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Abstract: As the core component of smart grids, advanced metering infrastructure (AMI) provides the
communication and control functions to implement critical services, which makes its security crucial
to power companies and customers. An intrusion detection system (IDS) can be applied to monitor
abnormal information and trigger an alarm to protect AMI security. However, existing intrusion
detection models exhibit a low performance and are commonly trained on cloud servers, which pose
a major threat to user privacy and increase the detection delay. To solve these problems, we present
a transformer-based intrusion detection model (Transformer-IDM) to improve the performance of
intrusion detection. In addition, we integrate 5G technology into the AMI system and propose
a hierarchical federated learning intrusion detection system (HFed-IDS) to collaboratively train
Transformer-IDM to protect user privacy in the core networks. Finally, extensive experimental results
using a real-world intrusion detection dataset demonstrate that the proposed approach is superior to
other existing approaches in terms of detection accuracy and communication cost for an IDS.

Keywords: smart grid; federated learning; intrusion detection system

1. Introduction

With the development of new technologies, the demand for electric energy in industry,
manufacturing and people’s lives has increased sharply. Unfortunately, a traditional
power network is unable to cope with the increasing service requirements and power
energy consumption due to its simple structure. Therefore, the smart grid composed
of a power network and communication network was proposed to solve this problem,
in which energy and information can flow between customers and power companies to
provide various services. As the core component of the smart grid, advanced metering
infrastructure (AMI) [1–3] has been mainly studied in recent years. AMI consists of three
key components: smart meters, bidirectional communication links, and a cloud server (data
center) for data aggregation [4]. It uses a bidirectional communication network to collect
the energy consumption data or other information for analysis and processing [5] and then
implements control measures, such as the remote control of household appliances [6], etc.
The services will gradually increase with the requirements of users in the future. However,
it will pose a huge challenge to the communication network as the amount of transmitted
data increases. Fortunately, with the continuous development of fifth-generation wireless
communication technology (5G), it has the ability to provide a communication network
with large bandwidth, high transmission speed and low communication delay, making
the combination of smart grid and 5G become a necessary development direction in the
future [7]. Integrating wireless technologies into the smart grid will make the deployment
of smart meters more flexible and services or applications of AMI more diverse. However,
the uncertain environment, wide distribution and bidirectional communication networks
will make the AMI system susceptible to attacks [8]. Attacks such as man-in-the-middle
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(MITM) [9], jamming [10], false data injection (FDI) [11], eavesdropping [12], denial of
service (DoS) [13], and message replay [14] can damage the confidentiality and availability
of the AMI system. For example, hacking into smart meters compromises users’ privacy,
and intrusion into cloud servers causes system destruction and energy price manipulation.
All attacks will seriously affect people’s lives.

To protect the communication security of AMI system, intrusion detection system
(IDS) has been widely studied. It can dynamically detect suspicious or abnormal behavior
and trigger the alarm in time [15,16]. Therefore, it is essential to design an efficient and
fast detection IDS to meet the requirements of AMI. With the development of artificial
intelligence, the IDS based on artificial intelligence has been widely adopted to improve the
ability to detect the IDS. In such cases, the cloud server collects a large amount of user data
to train an intrusion detection machine learning (ML) model, which is then used to monitor
the AMI system at the cloud server side. However, users’ privacy may be violated, and
their lives may be affected in this process since the personal data can directly reveal their
living habits. Moreover, the detection delay will increase if the attack is near the users’ side.

To address the data privacy problem, an innovative distributed machine learning
technique called “federated learning (FL)” has been proposed [17], which is illustrated
in Figure 1. In federated learning, multiple users train a shared model collaboratively by
exchanging model parameters with cloud servers without directly sending raw data. Such
a distributed and secure architecture has been widely adopted in many areas and greatly
motivates us to design a distributed and privacy-protected intrusion detection system for
AMI. However, since all participants can directly upload their local model to the cloud
server, which may cause a great burden to the server and consume a lot of communication
resources as the number of participants grows.

Cloud Server

Device DeviceDevice

Global model

Local model Local model Local model

Figure 1. The framework of federated learning.

This paper aims to design a large-scale, reliable, efficient, distributed and privacy-
protected AMI system. We integrate the 5G wireless communication technology into the
AMI system and propose a 5G-based AMI system. Then, we propose a transformer-based
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intrusion detection model (Transformer-IDM) to improve the detection performance and
adopt a hierarchical federated learning in the 5G-based AMI system to collaboratively train
a shared Transformer-IDM without compromising user privacy and reduce communication
costs. The main contributions of this paper are presented as follows:

• We proposed a 5G-based AMI system, where the smart meters deployed in different
locations can access 5G base stations to transmit data to the cloud server. We also
propose a hierarchical federated learning-based approach in the AMI system to en-
able smart meters to train a shared intrusion detection model collaboratively while
maintaining privacy and reducing communication costs.

• A transformer-based intrusion detection model is proposed to improve the detection
performance. The proposed model adopts feature extraction layers to extract nu-
merical features and leverage transformer layers to capture the relationship between
categorical features, aiming to identify intrusion information effectively.

• We conduct extensive simulations to evaluate the performance of the proposed
transformer-based intrusion detection model and its performance in federated learn-
ing. The results demonstrate that the proposed model has a better performance in
different situations.

The rest of this paper is organized as follows. Related works are described in Section 2.
The system model and the problem formulation is presented in Section 3. The proposed
transformer-based intrusion detection model is presented in Section 4, and the results on
detection performance are shown in Section 5. Finally, the conclusion is drawn in Section 6.

2. Related Work

As mentioned before, the security of the AMI system is essential to the smart grid to
provide reliable power supply and services. Consequently, integrating intrusion detection
methods into an AMI system is an inevitable requirement for a secure smart grid.

Recently, with the development of artificial intelligence, various machine learning-
based methods have been applied in intrusion detection for AMI systems. Alseiari et al. [18]
proposed a real-time IDS, which adopts the k-means clustering method to detect anomalous
data flow. In [19], an ensemble learning method based on the XGBoost algorithm is
proposed to improve the attack detection and identification accuracy. A multi-support
vector machine (SVM) based IDS is developed by Vijayanand et al. [20] to detect the
attacks occurring in an AMI system, where each SVM classifier is utilized to detect one
specific attack. Camana et al. [21] proposed an extremely randomized tree-algorithm-based
detection method to overcome the problem that false injection data vulnerably compromise
the detector during state estimation. However, traditional machine learning methods easily
cause overfitting and generally exhibit low accuracy. Thus, deep learning is becoming more
efficient in AMI intrusion detection due to its strong generalization ability. Zheng et al. [22]
proposed a wide and deep convolutional neural network (CNN) model to detect electricity
theft in smart grids. The proposed CNN model comprises the wide component and the
deep CNN component, which helps to improve memorization and generalization. In [23],
an intrusion detection model based on CNN is proposed, in which the detection accuracy
of the model is improved by converting original input data into two-dimensional data.
Thirimanne et al. [24] proposed a real-time IDS based on a deep neural network (DNN)
model, which is hosted on a web server to provide real-time intrusion detection.

The one-hot encoding approach is generally applied to convert categorical features
of a data sample into numerical features since the deep-learning-based methods require
numerical features as an input. However, this causes the input features vector to become
a high dimensional and sparse vector, which will impact the performance of intrusion
detection. Meanwhile, the above methods are based on a centralized framework, where
the model training and intrusion detection are performed at a cloud server. Under the
centralized framework, users’ (smart meters) locally collected data can be easily accessed
by the cloud server, which increases the privacy risk of users. In addition, the centralized
framework also increases the detection delay if the attack is near the user.
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Different from the above works, we propose a federated learning-based distributed
IDS in a 5G AMI system. Each user collaboratively trains an intrusion detection model
by only exchanging model parameters with the cloud server to protect the users’ privacy.
Then, users utilize the obtained intrusion detection model to monitor the attacks locally
and trigger the alarm in time. In addition, we also propose a transformer-based intrusion
detection model (Transformer-IDM), in which the numerical and categorical features are
processed respectively to improve detection performance.

3. System Model and Problem Formulation

The essential infrastructure of the smart grid is advanced metering infrastructure
(AMI) [25], which comprises three major components: smart meters, two-way commu-
nication links, and a data center deployed at the power company. The data collected by
smart meters will be transmitted to the data center, i.e., the cloud server, for analysis and
processing. Then, the smart meters carry out the corresponding response based on the
decision of the cloud server. With the increasing requirement for services, low transmission
latency and highly reliable communication links are critical to the quality of service of the
AMI system. In order to address the challenge, we first introduce the proposed 5G-based
AMI system. Then, within such an AMI system, we propose a federated learning (FL)-based
intrusion detection system (IDS).

3.1. The 5G-Based Advanced Metering Infrastructure System

The 5G wireless communication promises low end-to-end latency and high transmis-
sion bandwidth, and the network slicing technology enhances network resource efficiency
and provides differentiated quality of service (QoS) guarantees under a shared physical
infrastructure. Thus, 5G technology can satisfy the requirements of an AMI system in a
smart grid for reliable, fast, and highly connected communications, making it suitable
for the communications infrastructure of the AMI system. This paper considers an AMI
system over a 5G network, consisting of household appliances, smart meters, 5G base
stations, edge servers and a cloud server. A smart meter acts as an intelligent sensing
device to communicate with household appliances through Home Area Networks (HANs)
to collect data, in which HAN is a network responsible for the communication between
household appliances and smart meters using Wi-Fi or other short-distance communication
technologies. The data received by smart meters are uploaded to the base station and
transmitted to the cloud server via a 5G Core network for processing. More importantly,
we consider an edge server deployed at the base station to preprocess the data received
from smart meters to reduce the communication costs in 5G Core. The proposed 5G-based
AMI system is illustrated in Figure 2.

3.2. Federated Learning-Based Intrusion Detection System and Problem Formulation

Within the proposed 5G-based AMI system, we consider a federated learning-based
intrusion detection system (FL-IDS), where the smart meters deployed in different locations
can collaboratively learn an efficient global intrusion detection ML model via exchanging
model parameters with a cloud server. As a result, the data collected by smarter meters
do not require to be transmitted to the cloud server for centralized processing, which can
protect the privacy of power consumers and reduce communication costs. Then, the trained
ML model can be used to monitor the attacks at smart meters directly and trigger the alarm
in time to protect the AMI system.
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Figure 2. The 5G-based advanced metering infrastructure system.

We assume that the system consists of U 5G base stations {B1, . . . , BU} and N smart
meters {S1, . . . , SN} to form U clusters in an area (in general, N >> U), where a cluster
consists of one base station and several accessed smart meters. The clusters set is repre-
sented by {C1, . . . , CU} , where Cj(j ∈ {1, . . . , U}) is the participant set of Bj. In FL, smart
meters Si (i ∈ (1, . . . , N)) can use their local data Di to train a shared intrusion detection
ML models w collaboratively. The goal of FL is to obtain an optimal global model w∗,
which satisfies:

w∗ = arg min
w∈Rd

N

∑
i=1

|Di|
|D| Fi(w) (1)

where |Di| is the local dataset size of smart meter Si, |D| = ∑N
i=1 |Di| is the total size of

all local datasets, Fi(w) = 1
|Di | ∑(xn ,yn)∈Di

l(w; (xn, yn)) is the total loss function of smart
meter Si and l(w; (xn, yn)) is the loss based on one data sample (xn, yn). To solve the above
optimization problem, the federated averaging (FedAvg) algorithm [26] can be adopted.

FedAvg algorithm mainly consists of local training and global aggregation. For the
training process, participants commonly use their local dataset to perform gradient updates
on their local models. Such a training process at smart meter Si can be expressed as:

w(t+1/2)
i = w(t)

i − η∇Fi

(
w(t)

i

)
, (2)

where w(t)
i = w(t) is the received global model at iteration t, which can also be regarded

as the local model of smart meter Si, ∇Fi

(
w(t)

i

)
= 1
|Di | ∑(xn ,yn)∈Di

∇l
(

w(t)
i ; (xn, yn)

)
is the

gradient of w(t)
i and η is the learning rate. After the local gradient update, the trained

local model w(t+1/2)
i is collected by the cloud server to establish a global model by model

aggregation. The aggregation strategy can be shown as follows:

w(t+1) =
N

∑
i=1

|Di|
|D| w

(t+1/2)
i , (3)
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where the aggregation weight is related to the size of the local dataset, and the established
global model w(t+1) is distributed to all participants for the next iteration.

After multiple iterations, the optimal global model will finally be obtained. However,
the traditional ML models, such as DNN models, CNN models, etc., are not efficient at
serving as an intrusion detection ML model. Since the intrusion detection data usually
have many categorical features, one-hot encoding approach should be employed to convert
these categorical features into numerical features that can be fed into the traditional ML
model. Nevertheless, this will increase the number of input features and lose the correlation
information between categorical features. In addition, the communication costs between
the base station and cloud server will increase with the number of participating smart
meters, which brings a huge burden on the 5G Core. Therefore, we aim to design a novel
neural network model to improve intrusion detection performance and adopt a hierarchical
FL, which can reduce the communication costs in the core network.

4. Proposed Transformer-Based Intrusion Detection Model

Considering the dataset includes categorical features and numerical features, we
design a neural network that utilizes the transformer [27] to perform contextual embeddings
for categorical features and leverage the feature extraction network to extract the feature of
numerical features. More details of the proposed transformer-based intrusion detection
model (Transformer-IDM) are presented as follows.

4.1. The Transformer-IDM Model

The proposed Transformer-IDM consists of a feature extraction layer, a column embed-
ding layer, a stack of N Transformer layers and a multi-layer perceptron. The architecture
of Transformer-IDM is illustrated in Figure 3. In Transformer-IDM, the feature extraction
layer consists of a convolutional layer and a pooling layer, and each transformer layer is
composed of a multi-head self-attention layer and a feed-forward layer.

We assume that (x, y) is one data sample in the dataset, where x = {xnum, xcate} is
input features, which consist of numerical features xnum ∈ R1×L and categorical features
xcate, and y is the label of a data sample. Firstly, we use multiple feature extraction layers
to process the numerical features xnum, where each feature extraction layer contains two
operations: 1D convolution and max-pooling. After a stack of feature extraction, the
original numerical features xnum can be transformed to powerful compressed features
cnum ∈ R1×l , where l < L. This process can be expressed as cnum = Fe(xnum), where Fe(·)
is the feature extraction operation.

Next, for categorical features, let xcate = {xcate
1 , · · · , xcate

r }, where xcate
i (i ∈ {1, · · · , r})

is a categorical feature. We use the column embedding to embed each xcate
i into m dimension;

specifically, this process can be expressed as E(xcate) = {e1(xcate
1 ), · · · , er(xcate

r )}, where
ei(xcate

i ) ∈ R1×m (i ∈ {1, · · · , r}) is the embedding of the xcate
i and E(xcate) is the set

of embeddings for all the categorical features. Then, the embedded categorical features
E(xcate) are transformed to the input of transformer layer I = (e1(xcate

1 ), · · · , er(xcate
r ))T ∈

Rr×m and fed into a stack of transformer layers, where the output of the first transformer
layer is inputted to the next transformer layer, and so forth. A transformer layer includes
a multi-head self-attention layer followed by a position-wise feed-forward layer, with
element-wise addition and layer-normalization being performed after each layer. There are
three learnable parameters WQ ∈ Rm×dk , WK ∈ Rm×dk and WV ∈ Rm×dv in the multi-head
self-attention layer. The input I is projected onto three matrices K ∈ Rr×dk , Q ∈ Rr×dk and
V ∈ Rr×dv as:

Q = IWQ, K = IWK, V = IWV , (4)

where m is the number of embedded features input to the transformer, and dk and dv denote
the hidden dimension of multi-head attention, respectively. Next, we compute the matrix
of the output of multi-head self-attention as:

Attention(K, Q, V) = A ·V, (5)



Electronics 2022, 11, 2627 7 of 16

where A = softmax
((

QKT)/
√

dk
)
∈ Rr×r is the attention matrix that captures the similar-

ity between input embeddings. Then the output of the attention head is projected back to
the input dimension r through a feed-forward network. Consequently, through successive
transformer layers, the embedded E(xcate) will be transformed into contextual embeddings,
namely, the relationship between the categorical features can be greatly captured in the
output of the last transformer layer.

Finally, the outputs from the feature extraction layer and transformer layer are concate-
nated to form a vector with (l + d×m) dimensions. This vector is input to a multi-layer
perceptron so as to obtain the detection results.

 Column Embedding

Categorical featuresNumerical features

Multi-head Attention

Add & Norm

Feed Forward

Add & Norm

Conv Layer

Pooling Layer

Transformer 

Layer   N

Feature 

Extraction 

Layer   N

Concatenation

Multi-layer Perceptron

Output

Layer Normalization

Figure 3. The architecture of Transformer-IDM.

4.2. Hierarchical Federated Learning-Based Intrusion Detection System

In the proposed hierarchical federated learning-based intrusion detection system
(HFed-IDS), participating smart meters in different clusters can use their local data to
collaboratively train a shared Transformer-IDM with the help of edge servers to reduce the
traffic in the core network. The process is presented in Algorithm 1. At the beginning of
HFed-IDS, participating smart meters receive a global model from the cloud server and
perform H local gradient update epochs. Then, the trained model of the participant is
uploaded to the base station. Different from the traditional FL, after the base station receives
the model of all participants in the cluster, it directly aggregates the received models at the
edge server to reduce the number of models that need to be transmitted to the cloud server.
The aggregation process at the edge server of base station Bj can be formulated as:

W (t+1/2)
Bj

= ∑
i∈Cj

|Di|
∑i∈Cj

|Di|
w(t+1/2)

i , (6)

where W (t+1/2)
Bj

is the established cluster model at the edge server of base station Bj,

and Cj is the participant set of Bj. Then, each cluster model W (t+1/2)
Bj

(j ∈ {1, . . . , U}) is
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transmitted to the cloud server for global aggregation, which can significantly reduce the
communication costs compared to transmitting all participants’ models to the cloud server
for aggregation. The global aggregation can be expressed as:

w(t+1) =
U

∑
j=1

∑i∈Cj
|Di|

|D| W (t+1/2)
Bj

, (7)

where the aggregation weight of cluster model W (t+1/2)
Bj

is related to the total dataset

size in cluster Cj and w(t+1) is the global model. Note that the obtained global model
in (7) and (3) is the same since the aggregation weight in (6) and (7) is related to the size
of the dataset. Thus, the proposed HFed-IDS not only has the same performance as the
FedAvg algorithm but also can reduce communication costs. Finally, the obtained novel
global model is sent back to all participants for the next iteration. Note that the raw data
are not transmitted to the cloud server in HFed-IDS, so the user’s privacy can be protected.
In addition, the participating smart meters can finally obtain an efficient intrusion detection
model, which makes it able to perform attack detection locally. Moreover, although the
proposed HFed-IDS requires some edge servers to implement intermediate aggregation,
it will be easily implemented as the edge server will be commonly deployed at the base
station for edge computing applications in 5G networks [28].

Algorithm 1: HFed-IDS
Input: T : the total number of global communication iterations, η : the learning

rate, H : the number of local gradient update epochs.
Output: w(T)

1 Server: initialize the global model w(0), w(0) = w(0)
1 = · · · = w(0)

N and send it to
all participants; for t = 0, · · · , T do

2 for LocE = 0, · · · , H do
3 Each participant i in parallel performs

w(t)
i,LocE = w(t)

i,LocE−1 − η∇Fi

(
w(t)

i,LocE−1

)
;

4 end

5 w(t+1/2)
i = w(t)

i,H ;

6 All participants send w(t+1/2)
i to the connected base station;

7 for j = 1, · · · , U do
8 W (t+1/2)

Bj
= ∑i∈Cj

|Di |
∑i∈Cj

|Di |
w(t+1/2)

i

9 end

10 Send all cluster model W (t+1/2)
Bj

to Server;

11 Server: establish global model: w(t+1) = ∑N
i=1

|Di |
|D|w

(t+1/2)
i ;

12 Server: send global model w(t+1) to all participants,

w(t+1) = w(t+1)
1 = · · · = w(t+1)

N ;
13 end

5. Performance Evaluation
5.1. Dataset

In this section, we evaluate the performance of the proposed algorithm with NSL-KDD
datasets [29]. The NSL-KDD dataset is an improved version of the KDD Cup 99 dataset [30]
in which redundant data are removed to make the distribution of the dataset more balanced
and reasonable. Moreover, this dataset contains a large number of attacks that cover all
possible AMI attack types. As a result, it is one of the most widely used datasets for
intrusion detection in smart grids.
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In the NSL-KDD dataset, one piece of the data sample has 41 features and 1 label,
in which features can be divided into two types, i.e., categorical features and numerical
features. As a result, each data sample has three categorical features and 38 numerical
features, as shown in Table 1. In addition, there are several subtypes of attacks, i.e., labels
of data samples, in the NSL-KDD dataset, which can be classified into five main categories:
normal, denial of service (DoS), user to root (U2R), remote to local (R2L), and probing
scanning (Probe). Table 2 shows the types of attacks and their main categories. The details
of these attack categories are described in Table 3. In order to make a fair comparison, 50%
of the training data was randomly selected from the NSL-KDD dataset as the model training
set, and the remaining data were used as the testing set. Table 4 shows the distribution of
the dataset. We can find that the quantity of R2L and U2R is relatively small in the training
and testing set, which poses significant challenges to the learning and detection abilities of
the model.

Table 1. The type of features.

Type of Features Features

Categorical features ‘protocol_type’, ‘service’, ‘flag’

Numerical features

‘duration’, ‘src_bytes’, ‘dst_bytes’,
‘land’, ‘logged_in’, ‘is_host_login’, ‘is_guest_login’,

’wrong_fragment’, ‘urgent’, ‘hot’,
‘num_failed_logins’, ‘num_compromised’,

‘root_shell’, ‘su_attempted’, ‘num_root’,
‘num_file_creations’, ‘num_shells’,

‘num_access_files’, ‘num_outbound_cmds’,
‘count’, ‘srv_count’, ‘serror_rate’,

‘srv_serror_rate’, ‘rerror_rate’,
‘srv_rerror_rate’, ‘same_srv_rate’,

‘diff_srv_rate’, ‘srv_diff_host_rate’,
‘dst_host_count’, ‘dst_host_srv_count’,

‘dst_host_same_srv_rate’,
‘dst_host_diff_srv_rate’,

‘dst_host_same_src_port_rate’,
‘dst_host_srv_diff_host_rate’,

‘dst_host_serror_rate’, ‘dst_host_srv_serror_rate’,
‘dst_host_rerror_rate’, ‘dst_host_srv_rerror_rate’

Table 2. The main categories and their contained attacks.

Dos Probe R2L U2R Normal

back
land

Neptune
pod

smurf
teardrop

ipsweep
nmap

portsweep
satan

spy
warezclient

ftpwrite
guesspasswd

imap
multihop

phf
warezmaster

bufferoverflow
loadmodule

perl
rootkit

normal
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Table 3. The description of attacks.

Attack Categories Description

Denial of service (DoS)

This attack occupies too many computing
or memory resources so that the

machine cannot handle legitimate
requests and access.

Probing scanning (Probe)

This attack gathers information about
potential vulnerabilities of the

target system that can be used to
launch attacks lately.

Remote to local (R2L)
Attacker does not have access to the

victim’s machine, and hence tries to gain
local access as a user of that machine.

User to root (U2R)

Using this attack, attackers access the
system as a normal user and

exploit some vulnerability to gain
root access to the system.

Table 4. The distribution of the dataset.

Main Categories NSL KDD Training Set Testing Set

Normal 67,343 33,732 33,611
Dos 45,927 22,821 23,106

Probe 11,656 5933 5723
R2L 995 473 522
U2R 52 27 25

Total 125,973 62,986 62,987

5.2. Dataset Preprocessing

Each data sample contains both categorical and numerical features. However, since
the neural network can not process categorical features, the dataset must be preprocessed.
For conventional neural networks, such as CNN and DNN, the categorical features are
usually converted to a numerical vector by one-hot processing. For example, the feature
‘protocol_type’ has three attributes, namely the transmission control protocol (TCP), user
datagram protocol (UDP), and internet control message protocol (ICMP). After one-hot
processing, they can be respectively represented by three vectors (0, 0, 1), (0, 1, 0), and
(1, 0, 0), and the dimensions of vectors are 1 × 3. Unfortunately, ‘service’ contains 70 at-
tributes. Therefore, the dimensions of vectors obtained after one-hot processing are too
large to represent attributes effectively. However, in the proposed approach, one-hot pro-
cessing is not adopted. Instead, the categorical features are all embedded into m dimensions
embeddings, which can reduce the input features. In addition, since the numerical features
with large values may mislead the learning model if it is used directly, the numerical
features must be normalized to eliminate the influence of substantial feature differences.
The following method can be used to normalize the numerical features:

xi =
xi − xmin

xmax − xmin
, (8)

where xi is the original value, and xmin and xmax represent the minimum and maximum
value of the feature, respectively.

5.3. Evaluation Metrics

In IDS, the evaluation metrics include accuracy (ACC), precision (P), detection rate
(DR) and F-measure (F). ACC is the most important metric for evaluating the performance
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of the IDS network and is described as the percentage of the number of correctly classified
samples over total samples, which is shown in the following equation:

ACC =
TP + TN

TP + FP + TN + FN
, (9)

where true positive (TP) refers to the number of correctly identified abnormal samples,
true negative (TN) represents the number of correctly identified normal samples, false
positive (FP) represents the number of incorrectly identified abnormal samples, and false
negative (FN) represents the number of incorrectly identified normal samples. In addition,
P is defined as the percentage of the number of correctly identified abnormal samples over
the total number of abnormal samples predicted by the model and can be calculated as:

P =
TP

TP + FP
. (10)

DR is defined as the ratio of the number of correctly identified abnormal samples over the
total true number of abnormal samples and can be calculated as:

DR =
TP

TP + FN
. (11)

F is defined as the average harmonic mean of P and DR, and its specific calculation can be
calculated as:

F =
2 ∗ P ∗ DR

P + DR
. (12)

5.4. Setup

In this simulation, the proposed Transformer-IDM contains two feature exaction layers
and two transformer layers. The number of attention heads in the multi-head attention layer
is eight, and the multi-layer perceptron before the output and the feed-forward network
are fully connected layers. The embedding dimensions of the categorical feature are eight,
the optimizer is Adam, and the learning rate was set to 0.0005. According to the above
settings, we compare the performance of different models in which a multi-classification
problem is considered for models. Python 3.7 and TensorFlow 2.8.0 were used to build
different models on a computer equipped with an Intel Core i7-8700 CPU, 8 GB memory
and a single NVIDIA GeForce RTX2080Ti GPU.

5.5. Numerical Results

First, we compare the performance of the proposed Transformer-IDM with a support
vector machine (SVM) [31], linear regression (LR), K-nearest neighbors (KNN) [32], multi-
nomial Naive Bayes (MultinomialNB) [33], DNN-3 [34], DNN-16 [24] and GRU+MLP [35]
without federated learning. Namely, we train the model using the total training dataset
and evaluate its performance using the total testing dataset without model exchanging.

In order to compare the performance of these models, we use the metrics P, DR,
F and ACC to evaluate the performance of different models. The metric P reflects the
confidence of attack detection, DR represents the ability of the model to identify attacks
and F combines P with DR, which is also a useful metric to reflect the ability of models.
Firstly, we calculate the metrics P, DR, and F of each attack category for the proposed
Transform-IDM and the other models, and the results are shown in Table 5. Note that the
results for neural-network-based models are obtained after 100 training epochs, and the
same Adam optimizer is adopted to train these neural-network-based models for a fair
comparison. Then, in Table 6, we compare all evaluation metrics of different models to
illustrate the overall performance of different models.

From Table 5, we find that the Transformer-IDM has a higher P, DR and F for each
attack category, which indicates that the proposed Transformer-IDM has better performance
as an intrusion detection model. Moreover, we also notice that the evaluation metrics of
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R2L and U2R for all models are low. The reason is that the quantity of R2L and U2R in
the training set is relatively small, which will impact models to learn the features of R2L
and U2R, resulting in a decreased performance. In Table 6, we can also observe that the
proposed Transformer-IDM has a higher P, DR, F and ACC, which also demonstrates the
superiority of Transformer-IDM as an intrusion detection model.

Table 5. The values of evaluation metrics of each attack category for different models.

Models

Evaluation Metrics (%)

P DR F

DoS Probing R2L U2R DoS Probing R2L U2R DoS Probing R2L U2R

SVM 99.04 96.63 80.33 64.28 98.21 95.05 55.56 35.00 98.63 95.83 65.69 46.15
LR 99.08 97.28 79.35 72.73 97.89 95.70 75.09 32.00 98.48 96.48 77.16 44.44

KNN 98.77 98.68 87.16 61.54 99.45 96.69 67.62 32.00 99.11 97.67 76.16 42.11
MultinomialNB 97.72 56.31 26.63 16.36 84.24 91.32 31.23 36.00 90.48 96.67 28.75 22.50

DNN-3 99.73 98.06 79.33 15.79 98.38 97.45 72.80 12.00 99.03 97.76 75.92 13.63
GRU+MLP 99.30 97.53 78.45 11.76 98.05 96.54 54.41 8.00 98.67 97.03 64.25 9.52

DNN-16 99.55 98.61 81.79 18.75 99.46 98.74 55.94 12.00 99.51 98.67 66.44 14.63
Transformer-IDM 99.85 98.76 87.21 78.57 99.91 98.85 87.55 44.00 99.88 98.81 87.38 56.41

Table 6. The values of evaluation metrics.

Models P (%) DR (%) F (%) ACC (%)

SVM 97.76 97.8 97.76 97.81
LR 97.94 97.95 97.94 97.95

KNN 98.76 98.79 98.76 98.79
MultinomialNB 91.09 88.65 89.31 88.65

DNN-3 98.48 98.49 98.48 98.5
GRU+MLP 97.98 98.04 97.99 98.05

DNN-16 98.86 98.91 98.86 98.92
Transformer-IDM 99.49 99.49 99.49 99.48

Next, we evaluate the performance of neural-network-based models, i.e., DNN-3,
GRU+MLP, DNN-16 and Transformer-IDM, with federated learning. Specifically, partici-
pants in federated learning use their local dataset to train a shared global model through
exchanging model parameters with a cloud server. In this simulation, we assume that
there are 10 smart meters participating in federated learning, in which smart meters are
divided into three clusters shown in Figure 2. The training set is uniformly and randomly
divided into 10 sub-datasets with the same size, and these sub-datasets are assigned to
each participant as a local dataset to train the model. In order to evaluate the performance
of the obtained global model, we still adopt the total testing set to test the performance. In
addition, in our federated learning setting, each participant will send the trained model to
the cloud server for aggregation after performing 10 local gradient update epochs.

In Figure 4, we plot the test accuracy of different global models in 100 global iterations,
namely, 100 communication interactions between participants and the cloud server. It
illustrates that when the proposed Transformer-IDM is used as the shared global model in
federated learning, the test accuracy of the global model rises rapidly and can achieve the
highest test accuracy after 100 global iterations. Table 7 shows the values of P, DR, and
F of each attack category for different global models obtained after 100 global iterations.
We can find that the Transformer-IDM obtained in federated learning (Fed-Transformer-
IDM) also has a higher P, DR and F for each attack category. In Table 8, we compare
all evaluation metrics of different global models obtained after 100 global iterations, in
which Fed-Transformer-IDM still has a higher P, DR, F and ACC. According to the above
results, it can be concluded that the proposed Transformer-IDM has the ability to act as an
intrusion detection model in federated learning. In addition, in Table 8, we also present
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the total parameters of different global models. Among them, DNN-3 and DNN-16 have 3
and 16 hidden layers, respectively, which causes DNN-16 to have the largest parameters.
In GRU+MLP, since the GRU layer increases the complexity of the model, it has more
model parameters than DNN-3. The proposed Transformer-IDM has the fewest model
parameters since it has the tiny transformer layer and feature exacted layer, which can
reduce communication costs in federated learning.
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Figure 4. The test accuracy comparison at each global iteration.

Table 7. The values of evaluation metrics of each attack category for different global models.

Models

Evaluation Metrics (%)

P DR F

DoS Probing R2L U2R DoS Probing R2L U2R DoS Probing R2L U2R

Fed-DNN-3 99.74 97.99 81.34 21.05 98.33 97.39 74.33 16.00 99.03 97.69 77.68 18.18
Fed-GRU+MLP 99.39 97.51 79.82 20.00 97.94 96.37 52.29 16.00 98.66 96.93 63.19 17.78

Fed-DNN-16 99.75 98.57 80.25 25.00 98.70 98.62 72.41 16.00 99.22 98.59 76.13 19.51
Fed-Transformer-IDM 99.87 98.86 87.36 80.00 99.91 98.64 87.36 48.00 99.89 98.75 87.36 60.00

Table 8. The values of evaluation metrics for different global models.

Models P (%) DR (%) F (%) ACC (%) Total_Params

Fed-DNN-3 98.50 98.51 98.5 98.51 26,935
Fed-GRU+MLP 97.98 98.03 97.97 98.03 105,557

Fed-DNN-16 98.76 98.78 98.76 98.78 636,037
Fed-Transformer-IDM 99.49 99.49 99.49 99.49 20,503

In order to compare the size of transmitted data of different models in federated
learning, we plot the total size of transmission data in the uplink (from smart meters to a
base station) versus test accuracy in Figure 5, in which a quantization operation is adopted
where each transmitted model parameter is encoded and quantized into 32 bits. The results
demonstrated that the proposed Transformer-IDM not only has a higher test accuracy but
also requires fewer transmission costs than the other models. We also compare the size of
transmitted data from the base station to the cloud server in HFed-IDS and the traditional
FL. Note that, in traditional FL, the local model of each smart meter is directly transmitted
to the cloud server for global aggregation without the aid of the edge server. In addition,
we set the same number of participating smart meters and data distributions as in the
above simulation for HFed-IDS and traditional FL. Figure 6 plots the total size of uploaded
data of different FL algorithms in the core network versus the iteration rounds, in which
the proposed Transformer-IDM is used as the global model in different FL algorithms. We
can observe that the proposed HFed-IDS can reduce the size of transmitted data in the core
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network since the local model of the smart meter is firstly aggregated at the edge server to
reduce the total number of models transmitted to the cloud server.
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Figure 5. The total size of transmission data in the uplink versus the test accuracy of different
global models.
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Figure 6. The size of transmitted data in the core network at each iteration.

6. Conclusions and Future Works

In this paper, we applied 5G communication technology to smart grids to provide
a fast and reliable AMI system. In order to protect the security of the AMI system, we
proposed a transformer-based intrusion detection model (Transformer-IDM), which lever-
ages the transformer layer and feature exaction layer to process categorical features and
numerical features, respectively, to improve the detection performance. Then, within the
5G-based AMI system, we proposed a hierarchical federated learning-based intrusion
detection system (HFed-IDS). The participants collaboratively train a Transformer-IDM by
exchanging the model parameters with the cloud server without compromising privacy.
More importantly, in HFed-IDS, the upload model from smart meters will be aggregated
at the edge server to reduce the size of transmitted data in the core network. After the
federated learning, smart meters can use the model obtained by participating in federal
learning to carry out intrusion detection at the user side to achieve a low-delayed detection.
Finally, we use the real-world intrusion detection dataset NSL-KDD to evaluate the pro-
posed model. The experimental results demonstrated that the proposed Transformer-IDM
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performs better and can be used as an intrusion detection model. It is worth noting that the
resource heterogeneity in federated learning, such as the varying storage, computational,
and communication capabilities of each device, may affect the performance of the global
model. Thus, addressing these problems will be a key focus of our future works. Further-
more, datasets covering more attack types can be used to evaluate the performance of the
proposed method in our future work.
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