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Abstract: Piezoelectric actuators (PEAs) have been widely used in aerospace, electronic communi-
cation and other high-accuracy manufacturing fields because of their high precision, low power
consumption, fast response, and high resolution. However, piezoelectric actuators have very compli-
cated hysteresis nonlinearity, which greatly affects their positioning and control accuracy. Particularly
in the field of active vibration control, the control accuracy of piezoelectric actuators is easily affected
by noise points. To address the problem, this paper proposes a hyperplane probability c-regression
model (HPCRM) algorithm to establish its T-S fuzzy model of hysteresis nonlinearity. Firstly, an
improved fuzzy c regression clustering algorithm is proposed to identify the antecedent parameters
of T-S fuzzy model. This algorithm not only divides the fuzzy space better but also effectively avoids
the influence of noise points generated by the external environment during data acquisition. Secondly,
a new type of hyperplane membership function is introduced to solve the problem that the traditional
Gaussian membership function does not match the hyperplane clustering algorithm. Finally, the
accuracy of the modeling method is confirmed by several comparative experiments. Experimental
results show that the proposed method is more precise than the traditional fuzzy c-regression models
(FCRM) and probability c-regression models (PCRM) under the sine signals of 5 Hz–100 Hz.

Keywords: piezoelectric actuator; T-S fuzzy; hysteresis; hyperplane probability c-regression models;
hyper-plane-shaped membership function

1. Introduction

As a new type of intelligent material [1], piezoelectric actuators (PEAs) have been
widely used in high-precision manufacturing fields [2] such as aerospace, electronic com-
munication, and intelligent medical engineering. The piezoelectric actuator is made out of
the converse piezoelectric effect [3] of piezoelectric materials, which possesses advantages
of high precision, low power consumption, fast responses, and high-resolution results. In
recent years, with the continuous emergence of high-tech, higher positioning accuracies
are increasingly required with respect to piezoelectric materials. On the other hand, the
inherent hysteresis nonlinearity of PEA severely affects positioning precision and limits
the development of piezoelectric materials in some fields. In particular, the application of
PEA in the field of active vibration control is mainly aimed at low-frequency signals under
100 Hz. And when PEA is used for active vibration control, the control accuracy is easily
affected by noise points brought by the external environment, which leads to vibration
controls possessing higher precision requirements for hysteresis nonlinear modeling, but
traditional modeling methods cannot meet the requirements. Therefore, overcoming the
influence of noise points in active vibration control and establishing an accurate model of
PEA are significant areas of research.

The hysteresis nonlinearity of PEA comprise very complex nonlinearities, which
usually manifest as rate dependence and multi-valued mapping [4], as shown in Figure 1.
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From the figure, we can observe that when sine signals with the same voltage and different
frequencies are applied to the PEA, its hysteresis model will change with the frequency.
Currently, some scholars have conducted substantial research on the hysteresis nonlinear
modeling of PEA, and mainstream modeling approaches can be classified into three types.
The first one is a physical model based on the physical characteristics of piezoelectric
materials, such as the Bouc–Wen model [5] and Duhem model [6]. This model is a “white-
box” model based on actual physical phenomena and physical laws; thus, the model
relies too much on specific physical laws and is not practical. The second type of model
comprises phenomenological models based on input and output data, for instance, the
Preisach model [7] and the Prandtl–Ishlinskii model [8]. This model is a “black box” model
of a system based on the actual input and output data; thus, this type of system is not
limited by physical characteristics. The last type of model comprises intelligent models
based on various intelligent algorithms, such as the T-S fuzzy model [9]. For this type of
model, intelligent algorithms are used to train the model in order to meet constraints and
obtain an accurate model of the system.
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The T-S fuzzy model is diffusely used in system modeling, predictive control [10,11],
and other fields because of its simple structure and its capacity to approach complex nonlin-
ear systems [12] with arbitrary accuraiesy. In order to identify the T-S fuzzy model, a series
of identification algorithms have been proposed, such as the improved Gustafson–Kessel
clustering algorithm [13] and the subtractive clustering algorithm [14] based on the fuzzy
C-means (FCM) clustering algorithm [15]. These clustering algorithms are hyperspheri-
cal clustering algorithms based on Euclidean distances. Then, Hathaway introduced the
FCRM algorithm for the first time [16], which is a type of hyperplane clustering algorithm.
It overcomes a problem in which traditional clustering methods cannot approximate re-
gression models well. Currently, many scholars improved FCRM, and examples include
probability c regression clustering [17], robust c regression clustering [18], hyperplane
clustering [19,20], interval type-2 regression clustering [21,22], and robust probability c
regression clustering [23,24]. The purpose of these methods is to increase the model’s pre-
cision. In order to solve the hysteresis nonlinear modeling problem of PEA, some methods
are proposed, such as TS fuzzy modeling based on extended space [25] and adaptive fuzzy
modeling [26]. However, the above methods either have problems related to sensitivi-
ties with respect to noisy data or they still use the traditional hypersphere membership
function [27]. To summarize, in order to solve the above problems and establish an accurate
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hysteresis nonlinear model of PEA, the research contents and innovations of this paper are
as follows:

1. A new clustering algorithm is proposed to identify the antecedents of the fuzzy model,
which can effectively avoid the influence of noise points generated by the external
environment during data acquisition.

2. On the basis of the hyperplane membership function proposed by Li, a new hyper-
plane membership function is introduced to ensure an effective connection between
fuzzy antecedents and fuzzy consequent.

3. The proposed method is used to establish the T-S fuzzy model of PEA hysteresis
nonlinearity. Moreover, experimental data illustrate that the improved model can
better approximate the PEA hysteresis’ nonlinearity than compared to the T-S fuzzy
model established by FCRM and PCRM.

The paper is organized as follows: Section 2 mainly introduces the T-S fuzzy model of
PEA. Section 3 proposes the modified T-S fuzzy model identification method, including the
proposed clustering algorithm, the introduction of a new hyperplane-shaped membership
function, and the parameter identification of fuzzy consequents. Section 4 mainly intro-
duces the experimental design and discussion and verifies the effectiveness of the modified
model by comparing several different models.

2. T-S Fuzzy Model of PEA

In this section, a three-input single-output fuzzy system is established for the nonlinear
modeling of PEA. The system consists of several IF-THEN rules, each of which represents a
linear subsystem. Rule i can be represented by the following set of IF-THEN rules.

Ri : if xj1 is Ai
1 and xj2 is Ai

2 and xj3 is Ai
3

thenŷi = pi
0 + pi

1 xj1 + pi
2 xj2 + pi

3 xj3 i = 1, 2, . . . c
(1)

xj =
[
xj1, xj2, xj3

]
, j = 1, 2, . . . , n is the input data of T-S fuzzy model. Ai =

[
Ai

1, Ai
2, Ai

3

]
,

i = 1, 2, . . . , c is denoted as fuzzy sets, and c represents the number of fuzzy rules.
pi =

[
pi

0 , pi
1, pi

2, pi
3
]T is the fuzzy consequent parameter. ŷi is the output of the subsystem.

The output of the T-S fuzzy system is the weighted average output of each subsystem.

ŷ =
∑c

i=1ω
iŷi

∑c
i=1ω

i (2)

ωi represents the weight of rule i, calculated from the following expression.

ωi =
n

∏
j
µi

j
(
xj
)

(3)

µi
j
(
xj
)

is the membership function, and Π usually takes the minimizing operation.
The modeling process of the T-S fuzzy model roughly divided into the following

steps: identify the antecedents of the fuzzy model, select the membership function, and
identify the consequent parameters of fuzzy model. Fuzzy antecedent identification is
realized by clustering algorithms, such as FCRM. The connection between the antecedents
and consequents of the fuzzy model requires the selection of an appropriate membership
function, such as the commonly used Gaussian membership function. The identification
of fuzzy consequent parameters is based on the least squares method (LSM). The detailed
steps are shown in Figure 2.
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3. Identification of the T-S Fuzzy Model

This section provides a specific identification method for the T-S fuzzy model. In
Section 3.1, a modified clustering algorithm is proposed to solve the problem in which
traditional clustering is sensitive to noisy data. In Section 3.2, a new hyperplane-shaped
membership function is introduced to solve the problem in which the Gaussian mem-
bership function does not match the hyperplane clustering algorithm. In Section 3.3, the
LSM is used to identify the consequent parameters so as to establish a precise hysteresis
nonlinear model.

3.1. Fuzzy Antecedent Identification

Consider the fuzzy system in Section 2, where the output of rule i can be described
as follows.

ŷi = pi
0 + pi

1 xj1 + pi
2 xj2 + pi

3 xj3 =
[
1, xj

]
pi = xjpi (4)

xj =
[
1, xj

]
, pi indicates the parameter to be identified. The objective function of PCRM

is described as follows.

JPCRM(µ, p) =
c

∑
i=1

N

∑
j=1

(
µij

)m
E2

ij

(
pi
)
+

c

∑
i=1
γi

n

∑
j=1

(
µij

)m(
1− µij

)m
(5)

γi =
∑c

i=1 ∑N
j=1

(
µij

)m
E2

ij
(
pi)

∑N
j=1

(
µij

)m (6)

The fuzzy weighted exponent is m ∈ [1,+∞), usually m = 2. µi
j
(
xj
)

is the membership
function. µij is the element of fuzzy partition matrix U, 0 ≤ µij ≤ 1.

U =

µ11 · · · µ1n
...

. . .
...

µc1 · · · µcn

 = xjpi (7)
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In order to overcome the noise sensitivity problem and further improve modeling
accuracies, we propose a modified objective function that is founded on the objective
function of the PCRM algorithm.

J(µ, p) =
c

∑
i=1

N

∑
j=1

(
µij

)m
(Eij

(
pi
)
)

2
+

c

∑
i=1
γi

N

∑
j=1

(
1−

c

∑
i=1

(
µij

))m

(8)

Eij
(
pi) is the distance from the jth data to the ith hyperplane, which is denoted by the

following.
Eij

(
pi
)
=
∣∣∣yi −

(
xjpi

)∣∣∣ (9)

1− ∑c
i=1

(
µij

)
represents the membership degree of the noise point, which can ef-

fectively reduce the influence of noise points on the objective function. pi is the param-
eter to be identified in the regression model, which can be solved by the weighted least
squares method:

pi =
[
XTDiX

]−1
XTDiX (10)

X = [x1, x2, . . . , xn]
TεRn×m is the input data for the system. Di =

ui1 · · · 0
...

. . .
...

0 · · · uin

εRn×n

is the diagonal matrix composed of the ith row of the membership function.
Y = [y1, y2, . . . , yn]

TεRn is the output data of the system.
By introducing a Lagrange operator to minimize (8), the iterative formula of µij can be

obtained as follows.

µij =
(Eij
(
pi))− 2

m−1

∑c
k=1 (Ekj)

− 2
m−1 + (γi)

− 1
m−1

(11)

µij can also be written as follows.

µij =

(
Eij(pi)

− 2
m−1

∑c
k=1 (Ekj)

− 2
m−1

) (
∑c

k=1 (Ekj)
− 2

m−1

∑c
k=1 (Ekj)

− 2
m−1 +(γi)

− 1
m−1

)

=

(
Eij(pi)

∑c
k=1 Ekj(pk)

)− 2
m−1
(

1 +
d2

ij(pi)
γi

)− 1
m−1

(12)

Set d2
ij
(
pi) = ∑c

k=1

(
1

Ekj
2(pk)

)−1
; it is an improved version of harmonic mean dis-

tances. Thus, we can obtain the following.

µij = µij
FCRM.µij

PCRM

In summary, the specific algorithm relative to modified regression clustering is as follows:

1. The number of initial clustering models c, fuzzy weighted index m, and iteration
termination threshold ε > 0: Generate initial membership matrix U0εRc×n. Set the
iteration counter as r = 1.

2. According to Equation (10), calculate pi.
3. According to Equation (9), calculate Eij

(
pi).

4. According to Equation (6), calculate γi.
5. Update U iteratively according to Formula (12).

6. Compare the values of Ur+1 and Ur, if
∣∣∣∣∣∣Ur −Ur+1

∣∣∣∣∣∣≤ ε ; then, the iteration terminates.
Otherwise, r = r + 1; jump to 2.
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3.2. Selection of Membership Function

A membership function is a node connecting the fuzzy antecedent and fuzzy con-
sequent, which plays a significant role in the fuzzy identification process. The Gaussian
membership degree has been widely used in fuzzy identifications and can be expressed by
the following formula.

µi
j
(
xj
)
= exp

(
−1

2

(
xj − vi

j

σi
j

))
(13)

vi
j is used to determine the center of the curve, and σi

j is used to confirm the curve
width. It can be solved by the following expression.

vi
j =

∑n
k=1 µikxkj

∑n
k=1 µik

, σi
j =

√√√√2 ∑n
k=1 µik

(
xkj − vi

j

)
∑n

k=1 µik
i = 1, 2, . . . , c; j = 1, 2, . . . , m (14)

However, the traditional membership function belongs to the hypersphere member-
ship function, as shown in Equation (12), which does not match the above hyperplane
clustering algorithm. Aiming at the clustering method in Section 3.1, a hyperplane mem-
bership function is proposed as follows.

µi
j
(
xj
)
= exp

(
−ρ
(

Eij
(
pi)

max
{

Eij(pi)
})) (15)

ρ is a constant that adjusts the membership function. Eij
(
pi) is restricted by the output

data; thus, the membership function is easily affected by the measured data in practice. In
order to solve this problem, the following distance formula is introduced to solve Eij in the
membership function.

Eij

(
pi
)
=

∣∣(xj·pi)∣∣
||pi||

(16)

3.3. Identification of Fuzzy Consequent Parameters

The LSM is applied to identify fuzzy posterior parameters, and the output of the
model can be observed in Section 2.

ŷ =
∑c

i=1ω
iŷi

∑c
i=1ω

i

By setting xi = ωi

∑c
i=1ω

i , we can obtain the following.

ŷ =
∑c

i=1ω
iyi

∑c
i=1ω

i =
c

∑
i=1

xiŷi =
c

∑
i=1

xi
(

pi
0 + pi

1 xj1 + . . . + pi
m xjm

)
= H·P (17)

Insert the input and output data into (17), and we can obtain the following.

Y = H·P (18)

Y is the actual output of the system, H =
[
ω1, . . . , ωc, ω1xj1, . . . , ωcxj1, . . . , ω1xjm, . . . ,

ωcxjm
]
, P is the consequent parameter of the system to be identified,

P = [p1
0 , . . . pc

0, p1
1, . . . , pc

1, . . . , p1
m, . . . , pc

m]
T. Using the least squares method, we obtain

the following.

P =
(

HTH
)−1

HTY (19)
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The modified T-S fuzzy modeling method first applies the clustering algorithm in
Section 3.1 to divide the fuzzy space and identify antecedent parameters. Then, the
hyperplane-shaped membership function introduced in Section 3.2 is taken as a node to
allow improved connections between the fuzzy predecessor and the fuzzy successor. In
Section 3.3, we use the LSM to identify fuzzy consequent parameters. The specific modeling
steps are shown in Figure 3.
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4. Experimental Confirmation and Discussion

In this section, the modified T-S fuzzy model is used to conduct hysteresis mod-
eling experiments of PEA, and its effectiveness is verified by comparing other models.
The maximum error and root mean square error (RMSE) is introduced to establish the
model’s precision.

RMES =

√
1
n

n

∑
i
(yi − ŷi)

2 (20)

i = 1, 2, . . . , n, represents the n pairs of input/output data; yi is the actual output
data; ŷi is the output data of the model.

4.1. Experimental Equipment

The experimental equipment of the PEA data acquisition experiment includes hard-
ware and software systems. The hardware system includes a computer, a Piezo nano-
positioning device, a data-acquisition card, and an integrated drive controller, as shown in
Figure 4. The Piezo nano-positioning device used in the experiment is the P-733.2CD model
from the Physik Instrument (PI) company, Karlsruhe, Germany. which has integrated
displacement sensors that can directly measure output displacements. The data-acquisition
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card is a PCI-6251 produced by NI Company, Texas, America, Un which does not need to
write additional driver programs and can be directly connected to the device. The integrated
drive controller is an E-509.C2A dual-axis drive controller from PI, which contains a voltage
amplifier module to drive the PEA. The software system uses the Matlab2020a(Math-Works
company, Natick, United States) program preinstalled in the Win10 environment. The
initial signal of the experiment is generated by MATLAB software in the computer and
transmitted to the integrated drive controller across the data-acquisition card. The voltage
signal processed by the driving controller can be used as the driving voltage of the Piezo
nano-positioning device. After receiving the voltage signal, the Piezo nano-positioning
device outputs the corresponding displacement, and the displacement signal is fed back to
the computer across the data-acquisition card.
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4.2. Model Identification

For purpose of verifying the effectiveness of the above modified model, the three-
input single-output T-S fuzzy model is established in the study, which not only ensures
the output’s accuracy but also ensures the relative simplicity of the model’s structure and
facilitates subsequent controller designs. Experimental results show that the shape of PEA
does not change significantly when the frequency is lower than 5 Hz, as shown in Figure 5.
Therefore, the data ranging at 5 Hz–100 Hz are selected as the model’s test data to reflect
the effectiveness of the model.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 14 
 

 

Matlab2020a(Math-Works company, Natick, United States) program preinstalled in the 

Win10 environment. The initial signal of the experiment is generated by MATLAB soft-

ware in the computer and transmitted to the integrated drive controller across the data-

acquisition card. The voltage signal processed by the driving controller can be used as the 

driving voltage of the Piezo nano-positioning device. After receiving the voltage signal, 

the Piezo nano-positioning device outputs the corresponding displacement, and the dis-

placement signal is fed back to the computer across the data-acquisition card. 

 

Figure 4. Experimental equipment. 

4.2. Model Identification 

For purpose of verifying the effectiveness of the above modified model, the three-

input single-output T-S fuzzy model is established in the study, which not only ensures 

the output’s accuracy but also ensures the relative simplicity of the model’s structure and 

facilitates subsequent controller designs. Experimental results show that the shape of PEA 

does not change significantly when the frequency is lower than 5 Hz, as shown in Figure 

5. Therefore, the data ranging at 5 Hz–100 Hz are selected as the model’s test data to reflect 

the effectiveness of the model. 

 

Figure 5. Hysteresis characteristics of PEA at low frequency. Figure 5. Hysteresis characteristics of PEA at low frequency.



Electronics 2022, 11, 2786 9 of 14

Select xj = {u(t), y(t− 1), y(t− 2)}, yj = y(t), m = 2, c = 3, r = 500, ε = 0.0001, and
the input signal as u(t) = sin(2πft). Moreover, the sweep signal is used as the training
parameter to identify each parameter of the T-S fuzzy model. Data at frequencies of
5 Hz, 20 Hz, 40 Hz, and 100 Hz were used as the model’s test data. Table 1 shows the
identification of fuzzy consequent parameters. Figures 6–9 show the hysteresis model and
errors when the input frequency is 5 Hz, 20 Hz, 40 Hz, and 100 Hz.

Table 1. Identification parameters of the T-S fuzzy model.

p0 p1 p2 p3

R1 5.875 × 10−4 0.0266 1.6454 −0.6783
R2 −7.913 × 10−5 −0.0022 2.0112 −1.0087
R3 4.181 × 10−4 0.0167 1.7487 −0.7711
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From the above experimental results, we observe that the error of the improved model
is very small when the frequency is around 5 Hz–100 Hz. When the frequency changes, the
model can still well approximate the hysteresis curve at different frequencies, which proves
that the model is rate-dependent. When the sine signal is 5 Hz, the modeling max-error is
0.0028 µm and RMSE is 0.0610. When the sine signal is 20 Hz, the modeling max-error is
0.0020 µm and RMSE is 0.0270. When the input frequency is 40 Hz, the modeling maximum
error is 0.0015 µm and RMSE is 0.0162. When the sine signal is 100 Hz, the modeling
max-error l is 0.0020 µm and RMSE is 0.0136.

In order to preliminarily verify the feasibility of this model, this paper compares the latest
achievements of this model with other models in related fields. The hysteresis nonlinear model
of PEA established in Ref. [28] has a maximum error distribution of 0.1577 µm–0.7826 µm
within 100 Hz. However, according to the above experiments, the maximum error distribution
of the model in this paper is 0.0015 µm–0.0028 µm. It can be seen that the accuracy of hysteresis
model established by this method is significantly higher than that of the current mainstream
model, which is suitable for practical engineering applications.

4.3. Contrast Experiment

In order to further prove the validity of the above methods, we contrast the FCRM and
PCRM with the model established in this paper. The experimental conditions in Section 4.2
are still adopted to ensure the effectiveness of the experiment. Three different types of T-S
fuzzy models were identified by frequency sweep signals, and the input signal frequencies
of 5 Hz, 20 Hz, 40 Hz, and 100 Hz were used as test data. Maximum error and RMSE were
used as the model’s evaluation criteria. Figures 10–13 show the error curves of each model,
and Table 2 shows the comparison of error parameters.
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Table 2. Comparison of model performance parameters.

Frequency 5 Hz 20 Hz 40 Hz 100 Hz

FCRM
Max Error 0.0035 µm 0.0027 µm 0.0039 µm 0.0060 µm

RMSE 0.1123 0.0504 0.0327 0.0247

PCRM
Max Error 0.0039 µm 0.0031 µm 0.0025 µm 0.0039 µm

RMSE 0.1329 0.0559 0.0329 0.0253

Modified
Algorithm

Max Error 0.0028 µm 0.0020 µm 0.0015 µm 0.0020 µm
RMSE 0.0610 0.0270 0.0162 0.0136

According to the error comparison in the figure, it is observed that the T-S fuzzy
model established by the above method is significantly superior to the model obtained by
the traditional FCRM algorithm and PCRM algorithm at each frequency. The error of the
hysteresis model of PEA established by the proposed method is obviously less than that of
the other two methods. Moreover, the error distribution is more concentrated, which can
overcome the influence of noise points and approximate the hysteresis nonlinear model
more accurately.

According to the data in the table, when the frequency is 5 Hz–100 Hz, the max-
error distribution of the hysteresis model established by FCRM is between 0.0027 µm and
0.0060 µm, and the RMSE is distributed between 0.0247 and 0.1123. As the TS fuzzy model
established by traditional FCRM is sensitive to noisy data and uses traditional membership
function, the hysteresis model established by traditional FCRM has large errors and is
relatively scattered. The max-error distribution of the hysteresis model established by
PCRM algorithm is between 0.0025 µm and 0.0039 µm, and the RMSE is between 0.0253
and 0.1329. Because the objective function of PCRM algorithm is improved on the basis of
FCRM algorithm, the maximum error of the hysteresis model established by the PCRM
algorithm was obviously improved. Moreover, the traditional membership function still
makes the error distribution more scattered. The max-error distribution of the model built
by the improved algorithm in this paper is between 0.0015 µm and 0.0028 µm, and the RMSE
distribution is between 0.0136 and 0.0610. Compared with the previous two algorithms, this
method proposes a new objective function based on FCRM, which largely overcomes the
influence of noise points. Moreover, it introduces a new hyperplane membership function.
Therefore, the model has the smallest error; the error distribution is more concentrated; the
modeling precision is obviously improved.

5. Conclusions

This paper presents a modified T-S fuzzy modeling method for establishing its T-S
fuzzy model of PEA hysteresis nonlinearity. Firstly, an improved regression clustering
algorithm was proposed to overcome the influence of noise in the application of PEA.
Secondly, an improved hyperplane membership function is introduced for the new hyper-
plane clustering algorithm to ensure an effective connection between fuzzy antecedents
and fuzzy consequents. Lastly, the experiment proves that the hysteresis model errors of
the modified method are less than 0.0028 µm under the frequency of 5 Hz–100 Hz, and the
overall deviation is small. In general, compared with the model established by the FCRM
algorithm and PCRM algorithm, the accuracy of the model significantly improved. In
practical applications, the influence of noise points in active vibration control is effectively
overcome, and the hysteresis nonlinearity of PEA can be approximated better at different
frequencies, which provide the necessary conditions for the subsequent controller’s design.
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