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Abstract: Diabetes mellitus (DM) foot ulcer is a chronic wound and is highly related to the mortality
and morbidity of infection, and might induce sepsis and foot amputation, especially during the
isolation stage of the COVID-19 pandemic. Visual observation when changing dressings is the most
common and traditional method of detecting wound healing. The formation of granulation tissues
plays an important role in wound healing. In the complex pathophysiology of excess and unhealthy
granulation induced by infection, oxygen supply may explain the wound healing process in DM
patients with multiple complicated wounds. Thus, advanced and useful tools to observe the condition
of wound healing are very important for DM patients with extremities ulcers. For this purpose, we
developed an artificial intelligence (AI) detection model to identify the growth of granulation tissue
of the wound bed. We recruited 100 patients to provide 219 images of wounds at different healing
stages from 2 hospitals. This was performed to understand the wound images of inconsistent size,
and to allow self-inspection on mobile devices, having limited computing resources. We segmented
those images into 32 × 32 blocks and used a reduced ResNet-18 model to test them individually.
Furthermore, we conducted a learning method of active learning to improve the efficiency of model
training. Experimental results reveal that our model can identify the region of granulation tissue
with an Intersection-over-Union (IOU) rate higher than 0.5 compared to the ground truth. Multiple
cross-repetitive validations also confirm that the detection results of our model may serve as an
auxiliary indicator for assessing the progress of wound healing. The preliminary findings may help
to identify the granulation tissue of patients with DM foot ulcer, which may lead to better long-term
home care during the COVID-19 pandemic. The current limit of our model is an IOU of about 0.6. If
more actual data are available, the IOU is expected to improve. We can continue to use the currently
established active learning process for subsequent training.

Keywords: diabetes mellitus; foot ulcer; chronic wound healing; ResNet; active learning

1. Introduction

Diabetic foot ulcer is a tough issue for both the clinical practitioners and the patients
since it is a chronic wound, which is affected by many factors, resulting in the expansion
of ulcer and infection. Further exacerbation may lead to invasive debridement for the
poorly healing wound, or even amputation for necrotic tissues. This does not only affect the
patient’s health condition and quality of life, but also increases the inpatient length of stay,
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medical expenses, and may lead to mortal sepsis. Therefore, the condition of a diabetes
foot ulcer should be detected early, and minor lesions of patients’ extremities should also
be noticed in advance.

The most important principle of chronic wound care is to continuously follow-up the
wound healing condition to reduce the risk of persistent wound infection [1]. According
to the wound care treatment guideline announced by EWMA (European Wound Man-
agement), traditional chronic wound care must be treated with topical treatment by daily
inspection (naked-eye observation) of the wound healing status when changing dressings,
by surgeons, doctors, or nurse specialists; in other words, those who have performed
surgical debridement or operation, suture, or skin graft, etc., to the patient. Therefore, the
first impression of the wound will be observed through visual observation and should
follow the rules of MOIST (Moisture balance, Oxygen balance, Infection control, Support
treatment, and Tissue management) of the wound surface [2]. That means visual observa-
tion to the wound bed surface is the most important part of wound care. For example, if the
wound is too dry, it will be treated with wound gels, and if the wound is overly moist or
surrounded by fluid, it will be treated with foams, hydro-fibers, or alginates for absorption
to ensure a balanced moisture level, which may facilitate the formation of granulation
tissue. Additionally, a paper ruler and marker pen may be used to measure and mark down
the margin of the infected areas. A cotton swab may be used to measure the depth and the
condition of wound discharge. Additionally, the details of the wound bed are observed,
such as blood (active bleeding, blood clot, etc.), pus (infection wound or abscess, etc.), and
other tissue fluid. Finally, the surgeon will prescribe the wound dressing or ointment for
wound healing, such as antibiotics ointment for the infected wound, or hyperbaric oxygen
therapy (HBO) as a kind of treatment for the wound care procedure.

According to MOIST, besides observing the formation of the granulation tissues,
the complex pathophysiology of excess and unhealthy granulation induced by infection,
oxygen supply should also be considered since the wound healing process in DM patients
with multiple, complicated wounds may be affected [3].

Due to the limitations in the traditional wound care procedures which rely on profes-
sional experiences, naked-eye assessment, and manual wound determination of necrotic,
sloughing, and granulation tissue, a computational approach is highly suggested as a scien-
tific method to identify tissue and to correctly predict the healing condition of the chronic
wound [4]. Relevant studies have confirmed that the diabetic foot medical care model is
very sophisticated and requires cross-disciplinary cooperation through the integration of
medicine (metabolism, infectious, surgery, orthopedics), nursing, digital technology, and
biomedical engineering, etc., to joint efforts. With cross-disciplinary cooperation, optimal
wound management can be achieved by managing the glycemic control and wound care
with the assistance of modern informatics and communication technologies [5].

Nowadays, electronic products and related communication devices, such as cellphones,
wearable devices, tablet computers, consumer electronics, etc., have become very common
in peoples’ lives. Cellphones’ built-in cameras with high resolution have begun to be used
in managing chronic wounds, for example in diabetic foot care [6]. It can quickly achieve the
ability of screening and judging the wound condition. Some research found practical value
in the actively developing digital assessment tools. According to the research of Australian
scholars, the particularity of diabetic wounds’ detection apps can lead to variable reliability
and validity of images captured by mobile devices. Interpretation of wound images in
distal assessment does not exclude the risk of distortion. However, it is still recommended
as a screening or diagnostic appliance [7].

Therefore, through the modern information and communication technologies, mobile
phone camera software can act as an assessment tool to analyze the preliminary diabetic
foot screening. Monitoring the early pathological changes of the ulcer wound and under-
standing the quality of wound care at home during the COVID-19 pandemic can help to
reduce the medical cost of serious infection and prevent the outcome of amputation to
achieve effective diabetes health management, which is an important issue nowadays.
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According to the epidemiological statistics, more than 80% of DM foot ulcers lead
to amputation [8]. Usually, through debridement of the surrounding callus, removal of
slough and necrotic tissue, and scraping of the microbial membrane (biofilm) on the wound
surface, the new granulation tissue can proliferate and promote wound healing [9,10].
Besides, removing the physically inappropriate shear forces of the patients’ feet, choosing
the suitable dressing, applying topical oxygen supply, and providing related growth factors
to stimulate the growth of granulation tissues are recommended treatments for diabetic
foot ulcers according to the guidelines [10].

Through retrospection, literature about wound identification systems for diabetic foot
ulcers has been recorded by Wang et al., who used real-time wound image data with a
deep learning algorithm [11]. A recent systematic review concluded that the results of the
research in AI wound assessments and monitoring systems are useful to improve DM foot
clinical care, but some of them were focused on how to recognize ischemia and infection
while providing strong validation or adequate reliability in assessing ischemia [12]. They
use images taken by cellphone cameras to identify wounds through image smoothing
and image segmentation, especially with good validity to identify the wound size and
ischemic tissues [13]. However, a knowledge gap exists in the measurement of the extent of
the ulcers, the differential diagnoses of the tissues, and the estimation of wound recovery.
These are important focuses in the wound healing process, especially for the growth of the
granulation tissues.

In recent years, almost every country in the world has been impacted by COVID-19.
COVID-19 has affected the public’s lives in various ways, including their health, living
environments, and social networks. Most importantly, the working burden of medical
staff increased while the willingness of patients to seek medical treatment decreased, thus
causing a rise in amputation rates among DM foot ulcer patients.

For this reason, this study aims to develop and test an AI detection model as a
screening tool by using an active learning method to identify the growth of granulation
tissue and to understand the wound healing status of the DM foot ulcer wound bed for
home care patients, especially during the COVID-19 pandemic.

2. Materials and Methods
2.1. The Data Source

The database is provided by two medical image centers, Chang Gung Memorial
Hospital and National Taiwan University Hospital, Taiwan. We collected 219 wound
pictures taken at different healing stages from 100 DM foot ulcer patients. We invited
5 specialists, including 3 plastic surgeons and 2 surgical nurse specialists who have more
than 20 years of working experience in treating DM foot ulcer wounds, to validate the
included samples. If inconsistency existed among these experts, the suggestion from the
most senior professor and doctor of plastic surgery was used as the conclusion.

2.2. Institutional Review Board Statement

All subjects submitted their informed consent for inclusion before they participated in
the study. The study was conducted in accordance with the Declaration of Helsinki, and
the protocol was approved by the Ethics Committee of the institutional review board from
university hospitals (IRB number: 201802012B0A3 and 201912056RINA). Photographic
data were collected by the patients themselves or by the nurse specialists. During the above
procedures, the confidentiality of the respondents was ensured.

These images were originally captured by surgeons, medical doctors, nurse specialists,
or patients themselves for recording, so there was no certain sampling standard. The
resolution was between 96 and 300 dpi. The physical scale for the captured objects was
80~320 pixels/cm, and the JPEG quality was about 25~75. The comprehensiveness of data
collected in this research may support the development of a self-testing DM foot analyzer
for home care diabetic patients.



Electronics 2022, 11, 2617 4 of 12

2.3. Our Detection Model

The detection tool we aim to develop not only has to deal with image data of different
standards but must also operate on a basic mobile device. The execution environment
is very harsh—there may be no network and only limited computing resources. Our
solution is to segment the images into small blocks and then train a lightweight neural
network model for detection. We chose to use the ResNet [14,15] model because it is the
only one that meets these conditions, unlike complex networks such as U-Net [16,17],
Mask R-CNN [18,19], DeepLab [20,21], etc. In addition, we used the active learning [22,23]
training method to improve the learning efficiency.

The network architecture we used in this research is depicted in Figure 1. As Figure 1a
shows, we divided the wound pictures into parts with 32 × 32 sub-images, which were
then divided into the red, green, blue, and gray channels. A simplified ResNet-18 model
received these four channels and categorized the input data as one of the following classes:
(1) granulation tissues, (2) non-granulation tissues, and (3) non-wound areas. Notably,
the first class is the main one we want to detect since the growth of granulation tissues
implies a positive situation for wound healing. The second class includes infected abscess,
hemorrhage, skin graft, blood clot, fascia, etc. A combination of the first two classes can
indicate a wound bed. The third class consists of items such as scab, skin tissue, toenails,
clothing, measuring ruler, sheets, bed frames, etc., which regularly have a smoother texture
than wounds.
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Figure 1. Network architecture. (a) This model inspects each 32 × 32 sub-image individually on the
wound picture. The detection results in one of three classes: granulation tissues, non-granulation
tissues, and non-wound areas. (b) The ResNet18 network model we used in this research is reduced to
1/4 of the original size. We can thus save the computing resources and avoid the overfitting problem.

Figure 1b shows the network components in detail. We referred to the open-source
ResNet18 model [16], kept all the kernel sizes as 3 × 3, and simplified the batch sizes
from 64, 128, 256, 512 to 16-32-64-128. This can reduce the network scale by 1/4 and thus
save on computing resources to avoid overfitting. The output of our classification model
with a 32 × 32 input block is a three-dimensional output vector generated by the soft-max
activation function. For a single pixel on the test image, the classification output value C(i,j)
can be calculated by locating this pixel in the central 8 × 8 area of a total of 64 × 32 × 32
input blocks and summing all its output vectors, as the Equation (1) shows:

C(i, j) = Argmax
k∈{1,2,3}

7

∑
a=0

7

∑
b=0

D(i− 20 + a, j− 20 + b)k (1)
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where D(i,j) is the model’s three-dimensional output of the 32 × 32 input block, positioning
the top-left corner at (i,j).

2.4. Data Sampling and Active Learning

We developed a detection model based on examining the wound images in small
patches, as this not only handles images of various sizes, but also saves computational
resources. We set the block size to 32 × 32 after consulting five clinical specialists who were
invited to label our training samples. An example of these blocks is shown in Figure 2, and
we can see that the appearance of these blocks, i.e., texture, color, and gloss, most likely
contains enough information for manual recognition and automatic detection.
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Figure 2. Three rounds of active learning. In the first round, we collected samples from three classes
by drawing bounding boxes and generating 32 × 32 blocks for experts to label. We trained the model
using the first set of images and applied it to detect images in the second set. When we colored
the output classes with green, red, and yellow, respectively, misclassified samples could be easily
relabeled and inserted into the dataset in the second round. We increased classes 1, 2, and 3 samples
by 1933, 7327, and 211,397, respectively, resulting in more accurate detections before round 3. In the
final round of resampling, we continued to collect misclassified samples from the third set of images.
Finally, we used all samples in the dataset for model training.

We kept 9 out of 219 wound images for final testing. The remaining 210 images were
divided into 3 groups for 3 rounds of the active learning process. Active learning can
significantly reduce the labeling effort while improving the training efficiency. Figure 2
shows our data sampling process for active learning. We used 52 images in the first
round. We then drew bounding boxes on these images, encircling the regions containing
mainly granulation tissues (class 1), non-granulation tissues (class 2), and non-wound areas
(class 3). For example, in a bounding box with granulation tissues as the main component,
we randomly generated 32 × 32 blocks with their class set to class 1 by default so that
clinical experts can easily label their classes. The block generation and labeling process can
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be stopped at any time when we have collected enough samples in this region. We then
proceeded to draw the next bounding box and label the 32 × 32 blocks generated within it.

In the first round of active learning, we obtained 1349, 1110, and 1020 samples for
the 3 output classes, respectively. We then performed data augmentation by flipping and
rotating these samples by 90, 180, and 270 degrees. Their intensities were also modified
by gamma transformations, with γ = 0.8, 0.9, 1.0, 1.1, and 1.2. In doing this, the data size
was extended by 40 times. These samples were then used to train our detection model for
5000 epochs. After training, we applied our model to a second set of 78 wound images
and started a second round of active learning. Figure 2 also shows the detection results
for these images. We used three colors: green, red, and yellow, to show the classification
outputs 1, 2, and 3 for each pixel computed by Equation (1), respectively. To facilitate the
reader’s understanding, we overlay the original image on the detection results, and set
the transparency to 0.4. In the second round of data sampling, our experts quickly found
misclassified regions on the image, circled them with bounding boxes, and inserted the
relabeled samples into the training dataset. Therefore, at this stage, class 1 and class 2
samples were increased by 1933 and 7327, respectively. Importantly, we found that the
non-wound area (class 3) almost disappeared in the output graph for this round. This can
occur because class 3 should have many different types, but with relatively few examples
for training. Since we could identify non-wound blocks by ourselves, we generated and
added 211,397 samples to the dataset, helping this model to successfully detect the output
as class 3.

The data augmentation process was then conducted as described above, and the
training data used in the first round also participated in this stage. We repeated the training
processes using the new dataset and started the third round of the resampling process with
the remaining 80 images. As we can see in Figure 2, the non-wound area is correctly marked.
Experts then focused on relabeling several misclassified regions on the output graph. The
3 types of samples increased by 25,300, 2152, and 133, respectively. Finally, we collected
28,582, 10,589, and 212,550 samples for the 3 classes (shown in Table 1). We then used all
these samples and the augmented data thereof to train the final version of our detection
model. The training process was repeated for 10,000 epochs, where the network model
received samples from the three classes randomly but with equal probability. During the
active learning process, the experts iteratively corrected the outcomes of the validation data
in the first two rounds and then inserted them into the dataset as new samples. The new
samples and the existing samples in the previous stage were all correct samples; therefore,
they were all used to train the model in the later stage.

Table 1. Number of images and samples collected in the three rounds of active learning.

1st Round 2nd Round 3rd Round Total

#images #samples #images #samples #images #samples #images #samples

class 1

52

1349

78

1933

80

10253

210

13535

class 2 1011 7327 3152 11490

class 3 1020 211397 133 212550

3. Results

As mentioned above, after three rounds of active learning, we kept nine uninvolved
wound images. These images were from three patients, called Case 1 (1-1, 1-2, 1-3), Case
2 (2-1, 2-2, 2-3), and Case 3 (3-1, 3-2, 3-3). Clearly, each case went through a three-stage
healing process. Of these cases, the first two had larger areas and more complex wound
beds compared to case 3. The picture resolutions for these images are 150, 300, and 300 dpi,
respectively, for each case. We applied our detection model to evaluate each 32 × 32 block
and then used Equation (1) to identify regions of granulation tissue pixel-by-pixel. We only
focused on class 1 results, as the granulation tissue growth indicated good wound healing.
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Clinical specialists had also labeled the ground truth for us to verify our experimental
results. Table 2 lists the IOU rates between our detection results and ground truth. For all
cases, we can find that the IOU rate increased during the first, second, and third resampling,
implying that active learning can efficiently improve training performance. The IOU rates
after the third round of training were mostly higher than 0.5, except for case 2 and 3 which
was only 0.45, and the average IOU rate reached 0.62. We also tested 10 over 52, 10 over
78, and 10 over 80 images using the well-trained model on all 3 training datasets after the
third round. The images were picked randomly and had mean IOUs of 0.71, 0.67, and
0.68, respectively. Although these images have been used to train our model, the active
learning process does not globally examine all image content. Therefore, the IOU rates of
the training data were not significantly better than the IOU rate of the final test images. This
result likely confirms the generality of our model. An IOU rate above 0.5 met the original
goal of our study, revealing the ability of our detection model to aid caregivers in DM foot
wound healing. Below, we use Figures 3–5 to explain the details of wound assessment for
cases 1–3, respectively. Notably, the following cases provided the representative images of
common DM foot ulcer wound status.

Table 2. Experimental results: the IOU rates compared to the groundtruth.

IOU
Case 1st Round 2nd Round 3rd Round

Case 1-1 0.31 0.57 0.59
Case 1-2 0.42 0.61 0.68
Case 1-3 0.24 0.51 0.58

Case 2-1 0.11 0.5 0.51
Case 2-2 0.31 0.51 0.68
Case 2-3 0.11 0.39 0.45

Case 3-1 0.37 0.61 0.68
Case 3-2 0.46 0.65 0.72
Case 3-3 0.39 0.62 0.68
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third training session. This situation did not affect our detection for class 1 (granulation tissues).
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Figure 5. Case 3 of a 59-year-old female patient with a history of DM for over 15 years. Our detection
model can accurately track the wound appearance on the surface but was unable to discover the
putrescence occurring deeply behind the skin. Therefore, advance warning could not be given to
prevent the occurrence of the toe amputation.

Case 1 (Figure 3) is a male patient aged 65 who has been diagnosed with Type 2 DM
for 8 years. In the past 5 years, he suffered from DM neuropathy and cerebrovascular
disease. He fell from his wheelchair and was injured by the pedal of the wheelchair.
After debridement and wet dressing of Sulfasil cream and skin graft, the granulation
tissue gradually grew hyperplastic micro-vessels, fibrous connective tissue, and many
inflammatory cells. This tissue has a large network of micro-vessels, so the color appears
red with slight hemorrhage, and the periphery is a new epidermis that has completed
re-epithelialization. The wound was getting smaller and healing. Although the IOU rate
was around 0.6, the detection results in Figure 3 precisely indicate the location and area of
the granulation tissue after the second and third training sessions. Therefore, it has been
affirmed by doctors and nurse specialists.
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Case 2 (Figure 4) is a 68-year-old, retired truck driver with poor DM control for more
than 20 years. He has been diagnosed with DM nephropathy and undergoes regular
dialysis three times a week. He suffered a motorcycle injury and laceration within two
weeks. The plastic surgeons debrided a large area of infected, humid wound, followed by
using Sulfasil cream and New Epi (growth factor) liquid wound dressing after debridement
of inflammation and necrotic tissue, and then performed skin grafting. These treatments
significantly improved wound healing with granulation tissue hyperplasia. The healing
process is also traced by our detection model in Figure 4. Interestingly, we found that the
wound area near the heel was incorrectly classified from class 2 (non-granulation tissues)
to class 3 (non-wound areas) after the third training session. However, this situation did
not affect our detection for class 1 (granulation tissues).

Case 3 (Figure 5) is a 59-year-old female patient with a history of DM for over 15 years
who was recently diagnosed with a poorly healing ulcer under the left toe. The wound
looks small on the outside, but it is actually a deep, infected wound. After debridement,
due to chronic renal insufficiency and neuropathy, osteomyelitis led to poor wound healing,
which eventually led to toe amputation. In this case, our detection model accurately tracked
the wound appearance on the outside, but it was unable to delve into the back of the skin,
as shown in Figure 5. Therefore, early warning cannot be given to prevent unfortunate
events from happening.

4. Discussion

As mentioned earlier, our initial goal for this study was that the IOU rate must be
higher than 0.5 compared to the ground truth. Although all our experimental results,
except for case 2 and 3, achieved this goal, we are curious why the IOU cannot reach 0.8,
0.9, or higher. We think there are two possible reasons. First, for some tissue samples,
it can be difficult to definitively determine whether it is a granulation tissue based on
their appearance. Any decision may be the correct classification. In this case, half of the
ambiguous samples can be placed outside the intersection area of the IOU.

The second reason may be that the class 2 (non-granulation tissues) has various types,
such as infected abscess, hemorrhage, skin graft, blood clot, fascia, etc. As long as the
granulation tissue appears to be close to these types, it may be misclassified. Therefore,
the conditions for the successful classification of granulation tissues are relatively strict.
To confirm this argument, we set the pixels within the granulation tissues of the ground
truth image to be positive and other pixels to be negative, and then calculated the pos-
itive predictive value (PPV) of the experimental results. We found that even for case
2-3 (with IOU = 0.45), its PPV value reached 0.91. Therefore, our detection results could
accurately determine the location of the granulation tissues.

We also attempted to precisely detect non-granulation tissues (class 2) in our further
research. By doing so, we can assess the proportion of granulation tissues in the wound
bed. Here, let us discuss why we could not properly identify non-granulation tissues in
case 2 and 3. As a comparison, we also review the successful detection example of case 1-2.
We found that the main difference between these two cases is the resolution of the images.
The image resolutions were 150 and 300 dpi for cases 1-2 and 2-3, respectively. These two
images are compared in Figure 6. In Figure 6a, both granulation tissue and non-granulation
tissue are clearly textured, while in Figure 6b, the texture of both is relatively flat and
approximates the appearance of class 3. Therefore, in the upcoming research, we can resize
all images to a consistent resolution to improve training results.
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Figure 6. Comparison of cases 1-2 and 2-3 images. (a) Both granulation tissue and non-granulation
tissue are clearly textured with image resolution at 150 dpi. (b) The texture of both is relatively flat
and approximates the appearance of class 3, as the image resolution of this case is 300 dpi.

In addition to image resolution, we found other factors that contributed to misclassifi-
cation. We removed images in the training data that could not be classified correctly even
though they were used for training. As shown in Figure 7a, wetter tissue is more likely to
reflect light when photographed, thereby affecting the detection model. Figure 7b is another
example, which shows that in more complex wounds, granulation is not easily correctly
detected due to mixing with other tissues. For the former, we can take several more images
of different angles during detection to solve the reflection problem. For the latter, we can
collect more training data—a fourth round of active learning may be performed to solve
this problem.
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Figure 7. Other factors that cause misclassification. (a) Wetter tissue is more likely to reflect light
when photographed, thereby affecting the detection model. (b) In more complex wounds, granulation
is not easily correctly detected due to mixing with other tissues.

5. Conclusions

In this research, we developed and tested a granulation tissue detection model. The
kernel of this model is a simplified ResNet 18 network model, which consumes relatively
few computing resources and thus can perform on basic mobile devices. The input data
were 32× 32 sub-images segmented from DM wound pictures, and the classification output
was divided into three classes, i.e., the granulation tissues, non-granulation tissues, and
non-wound areas. We conducted a three-round active learning process to save the labeling
labor and to improve training efficiency. The experimental results revealed that most of our
detection results of the granulation tissues had an IOU higher than 0.5 in comparison to the
ground truth. The results can thus accurately locate the place of the granulation tissues



Electronics 2022, 11, 2617 11 of 12

in the wound bed. This is helpful to both the nursing staff and the DM patients’ wound
healing, especially during the outbreak of COVID-19.

This research constructed a mHealth device and application for patients with DM
foot ulcers or chronic wounds. The present R-CNN deep machine learning model for
instant diabetes foot ulcer wound imaging, for wound classification and identification,
contributes quickly and sufficiently to identify the wound condition by using photo image
delivery from cellphones, especially for those patients who were hesitant to visit the doctor
during the COVID-19 pandemic. Furthermore, this model provides patients, healthcare
professionals, and case managers a tool for the assessment of the wound status. It can
be used for self-monitoring by patients, taking pictures of wounds, and uploading the
pictures to the e-health cloud as a personalized medical record, as well as it can break the
limitations and inequality of medical services such as time and geography. Medical staff
can also use the App to view all medical data and personalized information of patients,
such as blood test results and images reports, immediately communicate and discuss with
each other through the App at any time, and hence increase the medical care efficiency. If
there is any abnormality, the App will immediately send a warning message notification
to prevent critical conditions or to decrease the possibilities of amputation induced by
wound infection.
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