FCN, SegNet, and At-Unet segmentation results. The 3D visualization in Figure 6
shows that the LSW-Net model has achieved a good overall segmentation effect. This
contributes to a clearer understanding and judgment of tumor size, boundary, and location.
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In addition to the experimental comparison of the LSW-Net with the classical segmen-
tation algorithms, the performance of the LSW-Net model, using the BraTS brain tumor
dataset, is assessed here against several advanced segmentation algorithms developed in
recent years by researchers such as Zhang et al. [24], Li et al. [25], Feng et al. [26], Latif
et al. [27] and Hao et al. [28], see Table 3. The comparison assesses performance in terms
of the Dice coefficients for ET, TC, WT, and average (AVG). The evaluation metrics in
Table 3 show that the LSW-Net model and these advanced segmentation algorithms have
advantages and disadvantages in ET, TC, and WT indicators. However, the most impor-
tant evaluation indicator is the average indicator of the Dice coefficient, that is, the AVG
indicator. The AVG index of the LSW-Net model is the highest, which also shows that our
model has better segmentation performance on the BraTS2020 dataset.
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Table 3. Comparison of LSW-Net model with some advanced algorithms on BraTS2020.

Method Year
Dice

ET TC WT AVG

Zhang et al. [24] 2019 0.7070 0.7380 0.8850 0.7767
Li et al. [25] 2019 0.7450 0.8080 0.8650 0.8060

Feng et al. [26] 2020 0.7100 0.7300 0.9000 0.7800
Latif et al. [27] 2021 0.7180 0.7460 0.8960 0.7860
Hao et al. [28] 2021 0.7926 0.7465 0.8764 0.8051

LSW-Net (Ours) 0.7947 0.7448 0.8797 0.8064

4.3. Experiment 2: DRIVE Retinal Segmentation

In this subsection, we will verify the effectiveness of the IAC-Loss function for seg-
mentation on the DRIVE retina dataset. In the experiment, the LSW-Net model will be used
as the backbone network and the loss function will be the IAC-Loss function, denoted as
the LSW-Net + IAC-Loss model. Finally, the LSW-Net + IAC-Loss model segmentation
results are compared with other 14 models, including Cheng et al. [29], Azzopardi et al. [30],
Roychowdhury et al. [31], DRIU [32], HED [33], Unet [34], Recurrent Unet [34], R2Unet [34],
Guo et al. [35], Du et al. [36], Arias et al. [37], Zou et al. [38], and MD-Net [39] models. In ad-
dition, two examples of segmentation effects are shown in terms of overall and local details.
Compared with the other 14 models in Table 4, it can be seen that the LSW-Net + IAC-Loss
model is higher than the other 14 algorithms in terms of Dice coefficient and specificity;
it is second only to the MD-Net [39] model in the accuracy index. Compared with the
segmentation results of the classic Unet model, the sensitivity of the LSW-Net model offers
an improvement of 3.39%, which is an obvious improvement and has a significant effect.
These advantages indicate that our model performs well.

Table 4. Comparison of LSW-Net + IAC-Loss model with some advanced models on DRIVE.

Method Year Dice Sen Spe Acc

Cheng et al. [29] 2014 - 0.7252 0.9798 0.9474
Azzopardi et al. [30] 2015 - 0.7655 0.9704 0.9442

Roychowdhury et al. [31] 2016 - 0.7250 0.9830 0.9520
DRIU [32] 2016 0.6701 0.9696 0.9115 0.9165
HED [33] 2017 0.6400 0.9563 0.9007 0.9054
Unet [34] 2019 0.8142 0.7537 0.9820 0.9553

Recurrent Unet [34] 2019 0.8155 0.7751 0.9816 0.9556
R2Unet [34] 2019 0.8171 0.7792 0.9813 0.9556

Guo et al. [35] 2020 0.8215 0.8283 0.9726 0.9542
Du et al. [36] 2021 - 0.7814 0.9810 0.9556

Arias et al. [37] 2021 - 0.8597 0.9690 0.9563
Zou et al. [38] 2021 0.8129 0.7761 0.9792 0.9519
MD-Net [39] 2021 0.8099 0.8065 0.9826 0.9676
MFE-Net [40] 2022 0.8204 0.7853 0.9812 0.9563

LSW-Net + IAC-Loss (Ours) 0.8216 0.7876 0.9837 0.9565

The comparison experiment, using the segmentation results from the DRIVE retinal
blood vessel dataset, is shown in Figure 7. In the first and third rows of Figure 7 it can
be observed that the segmentation results of DRIU [32] and HED [33] have obvious over-
segmentation. In lines two and four of Figure 7, it can be seen that the segmentation results
of the LSW-Net + IAC-Loss model have less noise and clearer contours. Through this
experimental comparison, it can be shown that the LSW-Net + IAC-Loss model has better
segmentation effectiveness.
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4.4. Experiment 3: Discussion on Equilibrium Coefficient α

To evaluate the effect of the balance coefficient α in the LSW-Net + IAC-Loss model,
ablation experiments are performed on the DRIVE dataset in this subsection.

In the experiment, the evaluation metrics of the LSW-Net + IAC-Loss model are
recorded in Table 5, where α ∈ [0.1, 0.5]. Table 5 shows that the differences in each metric
are not obvious; however, they all reach a high level, which also shows that the LSW-
Net + IAC-Loss model has better robustness to the balance coefficient α. When α = 0.3,
the specificity is the highest while the Dice coefficient and sensitivity are relatively low.
Alternatively, when α = 0.1 or α = 0.5, the Dice coefficient and sensitivity index values
increase. Therefore, we suggest that the metrics can be fine-tuned by controlling the balance
coefficient α according to actual needs.

Table 5. Influence of α balance coefficient on LSW-Net + IAC-Loss model segmentation result
indicators.

α Pre Dice Sen Spe Acc

0.1 0.8525 0.8231 0.9565 0.7957 0.9799
0.2 0.8542 0.8222 0.9564 0.7925 0.9802
0.3 0.8588 0.8216 0.9565 0.7876 0.9837
0.4 0.8602 0.8221 0.9566 0.7873 0.9813
0.5 0.8571 0.8227 0.9566 0.7909 0.9807

4.5. Experiment 4: IAC-Loss Effectiveness Evaluation

In this subsection, we further evaluate the advantages of the IAC-Loss function. For
the segmentation of the DRIVE retina dataset, the LSW-Net is used as the backbone network
and the loss functions are the CE-Loss, AC-Loss, and IAC-Loss functions, denoted as +CE-
Loss, +AC-Loss, and +IAC-Loss models, respectively. The segmentation results are shown
in Table 6.
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Table 6. Comparison of IAC-Loss with related loss function metrics.

Dice Sen Spe Acc

+AC-Loss 0.7875 0.7147 0.9853 0.9509
+CE-Loss 0.8182 0.7920 0.9789 0.9551

+IAC-Loss (α = 0.1) 0.8231 0.7957 0.9799 0.9565

Compared with the +AC-Loss model, the +IAC-Loss model improves on the Dice
coefficient and sensitivity by 3.56% and 8.1%, respectively. The accuracy is also increased
by 0.56%. This illustrates the effectiveness of the IAC-Loss function for image segmentation,
see Table 6.

After comparing the enlarged details of lines two and four in Figure 8, it can be seen
that the boundary contour segmentation of the +IAC-Loss model is the best. Through
the comparative experiments above, it can be determined that the IAC-Loss function has
greater advantages for complex image boundary contours.
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5. Conclusions

In this research, we have proposed the LSW-Net model for the BraTS2020 dataset,
which achieved good experimental simulation results on the segmentation discontinuity
problem. We have constructed an LSW-Net + IAC-Loss model in order to solve the weak
boundary problem of small blood vessels in the DRIVE retinal vessel dataset. After intro-
ducing the dual-tree complex wavelet transform, the experimental results show that the
LSW-Net has the ability to extract features and achieve better segmentation results. In the
future we will further integrate the attention mechanism and the transformer method to
design a better image segmentation network model.
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